
Pomsets and Unfolding of Reset Petri Nets
Maurice Comlan1, Thomas Chatain2, David Delfieu3, Loïg
Jezequel4, and Olivier H. Roux5

1 Université d’Abomey-Calavi, LETIA, Bénin – comlan@hotmail.fr
2 LSV – ENS Cachan, France – chatain@lsv.fr
3 Université de Nantes, LS2N UMR 6004, France – david.delfieu@ls2n.fr
4 Université de Nantes, LS2N UMR 6004, France – loig.jezequel@ls2n.fr
5 École Centrale de Nantes, LS2N UMR 6004, France – olivier-h.roux@ls2n.fr

Abstract
Reset Petri nets are a particular class of Petri nets where a transition firing can remove all tokens
from a place without having to check if this place actually holds tokens or not. In this paper
we look at partial order semantics of such nets. In particular, we propose a notion of pomset
bisimulation for comparing concurrent behaviours of reset Petri nets. Building on this pomset
bisimulation we then propose a generalization of the standard finite complete prefixes of unfolding
to the class of safe reset Petri nets.

1998 ACM Subject Classification D.2.2 Design Tools and Techniques

Keywords and phrases Petri nets, Reset arcs, Unfolding, Pomset bisimulation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.23

1 Introduction

Petri nets are a well suited formalism for specifying, modeling, and analyzing systems with
conflicts, synchronization and concurrency. Many interesting properties of such systems
(reachability, boundedness, liveness, deadlock,. . .) are decidable for Petri nets. Over time,
many extensions of Petri nets have been proposed in order to capture specific, possibly
quite complex, behaviors in a more direct manner. These extensions offer more compact
representations and/or increase expressive power. One can notice, in particular a range of
extensions adding new kinds of arcs to Petri nets: read arcs and inhibitor arcs [?, ?] (allowing
to read variables values without modifying them), and reset arcs [?] (allowing to modify
variables values independently of their previous value).

While reset arcs increase the expressiveness of Petri nets, they compromise analysis
techniques. Some properties become undecidable in general, such as boundedness [?] and
reachability [?]. Some remain decidable but require to extend analysis techniques as this
is the case for coverability [?]. For bounded reset Petri nets however, more properties are
decidable, because full state spaces can be computed. This is in particular the case of
reachability.

Reachability analysis based on full state-space computation (i.e. using state graphs)
is however restricted due to combinatorial explosion. To face this problem, partial order
techniques have been proposed, and, in particular, Petri nets unfolding [?]. It keeps the
intrinsic parallelism and prevents the combinatorial interleaving of independent events. Petri
nets unfolding has gained the interest of researchers in verification [?], diagnosis [?], and
planning [?]. While the unfolding of a Petri net can be infinite, there exist algorithms
for constructing finite prefixes of it, sufficient for reachability analysis [?, ?]. Unfolding

© Maurice Comlan, Thomas Chatain, David Delfieu, Loïg Jezequel, and Olivier H. Roux;
licensed under Creative Commons License CC-BY

37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2017).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:??

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Pomsets and Unfolding of Reset Petri Nets

techniques have also been developed for extensions of Petri nets, and in particular Petri nets
with read arcs [?].

If reachability analysis is known to be feasible on bounded reset Petri nets, as far as we
know no technique for computing finite prefixes of unfolding exists yet. This is the aim of
this paper to propose one. For that, we characterise the concurrent behaviour of reset Petri
nets by defining a notion of pomset bisimulation. This has been inspired by several works on
pomset behaviour of concurrent systems [?, ?, ?]. From this characterization we can then
express what should be an unfolding preserving the concurrent behaviour of a reset Petri net.

This paper is organized as follows: We first give basic definitions and notations for
(safe) reset Petri nets. Then, in Section ??, we propose the definition of a notion of pomset
bisimulation for reset Petri nets. In Section ?? we show that, in general, there is no Petri
net without resets which is pomset bisimilar to a given reset Petri net. Finally, in Section ??
– building on the results of Section ?? – we propose a finite complete prefix construction for
reset Petri nets where the prefix is itself a reset Petri net.

2 Reset Petri nets

2.1 Basic definitions
I Definition 1 (structure). A reset Petri net structure is a tuple (P , T , F ,R) where P and
T are disjoint sets of places and transitions, F ⊆ (P × T) ∪ (T × P) is a set of arcs, and
R ⊆ P × T is a set of reset arcs.

An element x ∈ P ∪ T is called a node and has a preset •x = {y ∈ P ∪ T : (y, x) ∈ F}
and a postset x• = {y ∈ P ∪ T : (x, y) ∈ F}. If, moreover, x is a transition, it has a set of
resets �x = {y ∈ P : (y, x) ∈ R}.

For two nodes x, y ∈ P ∪ T , we say that: x is a causal predecessor of y, noted x ≺ y, if
there exists a sequence of nodes x1 . . . xn with n ≥ 2 so that ∀i ∈ [1..n− 1], (xi, xi+1) ∈ F ,
x1 = x, and xn = y. If x ≺ y or y ≺ x we say that x and y are in causal relation. The nodes
x and y are in conflict, noted x#y, if there exists two sequences of nodes x1 . . . xn with n ≥ 2
and ∀i ∈ [1..n−1], (xi, xi+1) ∈ F , and y1 . . . ym withm ≥ 2 and ∀i ∈ [1..m−1], (yi, yi+1) ∈ F ,
so that x1 = y1 is a place, x2 6= y2, xn = x, and ym = y.

A marking is a set M ⊆ P of places. It enables a transition t ∈ T if ∀p ∈ •t, p ∈M . In
this case, t can be fired from M , leading to the new marking M ′ = (M \ (•t ∪ �t)) ∪ t•. The
fact that M enables t and that firing t leads to M ′ is denoted by M [t〉M ′.

I Definition 2 (reset Petri net). A reset Petri net is a tuple (P , T , F ,R,M0) where
(P , T , F ,R) is a reset Petri net structure and M0 is a marking called the initial mark-
ing.

Figure ?? (left) is a graphical representation of a reset Petri net. It has five places (p1 to
p5, represented as circles) and three transitions (t1 to t3, represented as squares). Its set of
arcs contains seven elements ((p1, t1), (t1, p2), (p3, t2), (t2, p4), (p2, t3), (p4, t3), and (t3, p5),
depicted by arrows) and there is one reset arc ((p3, t1), depicted as a line with a diamond at
its extremity).

A marking M is said to be reachable in a reset Petri net if there exists a sequence
M1 . . .Mn of markings so that: ∀i ∈ [1..n− 1],∃t ∈ T ,M i[t〉M i+1 (each marking enables a
transition that leads to the next marking in the sequence), M1 = M0 (the sequence starts
from the initial marking), and Mn = M (the sequence leads to M). The set of all markings
reachable in a reset Petri net NR is denoted by [NR〉.

A reset Petri net with an empty set of reset arcs (R = ∅) is simply called a Petri net.

M. Comlan, T. Chatain, D. Delfieu, L. Jezequel, O. H. Roux 23:3

p1

t1

p2

p3

t2

p4t3

p5

c1

e1

c2

c3

e2

c4

c1 c2 c3 c4 e1 e2

h p1 p2 p3 p4 t1 t2

Figure 1 A reset Petri net (left) and one of its processes (right)

I Definition 3 (underlying Petri net). Given a reset Petri net NR = (P , T , F ,R,M0), we
call its underlying Petri net the Petri net N = (P , T , F , ∅,M0).

The above formalism is in fact a simplified version of the general formalism of reset Petri
nets: arcs have no multiplicity and markings are sets of places rather than multisets of places.
We use this formalism because it is sufficient for representing safe nets.

I Definition 4 (safe reset Petri net). A reset Petri net (P , T , F ,R,M0) is said to be safe if for
any reachable markingM and any transition t ∈ T , ifM enables t then (t• \(•t∪�t))∩M = ∅.

The reader familiar with Petri nets will however notice that our results generalize to larger
classes of nets, namely unbounded reset Petri nets for our pomset bisimulation definition
(Section ??), and bounded reset Petri nets for our finite complete prefix construction
(Section ??).

In the rest of the paper, unless the converse is specified, we consider reset Petri nets so
that the preset of each transition t is non-empty: •t 6= ∅. Notice that this is not actually a
restriction to our model as one can simply equip any transition t of a reset Petri net with a
place pt so that pt is in the initial marking and •pt = p•t = {t} to enforce the above property.

2.2 Comparing reset Petri nets
One may need to express that two (reset) Petri nets have the same behaviour. This is useful
in particular for building minimal (or at least small, that is with few places and transitions)
representatives of a net; or for building simple (such as loop-free) representatives of a net. A
standard way to do so is to define a bisimulation between (reset) Petri nets, and state that
two nets have the same behaviour if they are bisimilar.

The behaviour of a net will be an observation of its transition firing, this observation
being defined thanks to a labelling of nets associating to each transition an observable label
or the special unobservable label ε.

I Definition 5 (labelled reset Petri net). A labelled reset Petri net is a tuple (NR,Σ, λ)
so that: NR = (P , T , F ,R,M0) is a reset Petri net, Σ is a set of transition labels, and
λ : T → Σ ∪ {ε} is a labelling function.

In such a labelled net we extend the labelling function λ to sequences of transitions
in the following way: given a sequence t1 . . . tn (with n ≥ 2) of transitions, λ(t1 . . . tn) =
λ(t1)λ(t2 . . . tn) if t1 ∈ Σ and λ(t1 . . . tn) = λ(t2 . . . tn) else (that is if t1 = ε).

From that, one can define bisimulation as follows.

I Definition 6 (bisimulation). Let (NR,1,Σ1, λ1) and (NR,2,Σ2, λ2) be two labelled reset
Petri nets with NR,i = (P i, T i, F i, Ri,M0,i). They are bisimilar if and only if there exists a
relation ρ ⊆ [NR,1〉 × [NR,2〉 (called a bisimulation) so that:
1. (M0,1,M0,2) ∈ ρ,

FSTTCS 2017

23:4 Pomsets and Unfolding of Reset Petri Nets

2. if (M1,M2) ∈ ρ, then
a. for every transition t ∈ T 1 so that M1[t〉M1,n there exists a sequence t1 . . . tn of

transitions from T 2 and a sequence M2,1 . . .M2,n of markings of NR,2 so that:
M2[t1〉M2,1[t2〉 . . . [tn〉M2,n,
λ2(t1 . . . tn) = λ1(t), and
(M1,n,M2,n) ∈ ρ

b. the other way arround (for every transition t ∈ T 2. . .)

This notion of bisimulation however forgets an important part of the behaviours of (reset)
Petri nets. Indeed, some transition firings may be concurrent when transitions are not in
causal relation nor in conflict.

As an example, consider Figure ??. The nets NR,1 and NR,2 are bisimilar (here we
identify transition names and transition labels) and, in none of them t1 and t2 are in conflict.
However, in NR,1 the transitions t1 and t2 are not in causal relation while in NR,2 they are
in causal relation.

p1

t1

p2

p3

t2

p4

p1

t1

p2

p3

t2

p4

p5

Figure 2 Two bisimilar nets N R,1 (left) and N R,2 (right)

To avoid this loss of information, a standard approach is to define bisimulations based
on partially ordered sets of transitions rather than totally ordered sets of transitions (the
transition sequences used in the above definition). Such bisimulations are usually called
pomset bisimulations.

3 Pomset bisimulation for reset Petri nets

In this section we propose a definition of pomset bisimulation for reset Petri nets. It is based
on an ad hoc notion of processes.

3.1 Processes of reset Petri nets
A process is a representation of a set of executions of a Petri net. It is the concurrent
counterpart of paths in sequential discrete event systems (such as automata). We first recall
a standard notion of processes of Petri nets and then show how it can be extended to reset
Petri nets.

As a first step, we define occurrence nets which are basically Petri nets without loops.

I Definition 7 (occurrence net). An occurrence net is a (reset) Petri net (B,E, FO, RO,MO0)
so that, ∀b ∈ B, ∀x ∈ B ∪ E: (1) |•b| ≤ 1, (2) x is not in causal relation with itself, (3) x
is not in conflict with itself, (4) {y ∈ B ∪ E : y ≺ x} is finite, (5) b ∈ MO0 if and only if
•b = ∅.

Places of an occurrence net are usually referred to as condition and transitions as events.
In an occurrence net, if two nodes x, y ∈ B ∪ E are so that x 6= y, are not in causal relation,
and are not in conflict, they are said to be concurrent. Moreover, in occurrence net, the
causal relation is a partial order.

M. Comlan, T. Chatain, D. Delfieu, L. Jezequel, O. H. Roux 23:5

There is a price to pay for having reset arcs in occurrence nets. With no reset arcs,
checking if a set E of events together form a feasible execution (i.e. checking that the events
from E can all be ordered so that they can be fired in this order starting from the initial
marking) is linear in the size of the occurrence net (it suffices to check that E is causally
closed and conflict free). With reset arcs the same task is NP-complete.
I Proposition 1. The problem of deciding if a set E of events of an occurrence net with resets
forms a feasible execution is NP-complete.

Proof. The problem is clearly in NP: In order to check that E is a feasible execution, it
suffices to guess a corresponding firing sequence (of length |E|).

For NP-hardness, we reduce the problem of graph 3-coloring to executability of an
occurrence net. Our construction is illustrated on Figure ?? from the graph composed of
two vertices v1 and v2 connected by an edge.

•
v1

•
v2

a1 b1 a2 b2 a3 b3 a4

e1

(1, 2)
e(1,2)

e2

(2, 1)
e(2,1)

Figure 3 Reduction from 3-coloring to executability of an occurrence net. Events e2 and e(2,1)
reset the places of the sequence on the left, like e1 and e(1,2), but these reset arcs are not represented.

The idea for the reduction is to build an occurrence net where each vertex vi of the
graph is represented by an event ei, all the ei being concurrent. Using additional events
a1 ≺ b1 ≺ a2 ≺ b2 ≺ a3 ≺ b3 ≺ a4 as bounds, one can ensure that, for every firing sequence
containing all the events of the constructed occurrence net, the ei fire in three separate slots:
between a1 and b1, between a2 and b2 or between a3 and b3. Indeed, if any ei fires outside
these slots, its resets arcs consume the token in the sequence at the bottom of Figure ?? and
prevents remaining events of the sequence from firing later.

These three slots represent the three colors of the coloring. Every feasible execution of
the occurrence net assigns every ei to a slot, like the color of the corresponding vertex.

It remains to represent the edges of the graph, i.e. for every edge (vi, vj), force ei and
ej to fire in distinct slots. This is done using two conditions (i, j) and (j, i) and two events
e(i,j) and e(j,i), with (i, j) ∈ e•i and •e(i,j) = {(i, j)} (and symmetrically (j, i) ∈ e•j and
•e(j,i) = {(j, i)}). Moreover e(i,j) and e(j,i) have reset arcs to conditions in the sequence on
the left, enforcing them to occur outside of the three slots allowed for the ei. In an execution
where all these events fire, assume without loss of generality that ei fires before ej , then e(i,j)
must fire between ei and ej (while the token in (i, j) is present). This is only possible if ei

and ej fire in different time slots. J

The branching processes of a Petri net are then defined as particular occurrence nets
linked to the original net by homomorphisms.

I Definition 8 (homomorphism of nets). Let N 1 and N 2 be two Petri nets such that
N i = (P i, T i, F i, ∅,M0,i). A mapping h : P 1 ∪ T 1 → P 2 ∪ T 2 is an homomorphisme
of nets from N 1 to N 2 if ∀p1 ∈ P 1,∀p2 ∈ P 2,∀t ∈ T 1: (1) h(p1) ∈ P 2, (2) h(t) ∈ T 2,
(3) p2 ∈ •h(t) ⇔ ∃p′1 ∈ •t, h(p′1) = p2, (4) p2 ∈ h(t)• ⇔ ∃p′1 ∈ t•, h(p′1) = p2, (5)
p2 ∈M0,2 ⇔ ∃p′1 ∈M0,1, h(p′1) = p2.

FSTTCS 2017

23:6 Pomsets and Unfolding of Reset Petri Nets

I Definition 9 ((branching) processes of a Petri net). Let N = (P , T , F , ∅,M0) be a Petri net,
O = (B,E, FO, ∅,MO0) be an occurrence net, and h be an homomorphism of nets from O
to N . Then (O, h) is a branching process of N if ∀e1, e2 ∈ E, (•e1 = •e2 ∧ h(e1) = h(e2))⇒
e1 = e2. If, moreover, ∀b ∈ B, |b•| ≤ 1, then (O, h) is a process of N .

Finally, a process of a reset Petri net is obtained by adding reset arcs to a process of the
underlying Petri net (leading to what we call below a potential process) and checking that
all its events can still be enabled and fired in some order.

I Definition 10 (potential processes of a reset Petri net). Let NR = (P , T , F ,R,M0) be
a reset Petri net and N be its underlying Petri net, let O = (B,E, FO, RO,MO0) be an
occurrence net, and h be an homomorphism of nets from O to NR. Then (O, h) is a
potential process of NR if (1) (O′, h) is a process of N with O′ = (B,E, FO, ∅,MO0), (2)
∀b ∈ B, ∀e ∈ E, (b, e) ∈ RO if and only if (h(b), h(e)) ∈ R.

I Definition 11 (processes of a reset Petri net). Let NR = (P , T , F ,R,M0) be a reset Petri
net, O = (B,E, FO, RO,MO0) be an occurrence net, and h be an homomorphism of nets
from O to NR. Then (O, h) is a process of NR if (1) (O, h) is a potential process of NR,
and (2) if E = {e1, . . . , en} then ∃M1, . . . ,Mn ⊆ B so that MO0[e1〉M1[e2〉 . . . [en〉Mn.

Notice that processes of reset Petri nets and processes of Petri nets do not exactly have
the same properties. In particular, two properties are central in defining pomset bisimulation
for Petri nets and do not hold for reset Petri nets.
I Property 12. In any process of a Petri net with set of events E, consider any se-
quence of events e1e2 . . . en (1) that contains all the events in E and (2) such that ∀i, j ∈
[1..n] if ei ≺ ej then i < j. Necessarily, there exists markings M1, . . . ,Mn so that
MO0[e1〉M1[e2〉 . . . [en〉Mn.

This property (which purpose is, intuitively, to express that processes are partially ordered
paths) is no longer true in processes of reset Petri nets. As an example, consider the reset
Petri net of Figure ?? (left). On the right of the same figure is one of its processes (on top is
the occurrence net and below is the homomorphism h). As not e2 ≺ e1, their should exist
markings M1,M2 so that M0[e1〉M1[e2〉M2. However, M0 = {c1, c3} indeed enables e1, but
the marking M1 such that M0[e1〉M1 is {c2}, which does not enable e2.
I Property 13. In a process of a Petri net all the sequences of events e1e2 . . . en verifying (1)
and (2) of Property ?? lead to the same marking (i.e. Mn is always the same), thus uniquely
defining a notion of maximal marking of a process.

This property defines what is the marking reached by a process. As a corollary of the
above property not holding for processes of reset Petri nets, there is no uniquely defined
notion of maximal marking in these processes. Back to the above example {c2} is a maximal
marking (no event can be fired from it), but {c2, c4} is one as well (reached after firing e2
and then e1).

To somehow transpose the spirit of Properties ?? and ?? to processes of reset Petri nets,
we define below a notion of maximal markings in such processes.

I Definition 14 (maximal markings). Let P = (O, h) be a process with set of events
E = {e1, . . . , en} and initial marking MO0 of a reset Petri net. The set Mmax(P) of
maximal markings of P contains exactly the markings M so that ∃M1, . . . ,Mn−1, and
∃f : [1..n]→ [1..n] verifying MO0[ef(1)〉M1[ef(2)〉 . . .Mn−1[ef(n)〉M .

In other words, the maximal markings of a process are all the marking that are reachable
in it using all its events.

M. Comlan, T. Chatain, D. Delfieu, L. Jezequel, O. H. Roux 23:7

3.2 Abstracting processes
We show how processes of labelled reset Petri nets can be abstracted as partially ordered
multisets (pomsets) of labels.

I Definition 15 (pomset abstraction of processes). Let (NR,Σ, λ) be a labelled reset Petri
net and (O, h) be a process of NR with O = (B,E, FO, RO,MO0). Define E′ = {e ∈
E : λ(h(e)) 6= ε}. Define λ′ : E′ → Σ as the function so that ∀e ∈ E′, λ′(e) = λ(h(e)).
Define moreover < ⊆ E′ × E′ as the relation so that e1 < e2 if and only if e1 ≺ e2 (e1 is a
causal predecessor of e2 in O). Then, (E′, < , λ′) is the pomset abstraction of (O, h).

This abstraction (E,< , λ′) of a process is called its pomset abstraction because it can be
seen as a multiset of labels (several events may have the same associated label by λ′) that
are partially ordered by the < relation.

In order to compare processes with respect to their pomset abstractions, we also define
the following equivalence relation.

I Definition 16 (pomset equivalence). Let (E,< , λ) and (E′, < ′, λ′) be the pomset abstrac-
tions of two processes P and P ′. These processes are pomset equivalent, noted P ≡ P ′ if and
only if there exists a bijection f : E → E′ so that ∀e1, e2 ∈ E: (1) λ(e1) = λ′(f(e1)), and (2)
e1 < e2 if and only if f(e1) < ′f(e2).

Intuitively, two processes are pomset equivalent if their pomset abstractions define the
same pomset: the same multisets of labels with the same partial orderings.

Finally, we also need to be able to abstract processes as sequences of labels.

I Definition 17 (linear abstraction of processes). Let (NR,Σ, λ) be a labelled reset Petri net,
let P = (O, h) be a process of NR with O = (B,E, FO, RO,MO0), and let M be a reachable
marking in O. Define λ′ : E → Σ as the function so that ∀e ∈ E, λ′(e) = λ(h(e)). The linear
abstraction of P with respect to M is the set lin(M,P) so that a sequence of labels ω is in
lin(M,P) if and only if in O there exist markings M1, . . . ,Mn−1 and events e1, . . . , en so
that MO0[e1〉M1[e2〉 . . .Mn−1[en〉M and λ′(e1 . . . en) = ω.

3.3 Pomset bisimulation
We now define a notion of pomset bisimulation between reset Petri nets. Intuitively, two reset
Petri nets are pomset bisimilar if there exists a relation between their reachable markings so
that the markings that can be reached by pomset equivalent processes from two markings in
relation are themselves in relation. This is formalized by the below definition.

I Definition 18 (pomset bisimulation). Let (NR,1,Σ1, λ1) and (NR,2,Σ2, λ2) be two labelled
reset Petri nets with NR,i = (P i, T i, F i, Ri,M0,i). They are pomset bisimilar if and only if
there exists a relation ρ ⊆ [NR,1〉 × [NR,2〉 (called a pomset bisimulation) so that:
1. (M0,1,M0,2) ∈ ρ,
2. if (M1,M2) ∈ ρ, then

a. for every process P1 of (P 1, T 1, F 1, R1,M1) there exists a process P2 of (P 2, T 2, F 2, R2,

M2) so that P1 ≡ P2 and
∀M ′1 ∈Mmax(P1),∃M ′2 ∈Mmax(P2) so that (M ′1,M ′2) ∈ ρ,
∀M ′1 ∈Mmax(P1),∀M ′2 ∈Mmax(P2), (M ′1,M ′2) ∈ ρ⇒ lin(M ′1,P1) = lin(M ′2,P2).

b. the other way arround (for every process P2. . .)

FSTTCS 2017

23:8 Pomsets and Unfolding of Reset Petri Nets

Notice that, in the above definition, taking the processes P1 and P2 bisimilar (using
the standard bisimulation relation for Petri nets) rather than comparing lin(M ′1,P1) and
lin(M ′2,P2) would lead to an equivalent definition.

Remark that pomset bisimulation implies bisimulation, as expressed by the following
proposition. The converse is obviously not true (this is, for example, a consequence of
Lemma ?? below).
I Proposition 2. Let (NR,1,Σ1, λ1) and (NR,2,Σ2, λ2) be two pomset bisimilar labelled reset
Petri nets, then (NR,1,Σ1, λ1) and (NR,2,Σ2, λ2) are bisimilar.

Proof. It suffices to notice that Definition ?? can be obtained from Definition ?? by restricting
the processes considered, taking only those with exactly one transition whose label is different
from ε. J

4 Reset arcs removal and pomset bisimulation

From now on, we consider that (reset) Petri nets are finite, i.e. their sets of places and
transitions are finite.

In this section, we prove that it is, in general, not possible to build a safe labelled Petri
net (while this is out of the scope of this paper, the reader familiar with Petri nets will notice
in the below proofs that this is event the case for bounded labelled Petri net) without reset
arcs which is pomset bisimilar to a given safe labelled reset Petri net. For that, we exhibit a
particular pattern – Figure ?? (left) – and show that a reset Petri net including this pattern
cannot be pomset bisimilar to a Petri net without reset arcs.

t1 p2

p1

t2

t3

NR

t1

p1

p1

p2

t2

t3

t3

NR,str

p0 t1

p1 t3

p2

t2p3

NR0R

Figure 4 A remarkable pattern N R and its structural transformation N R,str (left), and a labelled
reset Petri net N 0R including the pattern N R (right). Transition labels are given on transitions.

As a first intuition of this fact, let us consider the following structural transformation
that removes reset arcs from a reset Petri net.

I Definition 19 (Structural transformation). Let (NR,Σ, λ) be a labelled reset Petri net
such that NR = (P , T , F ,R,M0), its structural transformation is the labelled Petri net
(NR,str,Σstr, λstr) where NR,str = (P str, T str, F str, ∅,M0,str) so that:

P str = P ∪ P with P = {p : p ∈ P ∧ ∃t ∈ T , (p, t) ∈ R},
T str = T ∪ T with T = {t : t ∈ T ∧ �t 6= ∅},
Fstr = F ∪ {(p, t) : p ∈ P ∧ (t, p) ∈ F} ∪ {(t, p) : p ∈ P ∧ (p, t) ∈ F}

∪ {(p, t) : t ∈ T ∧ (p, t) ∈ F} ∪ {(t, p) : t ∈ T ∧ (t, p) ∈ F}
∪ {(p, t) : p ∈ P ∧ t ∈ T ∧ (t, p) ∈ F} ∪ {(t, p) : p ∈ P ∧ t ∈ T ∧ (p, t) ∈ F}
∪ {(p, t), (p, t), (t, p), (t, p) : p ∈ P ∧ p ∈ P ∧ t ∈ T ∧ t ∈ T ∧ (p, t) ∈ R},

M0,str = M0 ∪ {p ∈ P : p /∈M0},

and moreover, Σstr = Σ, ∀t ∈ T, λstr(t) = λ(t), and ∀t ∈ T , λstr(t) = λ(t).

M. Comlan, T. Chatain, D. Delfieu, L. Jezequel, O. H. Roux 23:9

In the above definition, the reset Petri net NR and the petri net NR,str are bisimilar but
not always pomset bisimilar. This can be remarked on the example of Figure ??. Applying
this translation to the reset Petri net NR on the left gives the Petri net NR,str on the middle.
As we can see, this translation added a causality relation between the transition labelled
by t1 and each of the two transitions labelled by t3. From the initial marking of NR,str, for
any process whose pomset abstraction includes both t1 and t3, these two labels are causally
ordered. While, from the initial marking of NR there is a process which pomset abstraction
includes both t1 and t3 but does not order them. We now generalize this result.

Let us consider the labelled reset Petri Net N 0R
of Figure ?? (right). It uses the pattern

NR of Figure ?? in which t1 and t3 can be fired in different order infinitely often. In this
net, the transitions with labels t1 and t3 are not in causal relation.
I Proposition 3. There is no finite safe labelled Petri net (i.e. without reset arc) which is
pomset bisimilar to the labelled reset Petri net N 0R

.

Proof. We simply remark that any finite safe labelled Petri net with no reset arcs which
is bisimilar to N 0R

has a causal relation between two transitions labelled by t1 and t3
respectively (Lemma ??). From that, by Proposition ??, we get that any such labelled Petri
net N which would be pomset bisimilar to N 0R

would have a process from its initial marking
whose pomset abstraction is such that some occurrence of t1 and some occurrence of t3 are
ordered, while this is never the case in the processes of N 0R

. This prevents N from being
pomset bisimilar to N 0R

, and thus leads to a contradiction, proving the proposition. J

I Lemma 20. Any safe labelled Petri net with no reset arcs which is bisimilar to N 0R
has a

causal relation between two transitions labelled by t1 and t3 respectively.

Proof. The sketch of the proof is that the firing of t3 prevents the firing of t2; then t3 and t2
are in conflict and share an input place which has to be marked again after the firing of t1.
This place generates a causality between t1 and t3. We now give the details of the proof.

Assume there exists a safe labelled Petri net N0 = (N 0,Σ0, λ0) bisimilar to the labelled
reset Petri net N0R

without any transitions t ≺ t′ so that λ0(t) = t1 and λ0(t′) = t3.
Let us consider in N0R

a marking MR such that p1 and p2 are marked. Both t2 and t3
are fireable (in N0R

we identify transitions with their labelling as this is not ambiguous).
By definition of the bisimulation, inN0 there exists a markingM bisimilar toMR and from

which two sequences τ∗t′′ and ε∗t′, with λ0(τ∗t′′) = λ0(t′′) = t2 and λ0(ε∗t′) = λ0(t′) = t3,
are fireable in the orders given by the sequences. Note that the set of transitions in ε∗

and the set of transitions in τ∗ are not necessarily disjoint. Without loss of generality, we
take M , τ∗, and t′′ so that the sequence τ∗t′′ can be fired infinitely often, that is, so that
there exists a sequence of firing of transitions from the initial marking of N0 in which the
subsequence τ∗t′′ appears infinitely many times (this is possible due to the finiteness of the
set of transitions of N0 and the fact that t2 can be fired infinitely often in N 0R

).
When t′ occurs from M , the firing of t′′ becomes impossible. Otherwise a sequence of

transitions w so that λ0(w) = t3t2 would be possible in N0, which contradicts bisimilarity
with N 0R

where firing t2 immediately after t3 (i.e. with no firing of t1 in the meantime) is
not possible.

From that, one can deduce that from M the two sequences τ∗t′′ and ε∗t′ necessarily have
a direct conflict: there are a transition τ in τ∗t′′ and a transition ε0 in ε∗t′ whose presets
share at least one place. We call p′1 such a place both in •τ and in •ε0. We have p′1 ≺ t′′

(recall that λ0(t′′) = t2) and p′1 ≺ t′ (recall that λ0(t′) = t3).
Notice that it can exist a set SP1 of such places p′1, because |•τ ∩ •ε0| ≥ 1. Since t2 and

t3 can occur infinitely often in N0R
, and since the number of places in N0 is finite, one could

FSTTCS 2017

23:10 Pomsets and Unfolding of Reset Petri Nets

have chosen t′ and thus ε0 so that all the places in SP1 is marked infinitely often in some
infinite sequence of transitions firing in N0 in which τ∗t′′ appears infinitely often and which
reaches M infinitely often (recall that we chose t′′ to have such a sequence). Assume that we
chose p′1 in such a SP1 .

As a last step before concluding our proof, we show that t′′ ≺ p′1. Assume this is not the
case. Remark that firing τ∗t′′ removes, at some point in the sequence of firings, p′1 from the
marking, by firing τ . However, p′1 is marked infinitely often in some infinite sequence w of
transitions firing in N0 in which τ∗t′′ appears infinitely often and which reaches M infinitely
often. If t′′ ≺ p′1 is false, it means that, at some point in w, p′1 is marked thanks to a transition
that is not a causal successor of t′′ (i.e. t′′ is not a causal predecessor of this transition),
all the places in the preset of this transition must neither be causal successors of t′′. By
induction, one can find an infinite subsequence of w of transitions firing which infinitely often
marks p′1 while it is already marked. This is in contradiction with the assumption that N0 is
safe (for the reader familiar with Petri nets, this would work exactly the same for bounded
Petri nets in a more general setting). Thus, t′′ ≺ p′1.

We have shown that t′′ ≺ p′1 and p′1 ≺ t′. Moreover, by definition of bisimilarity we know
that there exists t in N0 so that t ≺ t′′ and λ0(t) = t1 (because t1 ≺ t2 in N 0R

). Hence, by
transitivity, we get t ≺ t′ with λ0(t) = t1 and λ0(t′) = t3, which concludes the proof. J

5 Finite and complete prefixes of unfolding of reset Petri nets

The unfolding of a Petri net is a particular branching process (generally infinite) representing
all its reachable markings and ways to reach them. It also preserves concurrency. The
unfolding of a net can be defined as the union of all its branching processes [?] or equivalently
its largest branching process (with respect to inclusion). In the context of reset Petri nets,
no notion of unfolding has been defined yet. Accordingly to our notion of processes for reset
Petri nets and because of Proposition ?? below we propose Definition ??. In it and the rest
of the paper, nets and labelled nets are identified (each transition is labelled by itself) and
labellings of branching processes are induced by homomorphisms (as for pomset abstraction).

I Definition 21 (Unfolding of a reset Petri net). Let NR be a safe reset Petri net and N be
its underlying Petri net. Let U be the unfolding of N . The unfolding of NR is UR, obtained
by adding reset arcs to U according to (2) in Definition ??.

I Proposition 4. Any safe (labelled) reset Petri net NR and its unfolding UR are pomset
bisimilar.

Proof. This comes directly from a result in [?]. It is stated in this paper that, if two Petri
nets have the same unfolding (up to isomorphism), then they are pomset bisimilar (the notion
of pomset bisimulation used is similar to our notion of pomset bisimulation when there are
no resets in a net). Clearly, a Petri net N and its unfolding U have the same unfolding, U
itself. Thus, N and U are pomset bisimilar.

Moreover, from Definition ??, one gets that the processes of NR are a subset of the
processes of N (to which reset arcs are added). Similarly, the processes of UR are a subset of
the processes of U (to which reset arcs are added). Because N and U are pomset bisimilar,
they have the same processes (up to pomset abstraction). Thus, NR and UR have the same
processes (up to pomset abstraction) as well.

Finally, by definition of pomset bisimulation, in N and U two processes taken from
markings in bisimulation and with the same pomset abstraction, must also reach markings
in bisimulation. Because the addition of reset arcs mimics the resets arcs of NR in UR (i.e.

M. Comlan, T. Chatain, D. Delfieu, L. Jezequel, O. H. Roux 23:11

adding reset arcs to the processes of N or to the processes of U is done exactly in the same
way) and because their processes are the same, we get the same property about bisimulation
between markings in NR and UR than in N and U . J

Petri nets unfolding is however unpractical for studying Petri nets behaviour as it is
generally an infinite object. In practice, finite complete prefixes of it are preferred [?, ?].

I Definition 22 (finite complete prefix, reachable marking preservation). A finite complete
prefix of the unfolding of a safe Petri net N is a finite branching processes (O, h) of N
verifying the following property of reachable marking preservation: a marking M is reachable
in N if and only if there exists a reachable marking M ′ in O so that M = {h(b) : b ∈M ′}.

In this Section, we propose an algorithm for construction of finite complete prefixes for
safe reset Petri nets. For that, we assume the existence of a black-box algorithm for building
finite complete prefixes of safe Petri nets (without reset arcs). Notice that such algorithms
indeed do exist [?, ?].

Because of Proposition ??, we know that such finite prefixes should have reset arcs to
preserve pomset behaviour. We first remark that directly adding reset arcs to finite complete
prefixes of underlying nets would not work.
I Proposition 5. Let U be the unfolding of the underlying Petri Net N of a safe reset Petri
net NR, let F be one of its finite and complete prefixes. Let F ′ be the object obtained by
adding reset arcs to F according to (2) in Definition ??. The reachable marking preservation
is in general not verified by F ′ (with respect to NR).

Proof. Let us consider the reset Petri net NR of Figure ?? (left).

p1

t1

p3

t3

p4

t4

p2

t2

p5

t5

p6

NR

b1(p1)

e1(t1)

b3(p3)

e3(t3)

b5(p4)

b2(p2)

e2 (t2)

b4(p5)

e5 (t5)

b6(p6)

F

b1(p1)

e1(t1)

b3(p3)

e3(t3)

b5(p4)

b2(p2)

e2 (t2)

b4(p5)

e5 (t5)

b6(p6)

F ′

Figure 5 A reset Petri net N R (left), a finite complete prefix F of its underlying Petri net
(middle), and the same prefix after addition of reset arcs F ′ (right).

Applying the prefix construction procedure of [?] or [?] on the unfolding U of its underlying
Petri net leads to the finite prefix F of Figure ?? (middle). The object F ′ obtained by adding
reset arcs to F is represented in Figure ?? (right). It does not verify the reachable marking
preservation property. Indeed, in NR, the sequence of transition firings t1t3t2t4t5 allows to
reach the marking {p6}, while in F ′ no sequence of transition firings permits to reach the
marking {b6} (which is the only one which could correspond to {p6}). J

In the above proof, we have shown that some reachable markings of NR were not
represented in F ′. This suggests that this prefix is not big enough. We however know an
object that contains, for sure, every reachable marking of NR along with a way to reach
each of them: its structural transformation NR,str (Definition ??). We thus propose to
compute finite prefixes of reset Petri nets from their structural transformations: in the below

FSTTCS 2017

23:12 Pomsets and Unfolding of Reset Petri Nets

algorithm, Fstr is used to determine the deepness of the prefix (i.e. the length of the longest
chain of causally ordered transitions).
I Algorithm 1 (Finite and complete prefix construction for reset Petri nets). Let NR be a safe
reset Petri net, (step 1) compute the structural translation NR,str of NR, (step 2) compute
a finite complete prefix Fstr of NR,str, (step 3) compute a finite prefix F of U (the unfolding
of the underlying net N) that simulates Fstr (a labelled net N 2 simulates a labelled net N 1
if they verify Definition ?? except for condition 2.b.), (step 4) compute FR by adding reset
arcs from NR to F according to (2) in Definition ??. The output of the algorithm is FR.

Applying this algorithm to the net of Figure ?? (right) – using the algorithm from [?] at
step 2 – leads to the reset Petri net of Figure ??.

b1(p0) b2(p2)

e1(t1) e2 (t3)

b4(p0) b5(p1) b6(p2)

e3 (t2)b3(p3)

b7(p3)

Figure 6 A finite complete prefix of the unfolding of the safe reset Petri net N 0R of Figure ??.

Notice that the computation of Fstr – step 1 and 2 – can be done in exponential time
and space with respect to the size of NR. The computation of F from Fstr (step 3) is linear
in the size of F . And, the addition of reset arcs (step 4) is at most quadratic in the size of F .

We conclude this Section by showing that Algorithm ?? actually builds finite complete
prefixes of reset Petri nets.
I Proposition 6. The object FR obtained by Algorithm ?? from a safe reset Petri net NR is
a finite and complete prefix of the unfolding of NR.

Proof. Notice that if NR is safe, then NR,str is safe as well. Thus Fstr is finite by definition
of finite complete prefixes of Petri nets (without reset arcs). Fstr is finite and has no node in
causal relation with itself (i.e. no cycle), hence any net bisimilar with it is also finite, this is
in particular the case of F . Adding reset arcs to a finite object does not break its finiteness,
so FR is finite.

Moreover, Fstr is complete by definition of finite complete prefixes of Petri nets (without
reset arcs). As F simulates Fstr it must also be complete (it can only do more). The reset
arcs addition removes semantically to F only the unexpected sequences (i.e. the sequence
which are possible in F but not in Fstr). Therefore, FR is complete. J

6 Conclusion

Our contribution in this paper is three-folded. First, we proposed a notion of pomset
bisimulation for reset Petri nets. This notion is, in particular, inspired from a similar notion
that has been defined for Petri nets (without reset arcs) in [?]. Second, we have shown
that it is not possible to remove reset arcs from safe reset Petri nets while preserving their
behaviours with respect to this pomset bisimulation. And, third, we proposed a notion
of finite complete prefixes of unfolding of safe reset Petri nets that allows for reachability
analysis while preserving pomset behaviour. As a consequence of the two other contributions,
these finite complete prefixes do have reset arcs.

