Springer Nature 2021 IMTEX template

Design and verification of pipelined circuits
with Timed Petri Nets*

Rémi Parrot!, Mikaél Briday! and Olivier H. Roux!

INantes Université, Ecole Centrale de Nantes, LS2N UMR CNRS
6004, 1 rue de la Noé, Nantes, 44300, France.

Contributing authors: remi.parrot@ec-nantes.fr;
mikael.briday@ec-nantes.fr; olivier-h.roux@ec-nantes.fr;

Abstract

A fundamental step in circuit design is the placement of
pipeline stages, which can drastically increase the data through-
put. Retiming allows optimizing the pipeline with regard to
a criterion, for example the required number of registers.
This article presents an extension of Timed Petri
Net to model synchronous electronic circuits, in
order to explore the design space of pipelines.
The Timed Petri Nets “4 la Ramchandani” with a maximal step fir-
ing rule, have notably been used for the modeling of electronic circuits.
The RTPN extension, through the reset which model the pipeline
stages, and through the delayable transitions which relax some tempo-
ral constraints, makes it possible to widen the design space of pipelined
systems, and thus to deal with both the retiming and the verification.
After a formal definition of this model, we present a method
to explore pipelines verifying temporal properties. We apply our
approach to a time-multiplexing property allowing the mutual-
ization of operators while minimizing the number of registers.

Keywords: pipeline optimization, model checking, Timed Petri Net, resource
sharing, time-multiplexing, synchronous circuit

*This work is supported by the Renault-Centrale Nantes chair dedicated to the
propulsion performance of electric vehicles.

Springer Nature 2021 IMTEX template

2 Design and verification of pipelined circuits with TPN

1 Introduction

Timing constraints are a major problem in the design of synchronous log-
ical circuits. To meet these constraints the pipeline is often inevitable, it
allows increasing the operating frequency and thus the throughput. The cir-
cuit composed of atomic operators is sliced in several steps called stages. This
slicing, physically implemented with memories (flip-flops), allows the concur-
rent execution of stages and the synchronization of their inputs/outputs. The
automatic generation of a pipeline, i.e. the efficient placement of flip-flops (1-
bit registers), aims not only at ensuring a target frequency but also minimizing
the resources consumed by the pipeline.

1.1 Automatic pipeline generation

The automatic pipeline generation was initially formalized by Leiserson and
Saxe in [15], using a model of graph. Their method is based on retiming,
i.e. moving registers in the circuit without altering its behavior. Thanks to
retiming they are able to build a pipeline guaranteeing a minimal throughput,
while minimizing the resources consumed by the pipeline registers [15]. They
reformulate the problem with a minimum cost flow problem. But it turned
out to be inefficient for large circuits, and therefore has been replaced in [10]
by a reformulation into an iterative maximal flow problem. This solution is
implemented at the logical synthesis level in the ABC tool [3], which is to
our knowledge the current state of the art. However, these approaches are in
practice hard to implement, and are mainly used by FPGA vendor tools at
the logical synthesis level.

We propose a new approach able to solve this same problem, but also to
verify by model checking temporal constraints. Moreover, this model, which
preserves the structure of the circuit, is quite suitable for optimizations beyond
the pipeline, such as the sharing of circuit parts.

1.2 Circuit design with Petri Nets

The authors of [15] introduced an abstraction of circuits as weighted directed
graphs. The intuition is actually that the model is a marked graph, which
is a subclass of Petri Net (PN) where every place has exactly one input arc
and one output arc. Because of their concurrent nature, the PNs have been
widely employed to analyze and optimize temporal properties of synchronous
and asynchronous circuits: [6,7,16,24].

They proved to be very efficient for latency insensitive systems. Bufistov
et al. [6] extended the works of Leiserson and Saxe on latency insensitive sys-
tems, by combining retiming with recycling, i.e. insertion of bubbles (registers
with no informative value), in order to reduce the total number of registers
while ensuring a minimal throughput. More recently, Josipovic et al. [12] pro-
posed a temporal optimization of circuits generated from an HLS (High Level
Synthesis) description with control flow structures, by applying the approach
of [6] on extracted sub-circuits.

Springer Nature 2021 IMTEX template

Design and verification of pipelined circuits with TPN 3

All those works share the same solving method: deduce temporal con-
straints from the structure of the PN, and reformulate with a linear optimiza-
tion problem. In contrast, our approach makes use of the semantics of PNs
and synthesizes directly the pipeline from the states of the model. The explicit
exploration of the states offers a simple way to verify logical and temporal
properties on the resulting pipelined circuit.

1.3 Model-Checking

Model-checking was initially developed, among others, for the verification
of electronic circuits [13]. The expressive power of formal models like PN,
allows modeling both the circuit and its environment, thus to verify a com-
plete system. We can, for example, verify an FPGA working together with a
microcontroler, and all connected to a set of sensors and actuators.

The temporal logics were first introduced by Pnueli [21] as specification
languages to describe the behavior of sequential and concurrent systems. The
TCTL [2] and weighted CTL [5] logics extend respectively the temporal tree
logic CTL, to time and to cost constraints.

We propose to illustrate a usage of those temporal logics for the model-
checking of circuits with the example of time-multiplexing. It is a technique of
resources sharing using time to sequence the access to a resource. This kind of
property can be easily expressed and verified on a PN model.

1.4 Time-Multiplexing

Time-multiplexing is especially interesting for applications with a low through-
put with respect to the clock frequency. Such applications include, for example,
signal processing applications implemented on FPGA, which require a very low
sampling rate compared to the FPGA frequency (e.g. a 1 MHz signal process-
ing algorithm onto a 100 MHz FPGA). In this kind of context, it is beneficial
to implement only once, parts of the circuit which are used several times, and
to schedule their access with the pipeline.

Many works have been carried out in this domain, notably through a prob-
lem called modulo scheduling. This problem aims for a minimal latency in a
time-multiplexed circuit, given limited available resources (arithmetic or logic
operators). The authors of [26] proposed an ILP (Integer Linear Program-
ming) formulation which combines scheduling constraints, bounds on available
resources, minimization of needed registers, and mutualization of registers
when it is possible. More recently, a two-step process was demonstrated by [25]:
first the shareable configurations are detected, then each configuration is sched-
uled. This approach called folding allows sharing portions of the circuit in
contrast with the previous approaches which were only able to share operators
one by one.

Springer Nature 2021 IMTEX template

4 Design and verification of pipelined circuits with TPN

1.5 Context of application

As part of a collaboration with Renault, the automotive company, we aim
at optimizing VHDL synthesis for an FPGA target, from a Matlab/Simulink
project. Specifically, the goal is to implement a synchronous circuit with a
minimum resource consumption, both for logical units and flip-flops, while
ensuring that the whole computation is done in a limited time-frame (the
sampling period). A tool is under heavy development, in order to propose a
complete chain for the hardware implementation of control laws directly in
FPGA. This section briefly introduces the different parts considered in this
tool.

The compiler is classically organized around an internal representation,
independent of both the input (Simulink) and output (VHDL) representa-
tions. This internal model serves as a pivot for all the tools, with different
optimizations. The general architecture of the tool is depicted in Figure 11.

Fixpoint Operator
Datawidth Delay
Evaluation Evaluation
H Front-end 7 | Back-end Clag
lllp(llllt ﬁ‘lle’ —_— (Simulink Internal _— (VHDL OUtpu}t {1165
(.II] /.8)\) parser) / Model \ generation) (,v 1d)
@ pipeline
RTPN + folding
Generation Operation

.| RIPN Modd ——

Fig. 1: Simulink-to-VHDL compiler dataflow diagram

The front-end consists in parsing the input file to transform it into this
internal model. During this phase, some optimizations are directly performed,
such as signal connections between the different modules. In the same way, the
back-end (VHDL only at this date) allows generating the hardware descrip-
tion. These output files can be synthesized through the hardware vendor
development chain.

Several steps are then performed, each time based on the same internal
model and input and output. They allow refining the model. On the diagram
presented in Figure 11, only the 3 main steps are shown.

The first pass concerns the evaluation of the size of the signals and the
associated encoding (fixpoint). It is currently done manually and is based on
a labeling of the signals. This pass can be replaced by the internal tools of
Matlab like the toolbox fixpoint designer. Eventually, the goal is to make this
pass semi-automatic, using both interval arithmetic and affine arithmetic [14],
as well as recent work for example for linear looped systems [9].

Springer Nature 2021 IMTEX template

Design and verification of pipelined circuits with TPN 5

The evaluation of operator delays is required in modeling with Petri nets
extensions defined in the paper. The level of abstraction of the operators in
Simulink does not allow to calculate precisely these delays. The approach used,
as for the FloPoco tool [8], is to synthesize each operator to determine its crit-
ical path. The delay of each evaluated operator is then recorded in a database
because this synthesis is computer intensive. This pass is automated through a
script and is based on an experimental-only approach. The delay of the oper-
ators will necessarily vary during the synthesis of the final project (because of
branching, internal optimizations, interconnections, ...). It is only possible to
validate that all deadlines are met after the final synthesis.

The last pass (in green in the figure) is the one that is presented in this
article and is a synthesis and extension of the articles [18,20], which introduce
the model Timed Petri Net with reset and delayable transitions (RTPN in
short) and present its usage for pipeline synthesis. Here, the focus is on the
addition of temporal logic constraints to the generation of pipelines.

1.6 Outline

We first present in Section 2 a semantics of Timed Petri Nets “a la Ramchan-
dani” [23]| with an atomic firing rule using maximal steps, i.e. without the three
phases firing. Then, in Section 3, we present an extension of Timed Petri Nets
(proposed in [20]) closer to real synchronous circuits, which embeds the impacts
of registers on the delay of the circuit with a particular reset operation, and
which allows relaxing some temporal constraints with delayable transitions.

Thanks to this accurate model of pipelined synchronous circuits, we present
in Section 4 a design space exploration guided by a cost which stands for the
number of needed registers (proposed in [18]). We extend this approach in
Section 5 in order to build optimized pipelines (in terms of number of registers),
while guaranteeing that a set of properties are verified by the synthesized
circuit. We apply this approach to the time-multiplexing problem.

2 A synchronous model for the pipeline

The use of deterministic time in PN was first introduced by Ramchandani [23],
which led to a model called Timed Petri Net. Each transition is associated
with a delay, representing the fact that actions take time to complete.

IN and R>(are respectively the sets of integer and non-negative real num-
bers. For vectors of size n, the usual operators +, —, <, <, >, > and = are used
on vectors of IN" and RZ and are the point-wise extensions of their counter-
parts in IN and R>¢. As a reminder, for example the point-wise extension of
the operator < over IN" is defined by Vu,v € N, u < v <= Vi € [1l..n],
u(i) < v(i). Let 0 be the null vector of size n.

Springer Nature 2021 IMTEX template

6 Design and verification of pipelined circuits with TPN

2.1 The three-phases firing semantics

Ramchandani’s semantics is a three-phases firing semantic: delete the input
tokens of the transition (consumption), wait until the firing time is reached
(delay) and create the output tokens of the transition (production). Once ini-
tiated, this firing process cannot be interrupted or stopped. The consumption
phase can therefore be seen as a reservation (in particular in case of con-
flict). Moreover, the transitions in the firing process are synchronized to a
global clock. He furthermore prohibits zero-time firing, which prevents the
same transition from being fired twice when other transitions are in conflict.

Popova proposed a semantics based on the same three-phases firing, but
selecting beforehand a maximal step of transitions to fire in the same atomic
action [22]. In other words, instead of being reserved one after the other, the
transitions are selected and then reserved all at the same time (consumption
phase).

2.2 The maximal-step firing semantics

Classically the semantics of (timeless) PN is the interleaving semantics, in
which transitions are fired one after the other. In the maximal-step seman-
tics, a maximal set of fireable transitions is selected and are then fired all at
once. In practice the maximal-step semantics avoids the interleaving, which
is interesting for the modeling of synchronous systems. It imposes more con-
straints than the interleaving semantics, and thus increases the expressiveness
and eliminates reachable markings.

Popova shows how a counter machine can be encoded and simulated by
timeless PN with maximal-step firing, which then also applies to TPNs [22]. In
particular, she shows the modeling of the so-called zero-test, which is recalled in
Figure la. It means that Timeless as well as Timed PNs firing in maximal-step
are Turing equivalent.

2.3 An atomic semantics for TPNs

We consider a TPNs atomic semantics [20] without any reservation: waiting is
done while keeping the tokens in their place, then when at least one transition
is fireable we select the maximal step and fire (consumption and production)
all the transitions in one atomic action. The maximal step contains enabled
transitions which have been enabled for a period of time equal to their delays.
Informally, a clock and a delay are associated with each transition of the
Net. The clock measures the time elapsed since the transition has been enabled
and the delay is interpreted as a firing condition: the transition may and must
fire if the value of its clock is equal to the delay.
Formally:
Definition 1 (TPN). A TPN is a tuple (P,T,*(.),(.)*, 6, My) defined by:

e P={p1,p2,...,Dm} is a non-empty set of places,
o T ={t1,ta,...,tn} is a non-empty set of transitions,

Springer Nature 2021 IMTEX template

Design and verification of pipelined circuits with TPN 7

*(.): T — IN? s the backward incidence function,

(.\)* : T — IN? s the forward incidence function,

Mgy € N is the initial marking of the Petri Net,

0 : T — IN is the function giving the firing times (delays) of transitions.

A marking M is an element of N such that Vp € P, M(p) is the number
of tokens in place p. A marking M enables a transition ¢ € T if: M >*t. The
set of transitions enabled by a marking M is enab (M) ={t €T | M >*t}. A
transition is fireable if it is enabled and its clock has reached its delay.

Fireable transitions are fired simultaneously according to the maximal-step
firing rule. For a marked graph where every place has one incoming arc, and
one outgoing arc, there can not be any conflict and the firing of a transition
cannot disable another transition. In the general case, there can be conflict
and, from a given state, there can be several maximal steps 7.

From a marking M, the simultaneous firing of a set 7 of transitions leads
to a marking M’ = M + Sy, (t* —°t).

A transition ¢’ is said to be newly enabled by the firing of a set of transitions
7 if M+ Yier (t’ - t) enables t' and (M — 3, %) did not enable ¢'. If ¢
remains enabled after its firing then ¢ is newly enabled. The set of transitions
newly enabled by a set of transitions 7 for a marking M is noted 1 enab (M, 7).

A state is a pair (M,v) where M is a marking and v € RL is a time
valuation of the system (i.e. the value of the clocks). v(t) is the time elapsed
since the transition ¢ € T has been newly enabled. 0 is the valuation assigning
0 to every transition.

Definition 2 (Maximal Step). Let ¢ = (M,v) be a state of the TPN
(P, T,°(.),(.)*,0,My), 7 CT is a mazimal step from q iff:

1.Vt er, vt) =6(t)
2 Y, <M
VU ET, (v(t)) =5(t) and ¥ <M and t' € 7) = Y, % +°t' £ M

The set of mazimal steps from q is noted mazStep(q)

The first condition ensures that the transitions are ready to fire, i.e. the
clocks are equal to the delays. The second condition ensures that the transition
are fireable, i.e. enabled and not in conflict with another transition of 7. The
third condition disallows the existence of a proper superset of 7 which fulfills
the previous two conditions.

The semantics of TPN is defined as a Timed Transition System (TTS).
Waiting in a marking is a delay transition of the TTS and firing a maximal
step is a discrete transition of the TTS.

Definition 3 (Semantics of a TPN). The semantics of a TPN is defined by
the Timed Transition System S = (Q, qo, —):

e Q=N x RZ, is the set of states,

® qo = (My,0) is the initial state,

e »€ Q x (Rxo U2T) x Q is the transition relation including a discrete
transition and a delay transition.

Springer Nature 2021 IMTEX template

8 Design and verification of pipelined circuits with TPN

o The delay transition is defined ¥d € R>¢ by:
, v(t)+d ift € enab(M)
(M,v) 4, (M, ") iff vt = {v t) otherwise
Vit € enab (M), v'(t) < 46(t)

o The discrete transition is defined V1 € ma:cStep((M, v)) by:
M =M+, (t*—°t)

(M,v) 5 (M v')iff ¢ 0 if t etenab(M,7) ort & enab(M’)
v'(t) = .
v(t) otherwise
A run in a TPN is a sequence ¢y —» ¢1 — ..., such that for all i,

qi RAAET ¢i+1 is a transition in the semantics.

In the absence of conflict, the atomic semantics of Definition 3 is equivalent
to the three-phases one of Ramchandani (extended with zero firing delay [22]):
there exists only one run, there is no indeterminism. In case of conflict, it is
possible to construct the three-phases firing in our semantics: just add a zero
time transition before each transition, in order to simulate the reservation
action [20].

2.4 Zero-test and model of the pipeline

Thanks to the maximal step firing, the TPN represented on Figure la can
perform the zero-test. The zero-test in the case of TPN is materialized by
testing if a place is marked or not, here the place p. After firing the transition
start, the transitions test and cancel are fired simultaneously if and only if
the place p is marked. The next step will contain the transition is_zero iff p
wasn’t marked, which leads to a token in p..,,. We will use this test several
times in the following, thus we will replace it by the graphical shortcut of
Figure 1b for convenience.

Using this zero-test, it is directly possible to model the dataflow of a
pipeline. The TPN of Figure 2 models a D flip-flop, which is used for the syn-
chronization of a signal between two pipeline stages. The marking of the place
Q; (or D;) represents the presence of data (not its truth value).

On the left of the zero-test, the generator models the oscillator by adding a
token in the place clock every N time units. When the place clock is marked,
the zero-test will put a token in @; (output) only if the place D; (input) is
marked. We thus model a D flip-flop (copy the input signal D; to the output
Q; on a rising edge of the clock), which synchronizes the dataflow with clock.

Model-checking on pipeline is then possible. However, this model only
allows the study of one pipeline (one placement of the D flip-flops in the cir-
cuit) at a time. Studying others pipeline requires to change completely the
model by moving the flip-flop pattern.

Springer Nature 2021 IMTEX template

Design and verification of pipelined circuits with TPN 9

|

Ptested

(a) Zero-test pattern

Pzero

Penab # 0 —>O
O—> B Pzero
=0—()

(b) Notation
Fig. 2: Zero-test pattern

Qi

?
generator clock #0 C

Fig. 3: Model of pipeline dataflow with frequency % (D flip-flop)

3 TPN with reset and delayable transitions

We have proposed in [20] an extension of TPN where transitions are separated
in two groups: asap transitions (non-delayable) must fire as soon as possible,
as in Definition 1, and delayable transitions can fire when their clock reaches
their delay, or when their clock exceeds their delay and they are associated
with another transition whose clock just reaches its delay. In addition, the

Springer Nature 2021 IMTEX template

10 Design and verification of pipelined circuits with TPN

clocks can be resetted (the corresponding action is called reset) and the delay
between two consecutive resets is fixed by an interval I.cge;.

3.1 Definitions

Definition 4 (RTPN). A RTPN N is a tuple (P,T,Tp,*(.), (.)®, 0, Ireset, Mo)
defined by:

° (PvTa.(')7(').757MO) s a TPN}
e T C T is the set of delayable transitions;
® [cset 18 the reset time interval with lower (I eset) and upper (Leser) bounds

in IN.

From a state (M,v), a transition is fireable if it is enabled and its clock is
greater or equal to its delay. As for the TPN, the clock of an asap transition
t & Tp cannot exceed d(t). Consequently, v(t) < §(t) and ¢ must fire when its
clock is equal to its delay. A delayable transition ¢ € Tp may fire either when
v(t) = §(t) (not delayed in that case), or when v(t) > J(¢), but in this case ¢
must be associated with at least one (or more) other fireable transition ¢’ such
that v(t') = 6(t').

The maximal step is then maximal only with regard to the asap transitions:
Definition 5 (Maximal Step w.r.t. Tp). Let ¢ = (M,v) be a state of N. A
set T C T is a mazimal step with regard to Tp from q iff:

1. Vte T, v(t) > o(¢)

2. et st o(t)=10()

3 Der T<M

4. V' € T\Tp, (v(t') =0(t') and*t' <M andt' ¢ 1)= >, % +°t' £ M

The set of maximal steps w.r.t. Tp from q is noted maxStep\r, (q).

A state is now a pair (M,v) such that v € Rzg{reset} is extended with

a clock value for reset, evaluating the time elapsed since the last reset. The
reset action resets all clocks of the net. It is possible only when its clock value
belongs to the reset interval v(reset) € I eget.

The semantics of a RTPN is defined as a Timed Transition System (TTS).

Waiting in a marking is a delay transition of the TTS, and firing a maximal
step or the reset are discrete transitions of the TTS.
Definition 6 (Semantics of a RTPN). The semantics of a RTPN N is defined
by the Timed Transition System Sy = (Q, qo, —) with Q@ = N¥ x R;E{Teset}
is the set of states; qo = (Mo, 0) is the initial state; and —€ Q x (R>oU 27 U
{reset}) x Q is the transition relation including a discrete transition and a
delay transition:

Springer Nature 2021 IMTEX template

Design and verification of pipelined circuits with TPN 11

® The delay transition is defined Vd € R>o by:
v(t)+d ift € enab(M)U {reset}
u(t) otherwise

v'(t) {
(M,v) L (M,) iff
v'(reset) < Leset

Vit € enab (M) \ Tp, v'(t) <4(t)

e The discrete transition is defined by:

- V7 € maxStep\r, (M, v)),
M' =M + S, (t° —*t)
(M,v) & (M',v") iff 0 if t €tenab(M,) ort ¢ enab(M')

!/
t) =
) v(t) otherwise

v(reset) € L eset

{reset} I e
v'=0

- (M,v) (M,v’)iff{

Definition 7 (Runs). Let N be a RTPN and Sy its semantics. A run of N

from q is finite or infinite sequence p = q LN qd, NEN Gry - - An, qd, Iy g,
of alternating delay d; (possibly null) and discrete transition T; where either
7 €T or 1; = {reset}. For all run p, there exists a discrete run pg = q —

Tn

Gry - - - —> qr, , in which only the discrete transitions are present.

3.2 Example

Let us consider the RTPN depicted in Figure 3a. Figure 3b shows a part of its
state graph, restricted to the first occurrence of a reset. States after a reset are
framed in cyan. For more convenience, the markings are represented as the set
of marked places. The initial state of the net is the state qg in the state graph.

Note that the transition ¢y being delayable, it can fire either when it reaches
its delay (edge between ¢; and ¢2), or together with ¢35 (edge between gg and
Qo). Finally, it should be noted that not all the possible runs are represented
here. It is for example possible to wait 7 time units from ¢y and then do a
reset. Actually it exists infinitely many runs, as a result of the density of time.

3.3 Properties of RTPNs

Symbolic states

The RTPN semantics is a transition system in which each state consists of a
marking and a valuation of the clocks. Note that there is (because we only
consider bounded nets) only a finite number of markings, but there are an
uncountable quantity of valuations because of the density of time (particularly
for the states from which a reset is possible). For example, there is infinitely
many states between gg and ¢;; (in the Figure 3b). These states correspond to
the wait between 6 and 9 time units from the state gy which can be abstracted

Springer Nature 2021 BTEX template

12 Design and verification of pipelined circuits with TPN

Ireset = [67 10]

(a) Example of RTPN N

{PlaPZ,PB} {Pl,Pzaps}

g @
i{’f{;fi}o 5 1{}(”3[;)“:}5 .{to} v(t1) =0 g w(t))=2 {tz} {p1,ps}

_ —> _ —> v(t2) =0 — v(t2) =2 —> v(t1) =2
f}Ei?se_t)O: 0 ZE?;)S;)Sz 5 UEtS) =t)5— . vEtg) =t)7_ ; v(reset) =7
9 l \\\reset} 1 l (reset] i 2
{po,p3} 6 {po. ps} {p1,p5}
v(to) =9 v(to) =6 {p1,p2, 3} @ v(ty) = 4
v(ts) =9 v(ts) =6 v(t1) =1 {p1,ps} v(reset) =9
v(reset) =9 v(reset) = 6 u(ts) =1 v(t1) =0
v(ts) =6 v(reset) =0 l{tl}
{to,t3} l \«Lt3} v(reset) =6
{pa,ps}
{p17p21p6} {Z(th}) 9 {reset} i v(reset) =9
v(t1) =0 vlto) = (
U(rleset) —9 v(reset) =9 @ l{resct}
{TCSCt}l {reset} l @ el
{p1, 2, pe } {po} v(reset) = 0
v(t1) =0 v(tg) =0
v(reset) = 0 v(reset) =0

(b) Part of the state graph of N’ (until the first resets)
Fig. 4: Example of RTPN and some of its possible runs. Delays are represented
in red under the transitions, and delayable transitions are in gray (only ¢g in
this example).

by v(to) = v(t3) = v(reset) € [6,9]. The state space can then easily be
abstracted by a finite set of symbolic states (shown in [20]).

Definition 8 (Symbolic state). A symbolic state is a pair (M, Z) where M is
a marking, and the zone Z is a set of valuations v of T U {reset} defined by
the conjunction of:

e rectangular constraints: (v(x) ~ ¢) where x € T U {reset}, ~e {<,=>}
and c € N,
® diagonal constraints: (v(reset) — v(t) = c¢) where t € enab(M) and ¢ € IN.

It is then possible to build a symbolic state graph as defined in [20], illus-
trated in the example in Figure 4. Compared to the part of state graph of
Figure 3b, we can see that some states have been grouped into a single symbolic
state.

Springer Nature 2021 BTEX template

Design and verification of pipelined circuits with TPN 13

{p1,p2,p3} ©

0<w(ty) <4

0 < w(tz) <2 {p1,p5}

0< v(ts) <9 0<u(ty) <4

0 < wv(reset) <1 0 < v(reset) <10
{p1,p2,p3} v(reset) — v(t1 v(reset) — v(t1) = 0

)=0
0<w(t1) <4 v(reset) —v(t2) =0

0< v(ta) <2 % vlreset) — v(ts) — 0 D
reset} 5<w(tz) <9 e
{reset 5 < v(reset) < 10 —_ {p1,ps} B
v(reset) —v(t1) =5 [
w(reset) v(é) —: {tyy 7 2<w(t1) <4

{pa,ps} @

7 < v(reset) < 10 (613 9 < v(reset) <10

S v(reset) —v(t3) =0 v(reset) —v(t1) =5
Ogi n
v
0 < v(to) {p1,p2,p6} € {p1,p2,p6} 3
0<w(ts) <9 5 0Sv(t) <4 o0 S v(t) <4 &
0 < w(reset) < 10 {tg,t3} 9< v(reset) < 10 {reset}|0 < v(reset) <10
v(reset) — v(tg) =0 v(reset) —v(t1) =9 v(reset) —v(t1) =0 @
v(reset) —v(tz) =0 ({)pé‘pf} £ < 10
{%} @ < v(reset) <
{Po,pe} {Po,pe}
9 < w(to) »| 0 < v(to)
9 <w(reset) <10 | (reset}|0 < v(reset) <10
v(reset) —v(to) =0 v(reset) —v(to) =0

Fig. 5: Part of the symbolic state graph of A/ (until the first resets)

It is interesting to note that the zones have a particular shape: the diagonal
constraints are equalities and compare all the clocks against v(reset). Thus,
by simply setting a value of v(reset) we can “choose” a point of the zone. The
discrete actions (other than reset) are then only done on integer points of the
space and the symbolic state space preserves the language in addition to the
reachability. Based on this abstraction it is possible to build a single clock
automata that recognized the same language, as presented in [20].

An abstraction preserving branching is readily accessible. Simply split the
zone when a transition is no more fireable. For example the state s, of Figure 4
becomes the states presented in Figure 5.

~
&
Se

{reset}

[{)pgp(z}) <s r{)pgp(s})
< w(tg) <F 5 < w(to
0< v(ts) <9 5< u(ts) <9 ﬁ
o < v(reset) < 10 5 5 < v(reset) < 10
v(reset) —v(to) =0 v(reset) —v(tg) =0 {t\>
v(reset) — v(tz) =0 v(reset) —v(tz) =0 3}

Fig. 6: Abstraction preserving the branching of state s, of Figure 4

Without going into details on symbolic state graphs, it should be noted
that only few discrete runs are sufficient to describe all the behaviors. We will
then only represent the relevant states in the following state graphs.

Decidability and complexity

Timeless PNs, with maximal-step firing, are as expressive as Turing Machines
and are a subclass of RTPN for whom the reachability problem is then also not
decidable. But if we consider bounded nets, we obtain the following results:

Springer Nature 2021 IMTEX template

14 Design and verification of pipelined circuits with TPN

Theorem 1. Reachability and TCTL model checking for a bounded TPN, with
or without reset and delayable transitions, are PSPACE-complete.

Proof. PSPACE-hardness comes from the PSPACE-completness of the reach-
ability problem for a safe timeless PN with the classical interleaving semantics,
which is a subclass of bounded TPN. Then the PSPACE-completness is
obtained by applying the same procedure as in [2,4] by checking TCTL for-
mulae with an inductive algorithm for region graph exploration, which is
polynomial in space. O

Theorem 2. For bounded RTPN, the universality and language inclusion
problems are decidable for finite timed words.

Proof. Tt is a consequence of the translation preserving the timed bisimulation
proposed in [20] of bounded RTPNs to one clock timed automata, for which
these problems are decidable [1,17]. O

4 Pipeline synthesis

The model presented in Section 3 can accurately represent pipelined syn-
chronous circuits. The following will demonstrate how to use this model
to build an optimized pipeline which ensures a minimal frequency while
minimizing the required registers (and thus the material resource consumed).

In this modeling, transitions represent the operators and places represent
the connections of the circuit. The PN is actually a Marked Graph, and there
is no conflict. However, the state space still has an exponential size regarding
the size of the RTPN. Some features are then used to limit the exploration
according to an optimization objective.

The goal is to build the pipeline that minimizes the total number of
flip-flops (1-bit registers). The RTPN model is then extended with a cost rep-
resenting the number of flip-flops of a given pipeline. Note that the considered
circuits are finite and with unfolded loops, so we focus on finite runs of RTPN:
the accumulation of an increasing cost will not affect the termination.

This pipeline building problem that minimizes the number of registers
while ensuring a minimal frequency was already solved by [15]. However, the
proposed solution cannot be easily extended with additional constraints on
the pipeline. The originality of the approach lies in the possibility to append
a set of properties to check, to the pipeline synthesis. Those properties can,
for example, permit sharing a portion of the circuit between several pipeline
stages. The synthesis of pipeline allowing resource sharing will be addressed
afterwards in Section 5.

4.1 RTPN with cost

The RTPN class is extended with a cost on each place, and a marking cost
function.

Springer Nature 2021 IMTEX template

Design and verification of pipelined circuits with TPN 15

Definition 9 (CRTPN). A CRTPN is a tuple (N,C,w) where N =
(P, T,Tp,*(-), (.)*, 0, Ireset, M) is @ RTPN and

e C: P — NN is the cost assigned to each place;
e w:INP — IN is the marking cost function (recall that a marking is M € IN¥).

A classical marking cost function is w(M) = 37 _p M(p) - C(p) which is
the sum of the marking of each place weighted by its cost. This function is not
necessarily linear, as we will see for the model of branching points.
Definition 10 (Cost of a run). The cost Q(p) of a run p is the accumulated
marking cost of the states that immediately follow a reset in the run, starting
by the cost of the initial marking.

It is defined inductively on a run py, = pp-1 20 G, with ay, € R>oU 2Ty
{reset} and q, = (M, v,) by:

* Q(qo) = w(Mo)

.« Qp) = Qpn-1) +w(M,) if an, = {reset}
P Qpn-1) otherwise

4.2 Modeling circuits

A set of rules to model a circuit with a CRTPN is defined in this section.
Figure 6 shows an example of circuit, with the operators op; connected by
signals s;. The size of each signal is noted between parentheses (in green).
The propagation delay of each operator is noted under it (in red). Lastly the
pipeline’s registers are represented by (blue) rectangles on the edges.

In the following, a circuit is considered as a weighted graph (V, E,d, w), in
which V = Op W B is the set of operators Op joint with the set of branching
points B (W is the disjoint union), and E is the set of signals. Additional signals
following a branching point are defined, in order to match with the edges of the
graph (on the example Figure 6 the signal s; gives three signals s11, s12 and
s13 after the branching). Finally, the weights d and w represent respectively
the propagation delay of the operators d(op) and the size of the signals w(s)
(number of bits).

The CRTPN ((P,T,%(.),(.)*,0, Ireset, Mp),C,w) built from the circuit
Figure 6a is represented on Figure 6b, and is obtained thanks to 7 rules. The
four first rules preserve the elements of the circuit and their connections:

rule 1: J¢e: E — P a bijection, with Vs € E, C(¢e(s)) = w(s);
rule 2: J¢py: V — T a bijection, with Yop € Op, §(¢v(op)) = d(op) and Vb € B,
6(¢u(b)) = 0;

T =Top W T with To, = ¢(Op) and Tp = ¢u(B).
rule 3: If s € E is an input signal of v € V, then %(p) = 1 with ¢ = ¢y(v) and
p = de(s);
rule 4: If s € E is an output signal of v € V, then t*(p) = 1 with t = ¢ (v) and
p = ¢e(s);

Springer Nature 2021 IMTEX template

16 Design and verification of pipelined circuits with TPN

so(? |:| Oplﬂﬂ”om |:|56(15:0)

5 6

55(7:0) 3

op2 4']_, ops [”] 7
S4

6

|:| ops 55(7:0) ops |:||:|Sg(5:

6 1

(a) Pipelined circuit (frequency f > 1)

Ircset = [4~8]

(b) Model of the circuit with a CRTPN
Fig. 7: An example of pipelined circuit and its corresponding model

A place and its associated cost model respectively a signal and its size. A
transition and its firing delay model respectively an operator and its propa-
gation delay. Moreover, a transition with a null delay models each branching
point (only by in the example). Its purpose is to allow the placement of reg-
isters either before the branching (s1), or on a particular output branch (si1,
s12 or s13). Rules 3 and 4 preserve the structure of the net.

All the input signals are considered synchronous, which is equivalent to
have them all on the first pipeline stage. In the model, this corresponds to the
initial marking M, defined by rule 5:

rule 5: If s is an input signal (not outgoing from any operator), then My(p) = 1 with

P = ¢e(s);

The reset action models the placement of a border of pipeline stage, and
resets all the clocks of the CRTPN for the following stage. Rule 6 defines the
upper bound of the reset interval:

rule 6: Ireset = %;

The time elapsed since the last reset is “stored” in v(reset). The semantics
enforces a reset to happen only if v(reset) € I cset. Then, if the upper bound
is fixed to %, the pipeline produced has at least a frequency f. Here %, and in

the following %, are supposed to be in IN,; but they can be rational without

Springer Nature 2021 IMTEX template

Design and verification of pipelined circuits with TPN 17

altering the results (just apply a factor to all the delays of the model to come
back to integer values).

The cost function gives the total number of flip-flops needed in the current
pipeline stage:

rule 7: We define Po, = {p € P | 3t € Tp,,,t*(p) = 1} and Pg(p) ={p' € P | 3t €
Tg,*t(p) =1 and t°(p') = 1}.
Then ¥M € {0,117, w(M) = ¥ py. C(p) - max(M(p), maxyc py gy (M(3))):

Indeed, the cost of a place matches the size of the signal, and consequently
the number of flip-flops needed per register. The cost function manages specifi-
cally the branching points, where a mutualization of the registers on the output
is possible. That explains why the cost of places after a transition modeling a
branching point following a place p, is C(p) - max, ¢ p, () (M (p')).

These modeling rules are sufficient to fully define the circuit model with
CRTPN. All possible pipelines can then be explored thanks to this model. In
particular it is possible to find the optimal one, i.e. the one that minimizes the
resource consumed while ensuring a minimal frequency. However, in practice
we quickly face a combinatorial explosion during state space exploration. To
avoid combinatorial explosion, the two heuristics proposed in [18] lead to good
pratical results by limiting the number of delayable transitions' and increasing
the lower bound of the reset interval.

4.3 Pipeline synthesis from the model

Each reachable state of the model represents a pipeline stage that is possible
on the real circuit. The reset operation sets the transition from a stage to the
following one. The full pipeline is recovered by walking through a branch of
the state graph, and accumulating the states following a reset.

A run p of the CRTPN of Figure 6b, is represented on Figure 7a. It
is actually the best achievable run, i.e. the one minimizing the cost. The
corresponding pipeline in the circuit is drawn on Figure 7b.

Let ¢; = (M;,v;) (0 < i < 14) be the states of this run p. The marking of
each state after a reset gives the placement of the registers in the pipelined
circuit, except for the signals after a branching point: if several are marked,
then only one register is needed in the pipelined circuit (mutualization). For
example, the marking My = {s11, s12, 513} leads to only one register on s;.

The cost of this run is Q(p) = w(Mp) + w(My) + w(M7) + w(Mi4) =
C(s0)+C(s1)+(C(s1)+C(s2))+(C(s6)+C(s7)+Csg) = 61. This cost matches the
total number of flip-flops in the pipeline of Figure 7b. On this example, a clas-
sical greedy “as-soon-as-possible” algorithm as implemented in FloPoCo [11]
(a generator of pipelined arithmetic operators for FPGA), produces the exam-
ple of Figure 6a, with a total of 94 flip-flops (54% more). The improvement
of this approach over the classical greedy has been studied in [18], on several
arithmetic circuits.

L This explains why in the Figure 6b, the transitions modeling the operators opy and ops are
not delayable.

Springer Nature 2021 IMTEX template

18 Design and verification of pipelined circuits with TPN

¢ {511,5127513’@ {52,512 913 {52,53,34,55 {52,53,54755
S2, 812, ¢

v(op1) =6 v(ops) =5 v(ops) =6
ol @ e = e o) =3 > oorsy 26
v(o =0 = 6 o, N =0 =1
w(reset) = 0 E:ﬁiit) Zg T lreser) =6 55:5?2;75) —6 E:Ie)git) =7
s GT @ {reset} l {ops} T {opa, ops, ops }
o St [amen® lnnae
v(opo) = 5 v(opa) = 0 v(op2) =0 v(ops) = 5 {s0, o7, 5}~
v(reset) =5 v(opsz) =0 U(OPS)t_7 0 v(ops) =5 v(reset) =
v(reset) =0 v(reset) = v(reset) = 6
{opo} {reset} T 1 l 5 T {reset}
o G (G n® [@
v(b1) =0 —> v(op2) =0 ZEZPQ; -1 v(ops) =0 i?ﬁéj;t’;i}o
v(reset) =5 {b1} |v(op3) =0 v(rsget)_= 1 {op2} v(ops) =0 —

v(reset) =5 v(reset) =1

(a) A run of the CRTPN of Figure 6b. The states following a reset are framed in cyan (qo, g4, g7 and
q14)

50(7:0) 51(7:0) oo $2(3:0) w(150)
1 4444444444|4> 6(15:
op4 —D—»
6 —
S3(710> 3
op2 o 57
D5
S4 ?
! 6
85(7:0) Sg(lf—):o)
op3 ’ OPs VA{}44>
6 1

(b) A possible pipeline of the circuit of Figure 6a
Fig. 8: Example of pipeline synthesized from a run

5 Application to time-multiplexing

The RTPN model allows exploring many pipelines of a circuit with a frequency
guaranteed in an interval. We can check temporal logic properties, such as
ensuring that the time spent between the production and consumption of a
data on a portion of the circuit is less than a bound. It is in fact possible to
impose some specific constraints to the resulting pipelines.

In this section, we apply this approach to the time-multiplexing problem.
As stated in the introduction, we focus here on circuits with a low throughput
compared to the clock frequency, thus the whole computation is done in one
sampling period.

5.1 Folding or time-multiplexing

With an ongoing concern of saving resources, a method called time-
multiplexing (also called folding) has been developed. It aims at sharing the

Springer Nature 2021 IMTEX template

Design and verification of pipelined circuits with TPN 19

instantiation of operators or group of operators which are needed at sev-
eral places of the circuit. The sharing is secured by sequential access to the
instantiation.

Figure 8 shows an example of circuit that is suitable for resource sharing
(based on an example of [27]). Suppose that the operators op; (resp. opa; ops)
and op) (resp. oph; oph) are two instances of the same operator. It is then
possible to instantiate only once the portions of circuit in (orange) dotted
frame, and to share the instantiation. Note that the signal sizes are willingly
omitted for ease of understanding, but this approach is still valid with different
signal sizes (as long as they are equal on the portions to be shared).

(b) Not foldable pipeline (f > %)
Fig. 9: Example of time-multiplexing

The sequencing of resources access is done with a particular pipeline. Iden-
tify this (or one of these) pipeline constitutes the modulo scheduling problem.
A key step of modulo scheduling is to find the initiation interval: the delay
between two introductions of new entries in the circuit. This periodical data
introduction can be represented in a RTPN by a token generator on the input.
However, as a first step, we will assume that a new data is introduced once the
whole computation is done. This assumption is perfectly relevant in signal pro-
cessing, where the initiation interval (the sampling period) is often significantly
higher than the pipeline period (related to the FPGA frequency).

Our goal is to find a particular pipeline on the initial circuit containing all
the instances, and afterwards to fold the instances (i.e. to merge them). The
pipeline must then verify two properties:

Springer Nature 2021 IMTEX template

20 Design and verification of pipelined circuits with TPN

1. The first is mutual exclusion. The resources must not be accessible at the
same time by several clients.

2. The second concerns the register placement. The registers must be placed
on the same locations in the portions of circuit to fold.

In the example in Figure 8, the first constraint ensures that there is never
some data at the same time on the twin signals: simultaneously in s5 (resp.
s¢) and in sg (resp. s19). The second constraint means that there must be the
same amount of registers in the pair of twin signals. That is why the pipeline
of Figure 8b doesn’t allow time-multiplexing, contrary to the one of Figure 8a.
Indeed, s5 crosses no register whereas sg crosses one, which violates the second
constraint.

It is possible to build these particular pipeline, using the approach pre-
sented in Section 4, by guiding the exploration with CTL properties. Thus, the
exploration will be restricted to runs verifying those properties. Mutual exclu-
sion can be simply expressed as a marking constraint verified by all states of
the run. However, the CTL properties are expressed on markings, they do not
allow observing the reset fired, which is required by the second constraint. As
the reset is defined in the semantics of the model, it is not explicitly present in
the net like the other transitions, it then cannot be connected to an observer
place. Somehow the CTL must be extended with the ability to capture the
resets fired in each place.

5.2 Explicit reset

As explained in Section 3, due to the density of time the reset can fire from an
infinite number of states with the same marking, but the successor state will
always be the same. Therefore, the only relevant firing times either correspond
to the bounds of the interval ([reser and Ipeset) or are grouped together with
a maximal step (in the semantics just after the maximal step firing). One can
then consider the reset as a delayable transition with a temporal upper bound,
and this preserves the discrete runs. Thus, for all RTPN, a TPN with delayable
transitions that verifies the same CTL properties can be built.

Indeed, a reset can be explicitly expressed with the pattern drawn in
Figure 9. The place preset holds a token since the last firing of reset. The
delayable transition with delay I,..se; and the non-delayable transition with
delay I,cse: model the reset interval. For all places p; of the net, the pat-
tern in the dashed frame is added and connected to the transitions reset and
end_reset. This pattern achieves the reset of the transitions enabled by the
place p;. It works in two steps: first the tokens in the place are drained and
temporarily held in pft"c’“, then once the draining is finished all tokens are
replaced in the place p;. Each step is based on a zero-test with a loopback
which simulates a while loop. In other words, the tokens are removed from p;
(resp. pft"c’“) while there are some left. Note that with a safe net, the pattern
can be greatly simplified: only one zero-test that removes and sets back the
token in p; is enough.

Springer Nature 2021 IMTEX template

Design and verification of pipelined circuits with TPN 21

Preset

end_reset

Fig. 10: Pattern expressing the reset

obs

In the pattern drawn in Figure 9, the place p{”® counts the total number
of tokens which underwent a reset in p; since the initial state. This observer
place allows us to extend the temporal logic CTL for RTPN.

Definition 11. Let N be an RTPN, and q = (M,v) a state of N'. Let the
property ¢ = (reset(p;) ~ n) with ~€ {<,>,<,>,=,#} andn € IN. The state
q verifies the property ¢ if and only if q verifies the property ¢ = ((M (pg**) ~

5.3 Synthesis of a pipeline for the folding

With the RTPN approach and the CTL extension presented previously, it is
possible to solve the modulo scheduling problem for the folding of circuits.
More specifically, it is possible to build a pipeline allowing folding, while ensur-
ing a minimal frequency and minimizing the number of flip-flops. This solution
is applied to the example of circuit given in Section 5.1.

Our method for solving the folding problem is a reachability problem, where
a CTL property define mutual exclusion. This property allows the state space
exploration to be pruned on the fly. Thus, the synthesis is guided by the CTL
property.

The RTPN model of the circuit of Figure 8 is built using the modeling rules
presented in Section 4. It is represented in Figure 10a. Note that the transitions
modeling the shared operators are delayable in order to relax the exploration,
and so to satisfy the folding constraints. The places drawn in orange (ss, sg,
S6a, S6b, Ss and s1g) are subject to CTL constraints.

A first atomic property guarantees the mutual exclusion of data in the twin
places: gmutes = (M(ss5) + M(ss) < 1) A (M(s6) + M(s10) < 1) A (M(sga) + M(s10) < 1) A
(M (sep) + M(s10) < 1). In fact, in the model, tokens represent both the placement
of the future registers, and the data propagated when the circuit is pipelined
(as soon as pipeline registers are in place). The property ¢muter checks that

Springer Nature 2021 BTEX template

22 Design and verification of pipelined circuits with TPN

50

Opo

i 6a .
oN

@-O-@-O-m; m--O
c ﬁoaﬁo/
Ireset = [ga 5]

%?R#

(a) RTPN
1/’{21)1\}‘ 3, {opo, op2} {reset} 0, {bs}
N
{S\)qsl;32753 {50, 53,5 . {53,584 56} {53;54756a736b

{s3,84,56}
v(bg) =0
v(reset) =

()=0 ’
5(22?) =0 1, {op1}

v(reset) =0

{511} @ {s11} {59,510} @ {s9, 510} @ {57,510} @ i?é’sf;a,’sf
e — 0 ey — 4 |v(opy) =0 v(ops) =0 v(ops) =0 o o
v(reset) = v(reset) = v(reset) =0 v(reset) =5 v(reset) = 4 Zgzzzit)_: 1
—_—

v(opo) =0 v(opo) =1
v(op1) =0 v(op2) =0

v(reset) =0 v(reset) = 1 v(reset) = 4

{reset} 4,{op3} {reset} 1, {ops} 3, {op}, ops}
(b) A run allowing the folding
Fig. 11: Time-multiplexing with RTPN

the two signals s5 (resp. sg, Sea, Sep) and sg (resp. s19) will never contain data
simultaneously.

A second atomic property guarantees the consistency of registers placement
in the twin places in a final state (state with the final marking): ¢consis: =
(M(s11) = 1) A (reset(ss) = reset(sg)) A (reset(sg) + reset(sea) = reset(sio)) N (reset(ss) +
reset(sey) = reset(s10)). It checks that in a final state (M (s1;) = 1), the twin places
have passed through the same number of resets.

The final CTL property guarantees that ¢4t holds until it is satisfied
together with ¢dconsist (once a final state is reached): ¢foia = A(dmutes U(dmutea A
beonsist))- Lhe pruning during the state space exploration insures that each run
satisfies the property ¢ o4, as the one presented in Figure 10b. The synthesized
pipeline from this run is the one drawn in Figure 8a.

5.4 Actually fold the circuit

The parts of shareable circuits are currently selected by hand. This problem
has been addressed in the literature as automatic identification of isomorphic
subgraphs, and some solutions have already been proposed [27]. In our case
study, we benefit from the high-level abstraction of Matlab/Simulink and some
parts of the evaluated models have fairly obvious redundancies to be deter-
mined. On the other hand, the use of libraries facilitates the identification of
shareable parts.

Once the portions to be shared have been chosen, a minimum bound on
the pipeline frequency f, can be deduced from the desired minimum sampling

Springer Nature 2021 IMTEX template

Design and verification of pipelined circuits with TPN 23

rate fs. Let n be the maximum number of times a circuit portion is shared,
then the pipeline frequency must satisfy f, > n - fs. This bound generalizes
to the case of sharing nested parts, by multiplying the maximum number of
occurrences between nested levels. However, this bound does not guarantee
that the resulting folded circuit will have the minimum sampling rate f;. A
post-selection of the produced pipelines, based on their latency (which is the
sampling period), is therefore necessary. In other words, the lower bound on the
pipeline frequency f, is only used to reduce the exploration to a few potential
solutions.

Our pipeline synthesis approach for folding has been implemented in a
prototype tool. The first tests are encouraging, and on the example presented,
the tool produces the expected pipeline in a few milliseconds: 24ms on an Intel
Core i7-6700HQ processor.

4 S11
S
! DEMUX | s7 s
MUX1 : 59
sel Op4
Tsel I

SSHI»T MUX2

Tsel

Fig. 12: Circuit defined in Figure 8a after folding

The last step is to generate the operators effectively folding the circuit. To
do so, the shareable parts are merged, and multiplexers (MUX) are added in
the circuit in place of their input/output registers. Figure 12 shows the folded
circuit obtained from the pipelined circuit of Figure 8a. Multiplexers (and de-
multiplexers) are associated with a control signal produced by a sequencer
(sel on the figure), that selects the input (output) signals. This part is under
development since the code generation associated with the folding step is not
yet implemented.

6 Conclusion

We proposed a model for the pipeline of synchronous circuit based on TPN
“a la Ramchandani”. Although it allows verification, this model is only able to
study one pipeline at a time.

We then focused on the optimization of the pipeline in terms of resources.
The RTPN model allows generating multiple pipelines with a target frequency,
and to select one minimizing the resource consumption with regard to the size
of registers and their eventual mutualization.

Springer Nature 2021 IMTEX template

24 REFERENCES

Using this result we then concentrated on handling together the opti-
mization with the synthesis of pipeline following a specification expressed in
temporal logic. In particular, we presented a solution to the time-multiplexing
problem. It relies on the explicit expression of the reset in the RTPN model.
This method produces a pipeline allowing time-multiplexing, ensuring a target
frequency, and minimizing the number of flip-flops.

While these results are encouraging, their implementation may be slowed
down by combinatorial explosion. We consider the possibility to combine them
with an ILP approach in order to obtain both the computation speed and the
possibilities offered by model-checking. We also think about exploiting further
model-checking towards the interactions with the environment.

Declarations

The authors declare that they have no conflict of interest.

References

[1] Parosh Aziz Abdulla, Johann Deneux, Joél Ouaknine, Karin Quaas,
and James Worrell. Universality analysis for one-clock timed automata.
Fundam. Informaticae, 89(4):419-450, 2008.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2-34, 1993.

[3] Berkeley Logic Synthesis and Verification Group. ABC: A system for
sequential synthesis and verification, release 70930.

[4] Hanifa Boucheneb, Guillaume Gardey, and Olivier H. Roux. TCTL
model checking of time Petri nets. Journal of Logic and Computation,
19(6):1509-1540, December 2009.

[5] Patricia Bouyer, Kim Guldstrand Larsen, and Nicolas Markey. Model
checking one-clock priced timed automata. Logical Methods in Computer
Science, 4(2), May 2008.

[6] D. Bufistov, J. Cortadella, M. Kishinevsky, and S. Sapatnekar. A gen-
eral model for performance optimization of sequential systems. In 2007
IEEE/ACM International Conference on Computer-Aided Design, 2007.

[7] J. Campos, G. Chiola, J. M. Colom, and M. Silva. Properties and perfor-
mance bounds for timed marked graphs. IFEFE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, 39(5):386-401,
1992.

[8] Florent de Dinechin and Bogdan Pasca. Designing custom arithmetic data
paths with FloPoCo. IEEE Design & Test of Computers, 28(4):18-27,
July 2011.

[9] Thibault Hilaire and Anastasia Volkova. Error analysis methods for the
fixed-point implementation of linear systems. In 2017 IEEE International
Workshop on Signal Processing Systems (SiPS), pages 1-6, 2017.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
23]

Springer Nature 2021 IMTEX template

REFERENCES 25

A. P. Hurst, A. Mishchenko, and R. K. Brayton. Fast minimum-register
retiming via binary maximum-flow. In Formal Methods in Computer
Aided Design (FMCAD’07), pages 181-187, 2007.

Matei Istoan and Florent de Dinechin. Automating the pipeline of arith-
metic datapaths. In Design, Automation & Test in Europe Conference &
Ezhibition (DATE 2017), pages 704-709, Lausanne, Switzerland, 2017.
Lana Josipovi¢, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne, and
Jordi Cortadella. Buffer placement and sizing for high-performance
dataflow circuits. In Proc. of the 2020 ACM/SIGDA Int. Symposium on
Field-Programmable Gate Arrays, FPGA ’20, page 186-196, New York,
NY, USA, 2020. Association for Computing Machinery.

Christoph Kern and Mark R. Greenstreet. Formal verification in hardware
design: A survey. ACM Trans. Des. Autom. Electron. Syst., 4, April 1999.
D. U. Lee, A. A. Gaffar, R. C.C. Cheung, O. Mencer, W. Luk, and G. A.
Constantinides. Accuracy-guaranteed bit-width optimization. Trans.
Comp.-Aided Des. Integ. Cir. Sys., 25(10):1990-2000, October 2006.
Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1-6):5-35, June 1991.

Mehrdad Najibi and Peter A. Beerel. Slack matching mode-based asyn-
chronous circuits for average-case performance. In Proceedings of the
International Conference on Computer-Aided Design, ICCAD ’13, page
219-225. IEEE Press, 2013.

J. Ouaknine and J. Worrell. On the language inclusion problem for timed
automata: closing a decidability gap. In Proceedings of the 19th Annual
IEEE Symposium on Logic in Computer Science, 2004., pages 54—63,
2004.

Rémi Parrot, Mikagél Briday, and Olivier H. Roux. Pipeline Optimization
using a Cost Extension of Timed Petri Nets. In The 28th IEEFE Interna-
tional Symposium on Computer Arithmetic (ARITH 2021). IEEE, June
2021.

Rémi Parrot, Mikaél Briday, and Olivier H Roux. Réseaux de Petri
temporisés pour la conception et vérification de circuits pipelinés. In
Modélisation des Systémes Réactifs (MSR’21), Paris, France, November
2021.

Rémi Parrot, Mikaél Briday, and Olivier H. Roux. Timed Petri Nets with
Reset for Pipelined Synchronous Circuit Design. In The 42th International
Conference on Application and Theory of Petri Nets and Concurrency
(Petri Nets 2021), volume 12734 of Lecture Notes in Computer Science.
Springer, June 2021.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA,
pages 46-57. IEEE Computer Society, 1977.

Louchka Popova-Zeugmann. Time and Petri Nets. Springer, 2013.

C. Ramchandani. Analysis of asynchronous concurrent systems by timed
Petri nets. PhD thesis, Massachusetts Institute of Technology, Cambridge,

26

[24]

[25]

[26]

[27]

Springer Nature 2021 IMTEX template

REFERENCES

MA, 1974.

Sangyun Kim and P. A. Beerel. Pipeline optimization for asynchronous
circuits: complexity analysis and an efficient optimal algorithm. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 25(3):389-402, 2006.

P. Sittel, N. Fiege, M. Kumm, and P. Zipf. Isomorphic subgraph-based
problem reduction for resource minimal modulo scheduling. In 2019
International Conference on ReConFigurable Computing and FPGAs
(ReConFig), pages 1-8, 2019.

P. Sittel, M. Kumm, J. Oppermann, K. Méller, P. Zipf, and A. Koch.
Ilp-based modulo scheduling and binding for register minimization. In
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), pages 265-2656, 2018.

Patrick Sittel, Konrad Moller, Martin Kumm, P. Zipf, Bogdan Pasca, and
Mark Jervis. Model-based hardware design based on compatible sets of
isomorphic subgraphs. 12 2017.

	Introduction
	A synchronous model for the pipeline
	The three-phases firing semantics
	The maximal-step firing semantics
	An atomic semantics for TPNs
	Zero-test and model of the pipeline

	TPN with reset and delayable transitions
	Definitions
	Example
	Properties of RTPNs

	Pipeline synthesis
	RTPN with cost
	Modeling the circuit
	Pipeline synthesis from the model

	Application to the time-multiplexing
	Folding or time-multiplexing
	Explicit reset
	Synthesis of a pipeline for the folding
	Discussion on concrete implementation

	Conclusion

