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Abstract
The synthesis of controllers for reactive systems can be done by computing winning strate-
gies in two-player games. Timed (game) Automata are an appropriate formalism to model
real-time embedded systems but are not easy to use for controller synthesis for two reasons:
i) timed models require the knowledge of the precise timings of the system; for example,
if an action must occur in the future, the deadline of this occurrence must be known, ii)
in practice, the dense state space makes the computation of the controller often impossi-
ble for complex systems. This paper introduces an extension of untimed game automata
with logical time. The new semantics introduces two new types of uncontrollable actions:
delayed actions which are possibly avoidable, and ineluctable actions which will eventu-
ally happen if nothing is done to abort it. The controller synthesis problem is adapted to this
new semantics. This paper focuses specifically on the reachability and safety objectives and
gives algorithms to generate a controller. The paper then extends these results to Game Petri
Nets which can express concurrent timed behaviors and where an avoidable transition can
lose its avoidability by the elapsing of time. The usefulness of this new model is illustrated
by a real device driver synthesis example.
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1 Introduction

The theory of supervisory control has been well developed since about 30 years ago with
the seminal works of Wonham and Ramadge (1984), Ramadge and Wonham (1987), and
Golaszewski and Ramadge (1987). It has become a basic paradigm for the control of discrete
event systems (DES) modeled as finite state machines.

Since Ramadge and Wonham (1987), different formalisms have been considered to
model (un)controllable actions and control problems. Formulating control problems as two-
player games have provided efficient solutions (Thomas 1995). In this setting, the controller
is modeled by a player and the environment by its opponent. Determining whether a con-
troller exists amounts to determine if it can win and computing a winning strategy is
equivalent to synthesizing a controller. However, these turn-based games (Thomas 1995)
where one player chooses their action before the other chooses theirs, are sequential and
do not allow to model concurrency. Therefore, concurrent games (Chatterjee et al. 2012;
De Alfaro et al. 2001; de Alfaro et al. 2007) have been proposed, for which, at each round
of the game, player 1 (the controller) and player 2 (the environment) independently and
simultaneously choose moves, and both choices are used to determine the next state of the
game.

Besides the controllable and uncontrollable actions used in untimed frameworks, con-
trolled systems often rely on additional behavioral capabilities, based in particular on two
important notions: delays and urgency. Without delays, we cannot express the fact that some
actions (such as analog conversions, or emissions of messages on a communication bus)
take time, and that the controller can perform actions during that time, even aborting the
current environment operation. In that case, the controller must make use of some kind of
urgency. In addition, without urgency, we cannot model ineluctable behaviors (such as the
eventual arrival of a product at the end of the conveyor belt on which it is placed) of the
environment since, in untimed games, the environment is expected to play every move at its
disposal to make the controller fails, including choosing not to play.

The model of timed automata (Alur and Dill 1994) and timed games (De Alfaro et al.
2003) is an appropriate formalism to express and model these timed properties. In a timed
game, the time at which the two players (controller and environment), play their moves
is taken explicitly into account. Their level of expressiveness and well-known controller
synthesis techniques and tools (Altisen and Tripakis 2002; Behrmann et al. 2007) allow
the modeling of systems with complex interactions while providing a formal proof of the
behavior of the system. Yet, the computational complexity of the involved algorithms limits
the size of the systems that can be addressed in practice.

Moreover, these timed formalisms require a good understanding of all the components
of the system, including the knowledge of the timings of the actions of both players. These
timings are rarely known precisely. Moreover, when these timings are known, or at least
bounds on those timings, the complexity of the timed controller synthesis algorithms is still
a problem.

Hence, it would be very interesting to derive a controller without explicit timed models
(i.e. without precise timing quantification) while keeping the notion of urgency and delay.
The behavior we would like to capture can be reduced into two types of uncontrollable
actions:

– Delayed (avoidable) actions, which take time to complete or cannot happen immedi-
ately, such as writing to an external memory, sending a message on a bus, performing
a specific computation on a hardware dedicated unit, etc. These actions usually come
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with some kind of abortion mechanism, so they are avoidable from a certain point of
view. They are modeled in an explicit timed context by guard constraints with non-zero
lower bounds on clocks.

– Ineluctable actions, which are known to happen in a nominal context: the end of a
transmission or a conversion, or, more generally, an acknowledgment of the reception
of a command. An ineluctable action is guaranteed to happen eventually if nothing is
done to abort it, which differs from the notion of fairness. In the untimed context, it
is not sufficient to consider these actions as controllable. First, except if it is explicitly
avoidable, an ineluctable action cannot be prevented by the controller, even if it leads
to losing the game. Second, when there is a choice between two controllable actions,
the controller chooses, but when it is between two ineluctable actions, the environment
chooses.

Finally, since an avoidable uncontrollable action is avoidable because it is assumed to
take some time, a strategy for the controller wishing to avoid that action is to act urgently.

Our contribution We propose to extend the framework of untimed games with avoidability
and ineluctability for uncontrollable actions and with urgency for controllable actions:

– an avoidable (delayed) action cannot happen immediately so that the controller can
perform an urgent action to avoid it if needed.

– an ineluctable action is guaranteed to happen eventually if nothing else is done to abort
it, and the controller may want to rely on it.

We revisit the controller synthesis problem for reachability and safety games in this con-
text, leading to what we call logical time games, in which players can play their actions
immediately (urgently) or not. As a consequence, moves by the players carry information
both on the action played and the timing at which they are played.

We then extend these logical time games in order to express concurrent timed behaviors
with game Petri Nets.

This paper is organised as follows:
We first give in Section 2, the basic definitions and notations for logical time games. By

using these notations, we justify our new model in Section 3. Then, in Section 4, we solve
the controller synthesis problem for logical time games. In Sections 5, 6 and 7, we respec-
tively focus on reachability games, safety games and safe reachability games. In Section 8
we extend these results to Game Petri Nets. We discuss the complexity of the winning
state computation algorithm implemented in our tool ROMÉO in Section 10. Finally, in
Section 11 we illustrate our method on a case study based on a Microchip CAN controller.

This article is an extension of Béchennec et al. (2019) and Béchennec et al. (2019), with
mainly the addition of the complete proofs, the safe reachability games, and the setting of
Game Petri Nets. The case-study has also been updated to use Game Petri Nets.

2 Logical time games

In this section we propose a variant of the traditional untimed game automata with new
logical-time semantics capturing avoidability and ineluctability.

Let C and U be the two players called controller and environment, respectively.
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Definition 1 (Game structure) A game structure is a tuple G = (Q, q0, AC,AU ,A�
U ,

A�
U , δ) where:

– Q is a set of states
– q0 ∈ Q is the initial state
– AC and AU are two disjoint sets of actions for the controller and the environment,

respectively.
– A�

U ⊆ AU and A�
U ⊆ AU are the subsets of avoidable and ineluctable actions, respec-

tively. Note that these subsets are independent, and their intersection is not necessarily
empty.

– δ : Q×(AC ∪AU)×Q a set of edges between states. We denote q
a→ q ′ for (q, a, q ′) ∈

δ.

For the sake of simplicity, we assume the underlying finite automaton is deterministic.
A�

U ⊆ AU and A�
U ⊆ AU are the subsets of avoidable and ineluctable actions. We also

denote A��
U , A��

U , A��
U , A��

U , A�
U and A�

U , the other subsets of AU based on these two

notions. As an example, A�
U is the subset of actions of AU which are not ineluctable but can

be either avoidable or not and A��
U is the subset of actions of AU which are not avoidable

and not ineluctable.

2.1 Graphical notations

For the following figures, we will use the following notations illustrated in Fig. 1:

– States are represented by circles, and the initial state is denoted q0.
– Controllable transitions are represented by solid arrows.
– Uncontrollable transitions are represented by dashed arrows.
– Avoidable transitions start with a circle.
– Ineluctable transitions end with a double arrowhead.

2.2 Behaviors in game structures

The behaviors in game structures are timed behaviors, but only at a logical level, in which
we distinguish immediate actions from others: we thus denote by � the set {0, 0}, which
represents the logical time at which an action is played. It can be instantaneous (0), or

Fig. 1 Graphical notation
example: Here q0 is the initial
state, and
c ∈ AC, u ∈ A��

U , ua ∈
A��

U , ui ∈ A��
U and uai ∈ A��

U

0 1

2

3

4

5
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non-immediate (0). Semantically, 〈a, 0〉 means that the action a is performed immediately,
whereas in 〈a, 0〉, the action a is performed after a non-null time.

2.2.1 Avoidable actions

From a given state q an avoidable (and then non-immediate) action 〈u, 0〉 (as in Fig. 4) can
be prevented by any other action c from the same state q by the timed action 〈c, 0〉.
2.2.2 Ineluctable actions

From a given state, an ineluctable action u will eventually happen if we do not do anything
else from this state, that is to say, if we wait long enough. Note that it could still happen
immediately.

2.2.3 Avoidability and Ineluctability vs Fairness

An ineluctable action can also be avoidable from a given state, and the reachability game
shown in Fig. 2 is winning by doing 〈c, 0〉.

Moreover, like any non-avoidable uncontrollable action, a non-avoidable ineluctable ac-
tion cannot be prevented by a controllable action. The environment still has a choice of what
it wants to play when there is an ineluctable action, however. The important thing is that it
must play something, and to that extent, ineluctability could equallywell be defined on states,
though from an applicative point of view it makes sense to keep it on actions as we did.

This latter consideration also demonstrates how ineluctability is different from fairness.
With the general notion of fairness, one assumes that all edges, or states, or some other
features are considered infinitely often. Ineluctability does not imply anything like this:
in Fig. 3, the environment might very well decide to always play the loop and never the
ineluctable action. In that sense it is not assumed to be fair, neither weakly nor strongly. It
follows that the two leftmost reachability games in that figure are not winning.

Note that the time at which the loop is taken does not need to be 0. The rightmost game
in Fig. 3 is actually a timed automaton with a single clock x, which is reset to 0 on the loop
and cannot exceed 2 when in q0. Also, it must be greater than or equal to 2 to proceed to
G. This is a model we want to abstract with the leftmost automaton: the invariant implies
that the environment must play (but does not prescribe which action) and if the environment
always chooses the loop at any time before x is 2 then the guard of the transition to G is
actually never satisfied.

Note that we try here to show the conceptual differences between fairness and
ineluctability but we do not claim that neither of them can simulate the other using more
complex constructions. This is left as an open problem.

2.3 Predecessor, successor and run

For � ⊆ AC ∪ AU , we define the predecessor and successor functions pre� : 2Q →
2Q, suc� : 2Q → 2Q. Let X ⊆ Q, ∀q ∈ Q, q ∈ pre�(X) iff ∃a ∈ � and q ′ ∈ X, s.t. q

a→

Fig. 2 Avoidable actions (even
when ineluctable) can be
prevented by the controller 0Bad
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Fig. 3 Ineluctability is not fairness

q ′, and ∀q ′ ∈ Q, q ′ ∈ suc�(X) iff ∃a ∈ � and q ∈ X, s.t. q
a→ q ′. When � = AC ∪ AU ,

we omit � and simply write pre(X) and suc(X).
A run of a game structure is a sequence q0 〈a1, d1〉 q1 〈a2, d2〉 q2 . . . with ai ∈ AC ∪AU ,

di ∈ �, qi ∈ Q, and such that qi
ai→ qi+1 for all i ≥ 0. We denote byR the set of runs, and

byR the set of finite runs. Note that a finite run always ends with a state.
For a run r ∈ R, we define First(r) the first state of r , States(r) the set of states

which appear in r , and Act(r) the set of actions which appear in r . If r ∈ R, we define
Last(r) the last state of r . We define the length |r| of a run r as the size of the subsequence
〈a1, d1〉〈a2, d2〉 . . ..

For R ⊆ R and X ⊆ Q, we denote by R|X the subset of R such that ∀r ∈
R|X,States(r) ⊆ X.

3 Justification for this newmodel

For the examples used in this section, we consider a reachability game (formally defined in
Section 5) starting in q0 where the goal is to reach a state denoted G.

3.1 Avoidable actions

The problem of avoidable (delayable) actions can be solved by using timed models such
as timed automata. The avoidable actions can be translated directly into guards with a non-
zero lower bound on clocks as depicted in Fig. 4a and b. Hence, timed games (Maler et al.
1995; De Alfaro et al. 2003) allow solving the controller synthesis problem for reachability
or safety objectives. In Tripakis and Altisen (1999), the authors consider an abstraction of
timed automata (Alur and Dill 1994) where a transition τ represents the fact that some
time elapses. The authors argue that the abstract timed transitions (τ ) can be considered
as controllable for the purposes of controller synthesis. This abstraction does not require

(a) (b) TA (c)

0

Bad

0

Bad

0

0

Bad

Fig. 4 Avoidable uncontrollable actions can be prevented by the controller
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Fig. 5 Ineluctable actions cannot
be prevented by the controller

0

Bad

explicit delays and if τ represents non-null elapsing of time, from a state q0, an action τ

followed by an uncontrollable action u is equivalent to an avoidable action u from q0 as
depicted in Fig. 4c. In Tripakis and Altisen (1999), this abstraction is generated by a quotient
of the timed game automata by a time-abstracting bisimulation and can be viewed as a game
graph on which the complexity of the controller synthesis algorithm is quadratic in the size
of the graph.

The concept of avoidable uncontrollable action addresses concerns similar to that of
(controllable) forcible action from Brandin and Wonham (1994). A forcible action can pre-
empt the elapsing of time and therefore happen immediately, which is very much what
the controller strategy to avoid an avoidable uncontrollable action will be. Yet, in practice,
forcible actions are part of the framework called timed DES, in which time is modeled
explicitly by tick events. In our formalism, time is modeled implicitly, and also much less
precisely, allowing for models that are smaller and easier to analyze.

3.2 Ineluctable actions

In our games, by default, players have the option not to play. Ineluctable actions locally
remove this possibility for the environment. They model things that are known to hap-
pen in a nominal context: the end of a transmission or a conversion, or more generally an
acknowledgment of the reception of a command.

Ineluctable actions vs controllable actions In the untimed context, it is not sufficient
to consider these actions as controllable. First, an ineluctable action cannot be prevented
by the controller, even if it leads to losing the game (see Fig. 5). Second, when there is a
choice between two controllable actions, the controller chooses but when it is between two
ineluctable actions, the environment chooses. For example, in Fig. 6, assume the emission
of a message on a communication bus (action c). It can lead to an immediate success (action
u2) or it can first fail (action u1) and can become a success later. It is ineluctable that either
u1 or u2 occurs, but the choice between u1 and u2 does not belong to the controller who has
to ensure that both states q1 and q2 are winning.

Fig. 6 Ineluctable actions are not
selected by the controller

0 1

2

2

1
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Fig. 7 Ineluctable actions cannot be forced by the controller

We could try to replace ineluctable actions with both a normal uncontrollable action and
a controllable action with the same source and target as in Fig. 7. The idea would be that
the environment can still choose what action it wants to play but if it tries to do nothing
the controller can choose instead, effectively forcing the environment to play. This trick
works when there are no avoidable actions but the games in Fig. 7 are counter-examples
for the general case: the original game on the left is actually losing because the environ-
ment can delay its move until it can play the avoidable action. But in the transformed game
on the right, the controller can play action c immediately, effectively forcing the modeled
ineluctable action to happen at time 0 and avoiding the losing action, and thus the game is
winning.

Ineluctable actions vs timed actions In the timed context, ineluctability cannot be trans-
lated as-is into and from timed automata. We can use invariants on locations to force the
environment to play, but this requires the knowledge of an upper bound on the delay, which
is often not possible.

Moreover, invariants apply to all players, including the controller, whereas ineluctable
actions only restrict the behavior of the environment. In Chatain et al. (2009), Timed Games
are based on Timed Automata with invariants that are restricted to constraints of the form
x ≤ k (where x is a clock and k is a constant). However, the environment can decide not to
take action if an invariant requires to leave a state and the controller can do so.

Although this has not been done in the literature, it is possible to extend Timed Game
Automata in order to take into account ineluctability, for example, by extending the notion
of deadline or urgency (Bornot and Sifakis 2000). However, reachability and safety timed
games are decidable but are EXPTIME-complete and the symbolic states manipulated by
the algorithms are regions or zones that are too powerful for untimed models and limit the
size of the systems that can be addressed in practice.

Our model eliminates the need to put explicit values on time invariants and only restricts
the behavior of the environment and not that of the controller.

4 Controller synthesis

In this section, we will solve the controller synthesis problem using our modified semantics.
The goal is to derive a strategy for the controller to restrict the behavior of the game. Those
strategies prescribe either a set of controllable moves that should be done either immedi-
ately, or with no timing restriction, or to wait and do nothing until some action happens,
which is represented by an empty set.
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Let us recall C and U are the two players called controller and environment, respectively.

Definition 2 (Strategy) A strategy si for player i ∈ {C,U} is a function si : R → 2(Ai×�).
It is said to be memoryless if it only depends on the current state of the run, i.e. si : Q →
2(Ai×�). We impose that if 〈a, d〉 ∈ s(r), then a is indeed possible from Last(r).

When both 〈a, 0〉 and 〈a, 0〉 are in s(r), we write 〈a, 0 + 0〉 ∈ s(r) for short.

Definition 3 (Strategies with ineluctable and avoidable actions) Let sU : R → 2(AU ×�)

be a strategy of the environment and let r be a run in the game, with Last(r) = q.

If there exists a ∈ A�
U , d ∈ �, and a state q ′ such that q 〈a,d〉→ q ′ then sU (r) �= ∅.

If there exists a ∈ A�
U , d ∈ �, and a state q ′ such that q

〈a,d〉→ q ′, and if 〈a, d〉 ∈ sU (r),
then d = 0.

Starting from a run consisting of some state (usually the initial state), both players induc-
tively build a set of runs (because of non-determinism) by playing their strategies. Since we
are interested in the strategies for the controller to win whatever the (legal) strategy of the
environment is, we directly define outcomes of a strategy of the controller as the union over
all strategies of the environment of all such sets of runs.

Definition 4 (Outcome) Let G = (Q, q0, AC,AU ,A�
U ,A�

U , δ) be a game structure, r one
of its runs, and sC a strategy for the controller. The outcome Outcome(q, sC) of sC from
state q is the subset ofR defined inductively by:

• q ∈ Outcome(q, sC)

• If r ∈ Outcome(q, sC) is finite, r ′ = r
〈a,d〉→ q ′ ∈ Outcome(q, sC) if r ′ ∈ R and one of

the following holds true:

– a ∈ A�
U and if ∃〈a′, 0〉 ∈ sC(r), then d = 0;

– a ∈ A�
U and ∃〈a′, 0〉 ∈ sC(r).

– 〈a, d〉 ∈ sC(r).

• An infinite run belongs to Outcome(q, sC) if all its finite prefixes also belong to
Outcome(q, sC)

Intuitively, we are interested in runs that are long enough to have a chance to fulfill the
objective. Maximality distinguishes those runs that are the longest that the controller can
produce through its actions (possibly with diverting moves from the environment) or by
relying on the ineluctable actions of the environment.

A run r is maximal in a set of runs R if either it is finite and there is no a ∈ AC ∪A�
U , and

no q ′ ∈ Q such that r
a→ q ′ ∈ R , or it is infinite and none of its finite prefixes are maximal.

We denote by MaxOutcome(q, sC) the set of runs that are maximal in Outcome(q, sC).
The control synthesis problem can be stated using winning conditions, also called objec-

tives. For a given game structure G, a winning condition CW is a set of allowed runs. We
call the pair (G, CW ) a game.

In such a game, a strategy s for the controller is winning from state q if MaxOut-
come(q, s) ⊆ CW . A state q is winning if there exists a winning strategy from q. The game
itself is winning if q0 is winning.
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Fig. 8 The objective is to reach
the state G 0 1

5 Reachability games

A reachability objective of the controller is to force the game to reach a certain set of states.
Formally:

Definition 5 (Reachability objective)
Let G = (Q, q0, AC,AU ,A�

U ,A�
U , δ) be a game structure, and Goal ⊆ Q a set of goal

states. The reachability winning condition (or objective) Reach(Goal) for Goal is the set of
runs r that are maximal inR and such that States(r) ∩ Goal �= ∅.

For example, for the game of Fig. 8, the objective is to reach the state G and we have
Goal = {G} and Reach(Goal) = {q0 〈c, d1〉 q1 〈u, d2〉 G | d1, d2 ∈ �}.

5.1 Computing the strategy

The computation of the strategy is obtained from the set of winning states. A state is winning
for the controller if it is possible to reach a goal state from the strategy i.e. if the controller
has a strategy to reach a goal state against all strategies of the environment. The main algo-
rithm for computing winning strategies for reachability games is a backward fixed-point
algorithm over the controllable predecessor function.

Intuitively, a state s is a controllable predecessor ofX if the following conditions are met:

– there is an action which is guaranteed to happen (either controllable or uncontrollable
ineluctable) and leads to X;

– all other actions of the environment cannot prevent the game to reach a state in X.

Definition 6 (Controllable predecessors) Let G = (Q, q0, AC,AU ,A�
U ,A�

U , δ) be a
game structure, and X ⊆ Q a set of states. The controllable predecessors π(X) of X is the
subset of Q defined by:

π(X) = preAC
(X) \ pre

A�
U

(X)

∪preA�
U
(X) \ preAU

(X)
(1)

The two parts of the formula represent two different ways to win:

– if there is a controllable action from s to a state in X, all uncontrollable actions must
either be avoidable, or also lead to states in X

– if there is an ineluctable uncontrollable action, all other uncontrollable actions must
also lead to a state in X.

Given this new definition of π , for Goal ⊆ Q the set of winning states for the winning
condition Reach(Goal) is computed using the following classic backward fixed-point Algo-
rithm 1:W0 = Goal andWn+1 = Wn ∪ π(Wn). When it exists, the final fixed-point set of
winning states is notedW .
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Lemma 1 Let (G, CW ) be a reachability game. Let q1 and q2 be two states of G. Let s1
be a memoryless strategy that is winning from q1 and s2 be a memoryless strategy that
is winning from q2. Let Q1 be the set of states of runs r in Outcome(q1, s1) such that
States(r) ∩ Goal = ∅ (i.e. the states that are traversed before reaching Goal).

Let s be the memoryless strategy defined by: for all q ∈ Q, if q ∈ Q1 then s(q) = s1(q),
otherwise s(q) = s2(q). Then s is winning from both q1 and q2.

Proof The fact that s is winning from q1 is obvious. Now, from q2 this is also quite
straightforward. Let r be a run in MaxOutcome(q2, s). If States(r) ∩ Q1 = ∅ then
r ∈ MaxOutcome(q2, s2) and therefore it eventually goes through Goal. Otherwise, we can
write r as r2r1, with r2 ∈ Outcome(q2, s2), Last(r2) ∈ Q1 and r1 ∈ Outcome(Last(r2), s1).
Since Last(r2) ∈ Q1, and since from there we follow the s1, then for sure r1 eventually goes
through Goal.

Lemma 2 If q ∈ Wn (i.e. the value ofW at the end of the n-th iteration of the while loop)
then there exists a winning memoryless strategy from q that permits to win in n action steps
or less.

Proof By induction on n.
Base case: before the first iteration of the while loop,W0 = Goal, and q ∈ Goal implies

that we have a strategy to win without doing anything. It is indeed equivalent to having a
run with no action step from q to Goal.

Induction step: suppose the property holds for some n ≥ 0. Let q ∈ Wn+1. Then either
q ∈ Wn or q ∈ π(Wn).

If q ∈ Wn, then the induction hypothesis directly gives the result.
If q �∈ Wn and therefore q ∈ π(Wn). Two more cases arise:

• either q ∈ preAC
(Wn) \ pre

A�
U

(Wn): then there exists some a ∈ AC and qa ∈ Wn

such that q
a→ qa . Let {b1, . . . , bp} be the set of uncontrollable, non-ineluctable actions

possible in q and let qi be the state such that q
bi→ qi for all i. Then qi ∈ Wn, because

q �∈ pre
A�

U

(Wn). By the induction hypothesis, we know that there are memoryless

winning strategies sa from qa , and si for each of the qi’s. By Lemma 1, we can merge
all those strategies in one memoryless strategy s′. Now, we exhibit a winning strategy:
let s be the memoryless strategy such that s(q) = {〈a0〉} and s(q ′) = s′(q ′) for all
q ′ �= q. Let us prove that s is indeed winning from q.
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Let r be a run in MaxOutcome(q, s). Note that the run consisting of only q cannot
be maximal since a ∈ AC . Therefore we have at least one action in r . Consider the first
of those and call it x:

– First suppose that x ∈ AC . Then we must have x = a because s says to play
a in q. Now, remark that since q �∈ Wn, it is clear that it never appears in the
outcomes of s′ from qa or any of the qb’s, so the outcomes of s and s′ from
those states are the same. Consequently, all maximal runs from q that start
with a will eventually go through Goal because s′ is winning.

– Suppose now that x ∈ AU . Then we must have x ∈ A�
U because s says to

play immediately in q. Furthermore, the state reached by taking x is one of
the qi’s defined above, from which s′ is winning, and with the same argument
as in the previous point, the maximal runs that start with x also eventually go
through Goal.

• or q ∈ preA�
U
(Wn) \ preAU

(Wn). This case is fairly similar to the previous one: we

know there exists some a ∈ A�
U and qa ∈ Wn such that q

a→ qa . Let {b1, . . . , bp} be
the set of uncontrollable actions possible in q and let qi be the state such that q

bi→ qi

for all i. Then qi ∈ Wn, because q �∈ preAU
(Wn). By the induction hypothesis, we

know that there are memoryless winning strategies sa from qa , and si for each of the
qi’s. By Lemma 1, we can merge all those strategies in one memoryless strategy s′.

Let s be the memoryless strategy such that s(q) = ∅ and s(q ′) = s′(q ′) for all
q ′ �= q. We prove that s is winning from q.

Let r be a run in MaxOutcome(q, s). Note that the run consisting of only q cannot
be maximal since a ∈ A�

U . Therefore we have at least one action in r . Consider the
first of those and call it x. Since the strategy says to wait, we cannot have x ∈ AC . So
x ∈ AU , and the state reached by taking x is one of the qi’s above and we get the result
with the same reasoning as before.

Lemma 3 If there exists a winning strategy from state q that permits to win in n action
steps or less, then q ∈ Wn.

Proof By induction on n.
Base case: If we can win without changing states, it must be the case that q ∈ Goal =

W0.
Induction step: suppose the property holds for some n ≥ 0. Suppose that we have a

winning strategy s from state q such that all runs in MaxOutcome(q, s) reach Goal in at
most n + 1 steps.

Consider the possible actions from q. If they are all uncontrollable and not ineluctable,
or there is also controllable transitions but s(q) = ∅, then q is itself a maximal run and
therefore q ∈ Goal = W0, which implies that q ∈ Wn+1. Otherwise:

– either there is at least one controllable action a in s(q). Then it will be present in the
outcome of s from q, leading to a state qa , and then, since s is winning from q it is also
from qa , but in at most n steps. So we can apply the induction hypothesis and conclude
that q ∈ preAC

(Wn).
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By definition of the outcome, uncontrollable, non-ineluctable actions always appear
in the outcome of s from q and, with the same reasoning, they all lead to states in Wn.
So q �∈ pre

A�
U

(Wn). And finally q ∈ Wn+1.

– or there is no controllable action in s(q) but there is at least an ineluctable uncontrol-
lable action x possible from q. So x appears in the outcome of s from q and, as before,
q ∈ preA�

U
(Wn). Similarly all possible uncontrollable actions appear in the outcome

(since the strategy must be to wait) and, again as before, they therefore all lead to Wn.
Consequently, q ∈ Wn+1.

From Lemmas 2 and 3, we can deduce the following two results:

Theorem 1 (Completeness and Soundness) q ∈ W if and only if q is winning.

Proof If q is winning then there is a strategy from q that permits to win in a finite number
of steps. So, by Lemma 3, q ∈ Wn for some n. Reciprocally, if q ∈ W , it is inWn for some
n and, by Lemma 2, it is winning.

Theorem 2 (Memoryless strategies) If the game is winning then it is winning with a
memoryless strategy.

Proof If the game is winning then its initial state q0 is winning with a strategy that permits
to win in a finite number of steps then, by Lemma 3, q0 is in Wn for some n and, by
Lemma 2, there is therefore a winning memoryless strategy from q0.

The proof of Lemma 2 shows how one can effectively build a memoryless winning strat-
egy when the game is winning: at each iteration, each new state added to W has either at
least one controllable or one uncontrollable ineluctable transition to a state of W that was
added in a previous iteration. The strategy can be the set (or any of its subsets) of those
controllable actions. Those controllable actions are played at time 0 in the proof to keep it
simple, but it is clear that if no delayable action toW is possible, they can also be played at
time 0.

It is clear that this strategy also ensures that the goal states are reached in the minimal
number of steps possible.

Also, note that as always for reachability games, the canonical strategy that would always
allow moving to any state in W is not winning in general since it might allow loops within
W , and thus infinite runs never reaching to goal states.

Fig. 9 A reachability game. The
objective is to reach the state G
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Fig. 10 All the states are safe but the games are not winning

5.2 Reachability game example

Let us consider the reachability game G = (Q, q0, AC,AU , A�
U , A�

U , δ) of Fig. 9 where
the objective is to reach the state G: Goal = {G}. By applying the backward fixed-point
Algorithm 1:W0 = Goal andWn+1 = Wn ∪ π(Wn), we obtain successively:

W0 = {G}, π(W0) = {q4},W1 = {G, q4}, π(W1) = {q3, q4},
W2 = {G, q3, q4}, π(W2) = {q2, q3, q4},W3 = {G, q2, q3, q4},
π(W3) = {q0, q2, q3, q4},W4 = {G, q0, q2, q3, q4}, π(W4) = {q0, q2, q3, q4}
Awinning memoryless strategy is s(q0) = {〈c1, 0〉}, s(q3) = {〈c2, 0〉}, s(q4) = {〈c3, 0+

0〉} and s(q1) = s(q2) = s(G) = ∅.

6 Safety game

A safety objective for the controller is to force the game to stay in a specified set of states,
or equivalently, to avoid a set of states.

Definition 7 (Safety objective) Let G = (Q, q0, AC,AU ,A�
U ,A�

U , δ) be a game structure
and Safe ⊆ Q a set of safe states. The safety objective for Safe is the set of all infinite
maximal runs r of G such that States(r) ⊆ Safe.

Note that we exclude finite maximal runs from the objective because we do not want the
controller to win by deadlocking or by reaching an uncontrollable livelock i.e. a set of states
with no outgoing controllable transition. It means that when the environment decides not
to play, the controller must be able to move. Hence, the safety games of Fig. 10 where all
the states are in the set of safe states, are losing. Indeed, for the game of Fig. 10a, we have
q0 �∈ π({q0}) and for the games of Fig. 10b and c, we have q1 �∈ π({q0, q1, q2}) meaning
that the environment can block in q1 (by not playing u1 since it is not ineluctable) and to
avoid q1, the controller must block in q0. A contrario, the games of Fig. 11 are winning.

Fig. 11 All the states are safe
and the games are winning
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6.1 Computation of the strategy

The strategy is computed from the set of winning states. A state is winning for the controller
if it is possible to force the game to stay in Safe.

Given our new definition of π , the set of winning states for the controller is computed
using the following classic backward fixed-point Algorithm 2: W0 = Safe and Wn+1 =
Wn ∩ π(Wn).

When it exists, the final fixed-point set is notedW .

Like in Section 5, we can prove the soundness and completeness of Algorithm 2, by
proving the following two lemmas. The proofs are very similar to those of Section 5 and are
therefore omitted.

Lemma 4 If q ∈ Wn then there exists a memoryless strategy s such that for any prefix r of
length n of a run in MaxOutcome(q, s), we have States(r) ⊆ Safe.

Lemma 5 If there exists a strategy s and a run r such that for any prefix r ′ of length n of a
run in MaxOutcome(q, s), we have States(r ′) ⊆ Safe, then Last(r) ∈ Wn.

From those two lemmas, the main results follow:

Theorem 3 (Completeness and Soundness) q ∈ W if and only if q is winning.

Proof If q is winning then there is a strategy s from q such that prefixes r of any length of
runs in MaxOutcome(q, s) are such that States(r) ⊆ Safe. So, by Lemma 3, q ∈ Wn for all
n and, in particular, q ∈ W . Reciprocally, if q ∈ W , let n be such that W = Wn, then for
all m ≥ n, q ∈ Wn. So for all m ≥ n, there is a memoryless strategy from q that stays in
Safe for at least m steps. Since there is only a finite number of states and of actions, there
is only a finite number of memoryless strategies on the game structure. So there is one that
is winning for an infinity of m ≥ n, which implies that no prefix of the maximal runs in its
outcome ever goes out of Safe, and therefore that strategy is winning.

Theorem 4 (Memoryless strategies) If the game is winning, then it is winning with a
memoryless strategy.

For safety games, and following the previous results, it is clear that moving to any win-
ning state is always a winning strategy for the controller. We define a canonical memoryless
strategy ss : W → 2(AC×�) that does exactly this:
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Fig. 12 A winning safety game.
The objective is to avoid the state
B
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Let ss(q) = {〈a, d〉|a ∈ AC, q
a→ q ′ ⇒ q ′ ∈ W}, with d = 0 if ∃a′ ∈ A�

U , q ′′ �∈ W
and d = 0 + 0 otherwise.

Permissive strategies are a key notion in supervisory control (Ramadge and Wonham
1987). In reactive synthesis, permissiveness is measured in terms of the set of behaviors
allowed by the strategy (Bernet et al. 2002). Hence most permissive strategies do not need
to exist, depending on the type of winning objectives.

Theorem 5 Strategy ss is the most permissive winning strategy for the safety objective Safe,
i.e, for all winning strategies s′, Outcome(q0, s′) ⊆ Outcome(q0, ss).

Proof Ab absurdo. Assume that ss is not the most permissive winning strategy. Then there
exists a winning strategy s′ and a run in Outcome(q0, s′) \ Outcome(q0, ss). Let r be the
longest prefix of that run that is in Outcome(q0, ss). Let q = Last(r). Then we have, for

some action a, q
〈a,d〉→ q ∈ Outcome(s′, q) and q

〈a,d〉→ q ′ �∈ Outcome(ss, q).
We must have q ′ ∈ W or s′ cannot be winning because of Theorem 3. Then, by definition

of ss , it is not possible that a ∈ AC , so it must be the case that a ∈ AU . And, by definition
of Outcome, the only possibility is that a ∈ AU , d = 0 + 0, there is an action b ∈ AC ,
such that 〈b, 0〉 ∈ ss(r), and there is no such action in s′(r). This in turn implies that there

is a third action c ∈ A�
U and a state q ′′ such that

〈c,0+0〉
q → q ′′ and q ′′ �∈ W . Since there is no

immediate controllable action in s′(r) then clearly
〈c,0+0〉
r → q ′′ ∈ Outcome(q0, s′), which, by

Theorem 3, contradicts the fact that s′ is winning.

6.2 Safety game example

Let us consider the safety game G = (Q, q0, AC, AU , A�
U , A�

U , δ) of Fig. 12 where the
objective is to avoid the state B. Hence Safe = {q0, q1, q2} is the set of safe states.

By applying the backward fixed-point Algorithm 2: W0 = Safe and Wn+1 = Wn ∩
π(Wn), we obtain successively:

W0 = {q0, q1, q2}, π(W0) = {q0, q1},W1 = {q0, q1}, π(W1) = {q0, q1}.
The most permissive memoryless strategy is s(q0) = ∅ and s(q1) = {〈c, 0〉}.

7 Safe reachability

From a practical point of view, reachability and safety must often be carried out jointly. The
goal is to reach an objective state while avoiding the states which are not safe.
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Definition 8 (Safe reachability objective) Let G = (Q, q0, AC,AU ,A�
U ,A�

U , δ) be a
game structure, and Goal,Safe ⊆ Q respectively sets of goal and safe states. The safe
reachability winning condition (or objective) for Goal and Safe is the set of runs r that are
maximal inR and such that States(r) ∩ Goal �= ∅ and States(r) ⊆ Safe.

It is not enough to apply successively the computation of the winning states for the
reachability game then for the safety game because if the strategy for reachability consists
in going through states which are not sure, these states will be removed by the safety game
and the objective state will no longer be reachable. Hence, for the game of Fig. 13, without
considering that B should be avoided, all the states are winning for the reachability game.
So a strategy to reach the state G consists in making c1 then c2 then c3 but the safety game
then withdraws the state B and the system blocks in the state q1.

Similarly, if we first apply the safety game, the strategy can consist in waiting for an
ineluctable action from a state which was safe if it is left immediately as illustrated in
Fig. 13. If we successively apply the computation of the winning states for the safety game
and then for the reachability game, we first obtain that the safety game removes the state B.
Then, a reachability game strategy consists in playing c4 and then waiting for the occurrence
of u2 while this wait can allow the occurrence of u1 which would lead to B.

It is thus necessary to propose a fixed point dedicated to these kinds of properties.
The set of winning states for a safe reachability game can thus be calculated using the

backward fixed-point Algorithm 3:
W0 = Goal ∩ Safe andWn+1 = Wn ∪ π(Wn) ∩ Safe.
When it exists, the final fixed-point set is notedW .

The application of this algorithm on the game of Fig. 13 will successively give: W0 =
{G} et W1 = {G, q0}. W2 = {G, q0, q3}. W = W3 = {G, q0, q3, q2}. The strategy to reach

Fig. 13 The objective is to reach
the state G while avoiding the
state B
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the state G while avoiding the state B therefore consists in waiting in the state q0 for the
occurrence of the ineluctable action u4.

8 Game Petri Nets

We now extend the previous results to Game Petri Nets, which can express concur-
rency between transitions and logical time and where an avoidable transition can lose its
avoidability by the elapsing of time.

8.1 Petri Nets

Definition 9 (Petri Net) A Petri Net is a 4-tuple N = (P, T , P re, Post, m0) where P is
a finite set of places, T is a finite set of transitions, Pre and Post are matrices of N|P |×|T |
called the backward and forward incidence matrices, such that Pre(p, t) = n with n > 0
when there is an arc from place p to transition t with weight n and Post (p, t) = n with
n > 0 when there is an arc from transition t to place p with weight n, and the vector
m0 ∈ N

|P | is called the initial marking.

Given a Petri NetN = (P, T , P re, Post, m0), we denote Pre(., t) (also written pre(t))
as the vector (P re(p1, t), P re(p2, t), ..., P re(p|P |, t)) i.e. the t th column of the matrix
Pre. The same notation is used for Post (., t) (or post (t)).

Definition 10 (Marking) A marking of a Petri NetN = (P, T , P re, Post, m0) is a vector
m ∈ N

|P |.

If m ∈ N
|P | is a marking, m(pi) is the number of tokens in place pi and we have:

m ≤ m′ ⇔ ∀p ∈ P,m(p) ≤ m′(p)

An example of Petri Net is given in Fig. 14.

Operational Semantics Given a Petri Net N , a transition t ∈ T is said enabled by a
marking m when m ≥ pre(t).
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0 is also noted by the set { 1 1}

=
1 1
0 2
0 0

=
0 0
3 0
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Fig. 14 A Petri Net
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Definition 11 (PN Semantics) The semantics of PN is a transition system NT =
(Q, q0,→) where, Q = N

|P |, q0 = m0, →∈ Q × T × Q such that,

m
ti→ m′ ⇔

{
m ≥ pre(ti)

m′ = m − pre(ti) + post (ti)

This relation holds for sequences of transitions:

– m
w→ m′ if w is the empty word and m = m′

– m
wt→ m′ if ∃m′′,m w→ m′′ ∧ m′′ t→ m′ where w ∈ T ∗ and t ∈ T .

Given a marking m, reachability asks if it is reachable from m0. Formally, N reaches m

iff there exists a sequence w such that m0
w→ m. We denoteR(N ) the set (possibly infinite)

of reachable markings ofN .
A place in a Petri net is called k-bounded if it does not contain more than k tokens in all

reachable markings, including the initial marking. It is bounded if it is k-bounded for some
k. A Petri net is called k-bounded or bounded when all of its places are.

8.2 Game Petri Nets with logical time

8.2.1 Definitions

We first extend Petri Nets with avoidable and ineluctable transitions (PNAE).

Definition 12 (PNAE) A Petri Net with avoidable and ineluctable transitions (PNAE) is a
tupleNae = (P, T , T �, T �, P re, Post, m0) whereN = (P, T , P re, Post, m0) is a Petri
Net and T � ⊆ T and T � ⊆ T are the subsets of avoidable and ineluctable transitions,
respectively.

Let C and U be the two players respectively called controller and environment.

Definition 13 (Game Petri Net) A Game Petri Net GN is a tuple GN = (P, TC, TU ,

T �
U , T �

U , P re, Post, m0) where T = TU ∪ TC , TU ∩ TC = ∅, T �
U ⊆ TU , T �

U ⊆ TU and
N = (P, T , T �

U , T �
U , P re, Post, m0) is a PNAE called the underlying Petri Net of GN .

8.2.2 Some intuitions

We will define the semantics of Game Petri Net by an associated game structure. However,
Petri nets are a model for concurrency and in order to capture its semantics in a sequen-
tial game structure, we have to take into account that an avoidable transition can lose its
avoidability by the elapsing of time.

Consider the game Petri Net of Fig. 15a, t1 and t2 are avoidable, meaning that they are
non-immediate. Hence the firing of t2 implies that time has elapsed since the initial marking
and the remaining transition t1 can now fire immediately and is no more avoidable. On the
contrary, in Fig. 15b, after the firing of t2, the transition t1 is newly enabled and is then
avoidable in the marking {p1, p4}.

Time elapsing is less obvious when we consider the concurrency between an avoidable
transition and an ineluctable transition. Let us consider the game Petri Net of Fig. 16a. The
firing of the ineluctable transition t2 can be immediate or not. Then after the firing of t2,
the transition t1 may be still avoidable. However, consider that the strategy of the controller
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Fig. 15 Time elapsing when firing avoidable transitions in Game Petri Net

is to do nothing in the marking {p1, p2} in order to wait for the firing of t2, leading to the
marking {p1, p4}. This waiting step can take some non-null time, and then it is consistent to
consider that the transition t1 is no more avoidable for the controller in the marking {p1, p4}.

On the contrary, for the Game Petri Net of Fig. 16b (as for Fig. 15b), the transition t1 is
newly enabled by the firing of t2 and is then also avoidable in the marking {p1, p4}.

8.2.3 Semantics of PNAE

The set of enabled transitions for a marking M is enabled(M) = {t | M ≥ pre(t)}

Newly enabled transitions Classically and as defined for time Petri Nets (Berthomieu and
Diaz 1991), a transition t is newly enabled after firing ti from marking M if it is enabled by
M ′ = M − pre(ti) + post (ti) but not by M − pre(ti). Also a transition is always newly
enabled by its own firing.

Formally, the set of transitions that are newly enabled by the firing of ti frommarkingM is:

↑enabled(M, ti) = {t | (M − pre(ti) + post (ti) ≥ pre(tk))∧
((M − pre(ti) < pre(t)) ∨ (t = ti ))}

The set of avoidable newly enabled transitions is then:

↑enabled�(M, ti) =↑enabled(M, ti) ∩ T �

State of a PNAE Given a PNAE N = (P, T , T �, T �, P re, Post, m0), a state of N is a
pair (m, s�) ∈ N

|P | × T � where m is a marking and s� is the set of transitions which are
avoidable from this state i.e. the avoidable transitions that have not lost their avoidability.
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Fig. 16 Time elapsing when firing ineluctable transitions in Game Petri Nets
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Definition 14 (PNAE Semantics) The semantics of a PNAEN is a transition systemNT =
(Q, q0,→) where, Q = N

|P |×T �, q0 = (m0, {t ∈ T �|m0 ≥ pre(t)} and →∈ Q×T ×Q

such that,

(m, s�)
ti→ (m′, s′�) ⇔

⎧⎪⎪⎨
⎪⎪⎩

m ≥ pre(ti)

m′ = m − pre(ti) + post (ti)

s′� =↑enabled�(M, ti) if ti ∈ T � ∪ T � and(
s� ∩ enabled(M ′)

)∪ ↑enabled�(M, ti) otherwise

R(N ) is the set of reachable marking of N . Moreover, N reaches a state q = (m, s�)

iff there exists a sequencew such that q0
w→ q. We denoteRs(N ) the set of reachable states

of N . Since the set T � is finite, there is a finite number of subsets s� and then Rs(N ) is
finite iffR(N ) is finite i.e.N is bounded.

8.2.4 Game structure of Game Petri Net

From a Game Petri Net, we can derive an associated game structure defined as follows:

Definition 15 (Game structure of Game Petri Net) Let GN = (P, TC, TU , T �
U , T �

U ,

P re, Post, m0), be a Game Petri Nets,N be its underlying Petri Net andNT = (Q, q0,→
) its semantics.

The game structure of GN is G = (Q, q0, AC,AU ,A�
U ,A�

U , δ) such that:

• Q = Rs(N ) is a set of reachable states ofN
• AC = TC

• A�
U = T �

U

• for each avoidable action a ∈ A�
U , we create a copy a. The set of those copies is

AU� = {a | a ∈ A�
U }. We further define the subset of those copies that should be

ineluctable: A�
U� = {a | a ∈ A�

U ∩ A�
U };

• A�
U = T �

U ∪ A�
U�

• AU = A�
U ∪ A�

U ∪ AU�
• For all q = (m, s�) ∈ Q and q ′ = (m′, s′�) ∈ Q, we have (q, t, q ′) ∈ δ if

– t ∈ AC ∪ A�
U and q

t→ q ′

– t ∈ A�
U ∩ s� and q

t→ q ′

– t ∈ AU� and ∃t ′ ∈ A�
U such that t ′ �∈ s� and q

t ′→ q ′

If N is bounded, the game structure G associated with GN is finite and we can now
define reachability objective, safety objective and compute strategies for GN by using G as
in Sections 4, 5, 6 and 7.

8.2.5 Example

Let us consider the game Petri net of Fig. 17. Its associated game structure is given in
Fig. 18. In state q1, the transition t2 is no longer avoidable after the firing of the transition
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Fig. 17 A Game Petri Net
Example. The goal is to reach a
state with a token in p4
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t1 and its non-avoidable copy t2 is possible. Then the only strategy to reach q3 consists in
firing t4 immediately in the initial state q0.

8.3 Game Petri Nets for unbounded nets

If the underlying Petri Net of a Game Petri Nets is not bounded, the associated game struc-
ture, as defined in Definition 15 is not finite. However, if the safety objective includes the
k-boundedness of the net, we only need the k-bounded part of the game structure to com-
pute the strategy. Actually, we do not need the successor of a state with a marking such that
a place is not k-bounded for this marking.

Recall that Rs(N ) is the set of reachable states of a PNAE N . Let Rk
s (N ) = {q =

(m, s�) ∈ Rs(N ) | ∀p ∈ P,m(p) ≤ k} the subset of k-bounded reachable states ofN .
For a Game Petri Net with unbounded underlying net and a k-boundedness safety objec-

tive, we can define a k-Game structure by the projection of the infinite game structure over
a finite set of markings Q as follows.

Definition 16 (k-Game structure of a Game Petri Net with unbounded underlying
net and k-boundedness objective) Let GN = (P, TC, TU , T �

U , T �
U , P re, Post, m0), be a

Game Petri Net,N be its underlying Petri Net andNT = (Q, q0,→) its semantics.
Let G = (Q, q0, AC,AU ,A�

U ,A�
U , δ) the game structure of GN as defined in Defini-

tion 15.
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The objective is to reach the state 3

Fig. 18 Game structure associated with the Game PN of Fig. 17
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Fig. 19 A Game Petri Net with unbounded underlying PN (place P3 is not bounded)

For a k-boundedness safety objective, the k-Game structure of GN is Gk = (Qk, q0,

AC,AU ,A�
U ,A�

U , δk) where:

– Qk = Rk
s (N ) ∪ {q ′ | q ∈ Rk

s (N ), ∃t ∈ TU ∪ TCand q
t→ q ′}

– ∀q ∈ AU ∪ AC , ∀q ∈ Qk, ∀q ′ ∈ Qk , (q, t, q ′) ∈ δk iff (q, t, q ′) ∈ δ

Note that, for a Petri netN whose weights are equal to 1, we have Qk = Rk+1
s (N ).

8.4 Example

Let us consider the game Petri net of Fig. 19 where the place p3 is not bounded. Its associ-
ated k-Game structure for a 2-bounded safety objective is given in Fig. 20. The successor of

the state q6 =
((

0
0
3

)
,∅

)
is not in this k-game structure since its marking is not 2-bounded.

Note that the set AU� is empty since in state q1, the transition t2 is still avoidable because
it is newly enabled by its own firing.

Fig. 20 k-Game structure associated with the Game PN of Fig. 19 for a 2-bounded safety objective
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A first strategy consists in firing t1 immediately and waiting in the state q2 until the firing
of t2 and then firing t4 in q3. A second strategy consists in waiting in the state q0 until the
firing of t2. In q1, t2 is avoidable then t1 can be fired immediately.

9 Concurrent composition of game structures

9.1 Definition and semantics

It is convenient to describe a system as a parallel composition of automata. In Section 2 only
monolithic automata are considered. We will consider concurrent compositions of game
structures as a particular case of game Petri nets.

It is well-known that an automaton is a particular case of ordinary Petri Net with one
token in the input place and where every transition has exactly one input place and one
output place. This Petri is either labeled or has equivalently a dedicated transition per occur-
rence of a given action of the initial automaton (the kth occurrence of action a is, for
example, called ak). This class of Petri Nets is called state graph. When there is only one
initial token, it leads to a Petri Net that contains only one token at any time.

To define the parallel composition of game structures, we use the classical composition
notion based on a synchronization function à la Arnold-Nivat.

Definition 17 (synchronized composition of game structures) Let G1, . . . , Gn be n game
structure with Gi = (

Qi, qi
0, AC,AU ,A�

U ,A�
U ,→i

)
. A synchronization function f is a

partial function from (AC ∪AU ∪{•})n → AC ∪AU where • is a special symbol used when
an automaton is not involved in a step of the global system. Note that f is a synchronization
function with renaming. We denote by (G1| . . . |Gn)f the parallel composition of the Gi’s
w.r.t. f .

(Gi, ai) is said to be not involved in the partial synchronization function f if
f (a1, . . . , ai , . . . , an) = a ⇒ ∀x �= i, ax = • and a = ai .

Definition 18 (Semantics of the synchronized composition of game structures) The seman-
tics of the composition (G1| . . . |Gn)f is defined by its translation into a Game Petri Net1

as follows:

– each state q ∈ Q1 ∪ Q2 . . . ∪ Gn is translated into a place with the same name q ∈ P .
Hence a state of the composition is a marking of its corresponding GPN that we denote
either by a vector or by the set of places with one token.

– If (Gi, ai) is not involved in f , then for all occurence ok = (q, ai, q
′) ∈ δi in Gi , we

add a transition ak
i such that Pre(qi, a

k
i ) = Post (q ′

i , a
k
i ) = 1. Moreover, if ai ∈ Aχ ,

with χ ∈ {C,U} then ak
i ∈ Tχ and if ai ∈ A

χ ′
U with χ ′ ∈ {�,�} then ak

i ∈ T
χ ′
U .

– If f (a1, . . . , an) = a, then for all ok = (q1, a1, q
′
1)(q2, a2, q

′
2) . . . (qn, an, q

′
n) ∈ δ1 ×

δ2 · · · × δn with ai = • ⇒ qi = q ′
i , we add a transition ak in T such that ∀i ∈ [1, n],

ai �= • ⇔ Pre(qi, a
k) = Post (q ′

i , a
k) = 1. Moreover, if a ∈ Aχ , with χ ∈ {C,U}

then ak ∈ Tχ and if a ∈ A
χ ′
U with χ ′ ∈ {�,�} then ak ∈ T

χ ′
U

1 For this construction, ∀p ∈ P and ∀t ∈ T , Pre(p, t) = Post (p, t) = 0 except if it is explicitly set to 1.
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Fig. 21 Game structures G1 and G2 and the Game PN GN of the composition (G1|G2)f

We illustrate this translation with the example of Fig. 21 showing the composition of
two game structures G1 and G2 synchronized by the function f . The synchronization
f (u1, u2) = u1 means that actions u1 and u2 are synchronized and the result is action u1
that is avoidable but non-ineluctable. We could have chosen that the result of the synchro-
nization is the ineluctable action u2 or another action u3 that would be both avoidable and
ineluctable or another action u4 that would be neither avoidable nor ineluctable. The other
actions are (implicitly and by default) not synchronized that can be explicitly specified for
example for the action c1 by f (c1, •) = f (•, c1) = c1.

This kind of synchronization function is very powerful and allows us to model broad-
cast or point-to-point synchronization between any number of game structures. Figure 22
shows the synchronization of 3 game structures where actions with the same name are
synchronized and keep their nature.

Because of non-determinism (in a single automaton or because of synchronizations),
there can be several occurrences of an action in the result of a composition. Since we are
considering unlabelled Petri nets, we have to explicitly distinguish each of the k occurrences
of an action a. Hence k copies of each action a are created. For example, in Fig. 21, action
c1 has two copies c11 and c21 and, in Fig. 22, action u2 has two copies u12 and u22.

9.2 Computation of the strategy

The concurrent and synchronized composition of Game Structures is a Game PN whose
semantics is given in Section 8 as a monolithic game structure. Hence, the concurrent and
synchronized composition of Game Structures is a game structure as illustrated in Fig. 23
for the composition (G1|G2|G3)f given in Fig. 22. Since, by construction, the Game Petri
Net of Fig. 22 is safe, in order to avoid overloading Fig. 23, we represent the marking by a
column of marked places.

At this step we can equivalently remove the exponents of the action names. If we consider
that the safety objective of the game consists in avoiding the state q10, the most permissive
memoryless strategy is:

s
((

q1
q4
q8

))
= {〈c1, 0 + 0〉}, s

((
q2
q6
q8

))
= {〈c2, 0 + 0〉}, s

((
q2
q4
q9

))
= {〈c3, 0〉},

s
((

q2
q5
q9

))
= s

((
q2
q6
q9

))
= {〈c3, 0 + 0〉} and is empty for other states.
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Fig. 22 Game structures G1, G2 and G3 and the Game PN GN of the composition (G1|G2|G3)f

10 Complexity and Implementation

While the algorithms we give are well-suited for pedagogical exposition and proofs, and
possibly for an implementation using symbolic decision diagrams-based representations
of sets of states, they are not optimal for an explicit enumeration of states. Nonetheless,
plugging our definition of the controllable predecessors operator π into the untimed algo-
rithm of Cassez et al. (2005), we can compute the winning states for reachability, or their
complement for safety, in time linear with respect to the number of edges in the automaton.

Fig. 23 Monolithic Game structure associated with the composition (G1|G2|G3)f of Fig. 22

210 Discrete Event Dynamic Systems (2021) 31:185–217



Table 1 Comparison of computation times and memory consumption between the controller synthesis on
Time Petri Nets and Game Petri Nets for the example of a level crossing with 2 to 4 tracks of independent
trains

Number of trains Time Petri Net Game Petri Net

Execution time (s) Memory (Mb) Execution time (s) Memory (Mb)

2 0.2 5.3 < 0.1 0.3

3 109.4 735.4 < 0.1 0.9

4 > 2h (killed) > 4Gb 0.1 4.2

The computer used for these measurements is a MacBook Pro with a 2.6 GHz Intel Core i7 processor and 16
GB of memory

Based on this latter algorithm, we have implemented the computation of the winning
states and the synthesis of the strategy in our tool ROMÉO (Lime et al. 2009). With its textual
input language, ROMÉO handles a model called Clock Transition Systems (CTS) (Jard et al.
2012) which encompasses both finite automata and Petri Nets. We have extended CTS with
controllable, uncontrollable, avoidable, and ineluctable actions in order to model logical
time games. The CTS can be generated from the ROMÉO GUI.

In order to compare the two approaches on a concrete case, a model using Time Petri
Nets, more precisely a Time Petri Net control model, and a model using Game Petri Nets
have been implemented and compared with respect to memory consumption and execution
time. We use a classical case-study presented in Berthomieu and Vernadat (2003). It is a
level crossing model with 2 to 4 tracks of independent trains in order to obtain problems of
increasing complexity. We use the Time Petri Net models of the trains and the gate given
in Berthomieu and Vernadat (2003). The only two controllable actions are down and up

corresponding to the order from the controller to respectively lower and raise the gate. For
the non-quantitative model (Game Petri Net), we consider that the lowering of the gate is
instantaneous (i.e. merged with down) and the raising is ineluctable after the action up.
Moreover, it is ineluctable that the train will be far after being on the crossing. Our goal is
to synthesize the gate controller that ensures that there are no trains on the crossing without
the barriers being closed.

Controller synthesis on Time Petri Net is computed by using the method proposed in
Gardey et al. (2006) that extends to Time Petri Nets the timed game algorithm of Cassez
et al. (2005). It is implemented also in the tool ROMÉO. The results are presented in Table 1.

The strategy obtained with Game Petri Nets consists in lowering the gate as soon as a
train approaches whereas the strategy for the quantitative Time model allows to wait a little
before lowering the gate. In this sense this strategy is more precise. However, we can see in
Table 1 that the computation times and memory consumption are much more important.

Finally, quantitative time data are often not available as for the following case study.

11 Case study

Device drivers synthesis is a good example of logical time game controllers synthesis. Here
the environment is i) the hardware device along with its connections to external systems:
communication networks, analog signals, etc and ii) the application using the driver. In the
former case, uncontrollable actions are interrupts that are triggered to signal, for instance,
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the availability of data in a hardware buffer. In the latter case, they are requests made by
the application. In both cases, exact timings are unknown since they depend on the actual
hardware and on the execution time of the actual binary program, which is not available
yet. However, some time-related rules are known, like the inter-arrival time of messages
on a communication network or the time between two interrupts of a timer, for instance.
So, when reacting to an uncontrollable action, the controller has time to perform its task
before the arrival of the next same uncontrollable action. In such a case, the second action
is avoidable.

11.1 CAN controller driver modeling

The device chosen for the case study is the Microchip CAN controller available in
PIC18Cxx8 microcontroller family (Microchip 2000). This CAN controller features two
receive buffers, RXB0 and RXB1 and three transmit buffers, TXB0, TXB1, and TXB2.
Each of these buffers can hold a complete CANmessage. For the sake of simplicity, we con-
sider only two transmit buffers, which are called TXB0 and TXB1, in this case study. The
device is configured so that i) when a message is received from the bus it is put in one of the
receive buffers and an interrupt is asserted. ii) when a message is written to a transmit buffer
the device sends it as soon as possible and asserts an interrupts to notify the corresponding
TXB has just been emptied.

The model of the driver is presented in Fig. 24. We have added two boolean variables:
PW0 (PendingWrite in TXB0) and PW1 (PendingWrite in TXB1) to simplify the drawing
of the model. The driver is cut into two parts: the part that is executed in user mode, rep-
resented by white places, and the part that is executed in the interrupt handler represented
by light gray places. A black bad place that has to be avoided by the controller is added.
In addition, the place corresponding to the application environment is hatched in grey and
those corresponding to the hardware environment are filled with dark grey.

Starting from the no init place the device can be configured as described above and the
driver waits requests in the wait place. From there two uncontrollable transitions, corre-
sponding to one of the write requests from the application (write TXB0 or write TXB1)
may occur and the corresponding boolean variable is set accordingly. Two other uncontrol-
lable transitions correspond to the arrival of a message in one of the receive buffer (can
IT RXB0 or can IT RXB1). From the write place we find again the two uncontrollable
transitions corresponding to the arrival of a message and also two ineluctable uncontrollable
transitions which are fired by the device when TXB0 or TXB1 is emptied. Places whose
name begins with event represent the entry point(s) of the device interrupt handler(s). From
there the controller can fire the transitions corresponding to the processing of the event:
read the receive buffer which has been filled (read RBX0, read RBX1, read RBX0 pw
and read RBX1 pw) or acknowledge the emptying of one of the transmit buffers (ack
IT RBX0, ack IT RBX1, ack IT RBX0 pw and ack IT RBX1 pw).

During the execution of the interrupt handler (light gray places) uncontrollable actions
are avoidable because i) device interrupts are masked ii) the controller has enough time to
play its actions before the occurence of a new interrupt.

The receiving part of this system, whose name starts with event rxb and which requires
avoidable transitions, could be modeled with Time Petri Nets. It would indeed be enough
to place on the transitions going to the write and wait places the time guards [0, 0] and on
those leading to the BAD state, the time guards ]0, ∞[. But transitions from write to places
whose name starts with event txb require the notion of ineluctability. Indeed, the date on
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which these transitions are fired is not known because it depends on the messages sent by
the other nodes which transit on the CAN network. Here the use of a Time Petri Net would
force to invent an arbitrary date in order to allow modeling.

Fig. 24 PIC18Cxx8 CAN controller driver model. Guards are noted with a ‘?’ and updates are noted within
parenthesis with a ←
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Table 2 Memoryless strategy

State Variables Play Next

shutd – – shutd

wait �played & �emptying buffer 〈sleep, 0 + 0〉 shutd

no init – 〈init, 0 + 0〉 wait

wait played — emptying buffer – wait

write – – write

event txb0 emptying buffer & PW1 〈ack it TXB0 pw, 0〉 write

event txb0 emptying buffer & �PW1 〈ack it TXB0, 0〉 wait

event txb1 emptying buffer & PW0 〈ack it TXB1 pw, 0〉 write

event txb1 emptying buffer & �PW0 〈ack it TXB1, 0〉 wait

event rxb0 w – 〈read RXB0 pw, 0〉 write

event rxb1 w – 〈read RXB1 pw, 0〉 write

event rxb0 – 〈read RXB0, 0〉 wait

event rxb1 – 〈read RXB1, 0〉 wait

11.2 Winning strategy

We used our tool ROMÉO (Lime et al. 2009) for the modeling of this case study and to
compute the winning states and the synthesis of the strategy.2 We first verify that the safety
property, where BAD is never reached, holds. But for safety ROMÉO actually computes the
complement of the fixed-point given in Section 6 and therefore computes a strategy for the
environment to falsify the property. Of course, it does not find any. So in order to get the
strategy for the controller, we also verify a reachability objective.

To express this objective, we need to add two boolean variables called played, which is
set when the environment fires a transition corresponding to a message received in RXB0
or RXB1, and emptying buffer which is set when the environment fires a transition corre-
sponding to the emptying of TXB0 or TXB1. That way staying in place wait or write and
returning to one of these states after the environment has played can be distinguished. An
additional place is also added, shutd. The shutd place models the fact that the system may
be switched off. The wake transition is the switching on of the system and the sleep transi-
tion is the switching off of the system. If the environment decides not to fire any transition,
shutd will be reachable eventually. The goal of the controller is to reach one of the following
states:

– shutd;
– wait with played = true;
– (write or wait) with emptying buffer = true.

ROMÉO finds and computes the winning strategy. Table 2 summarises this strategy.
Starting from no init the controller must play init to reach a winning state. In wait, if

the environment plays can IT RXB0 or can IT RXB1, played is set and the controller has
to play immediately read RXB0 or read RXB1, respectively, to go back to wait. The envi-
ronment may play write TXB0or write TXB1to go into write. From writethe environment

2The model and the property to generate the strategy can be downloaded from https://github.com/jlbirccyn/
JDEDS-Model
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may choose to play write TXB0 w or write TXB1 w to fill the second transmit buffer. Or
it can play can IT RXB0 pw or can IT RXB1 pw. As a result played is set. In this case
the controller has to play immediately read RXB0 pw or read RXB1 pw, respectively, to
go back to write. If the environment decides not to play uncontrollable actions, inevitably,
according to which transmit buffer is full, can it TXB0 or can it TXB1 happens, empty-
ing buffer is set, and the controller returns immediately to state wait or write by playing
ack it TXB0 or ack it TXB0 pw or ack it TXB1 or ack it TXB1 pw according to the
state of the transmit buffers.

12 Conclusion

We first have presented an extension of finite automata with logical time. This exten-
sion introduces two new properties of uncontrollable actions that extend the model of the
environment:

– the delayed action cannot happen instantaneously so that the controller may preemp-
tively perform another action if needed.

– the ineluctable action is guaranteed to happen eventually, and the controller can hence
rely on it.

This model combines some of the expressiveness of timed games, with the simplicity of
finite automata. It allows an easier implementation of these models, more suitable to embed-
ded real-time systems. We have adapted the notion of control, reachability, and safety games
for this extension and defined and proved algorithms to solve these problems in the gen-
eral case. We have extended these results to Game Petri Nets which can express concurrent
behaviors and where an avoidable transition can lose its avoidability by the elapsing of time.

Finally, we have implemented the computation of the winning states and the synthesis of
the strategy in our tool ROMÉO.

Further work includes extending the approach to more complex control objectives, such
as Büchi conditions.
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