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Abstract In this article, we present an integrated manipu-
lation framework for a service robot, that allows to interact
with articulated objects at home environments through the
coupling of vision and force modalities. We consider a robot
which is observing simultaneously his hand and the object
to manipulate, by using an external camera (i.e. robot head).
Task-oriented grasping algorithms (Proc of IEEE Int Conf on
robotics and automation, pp 1794–1799, 2007) are used in
order to plan a suitable grasp on the object according to the
task to perform. A new vision/force coupling approach (Int
Conf on advanced robotics, 2007), based on external con-
trol, is used in order to, first, guide the robot hand towards
the grasp position and, second, perform the task taking into
account external forces. The coupling between these two
complementary sensor modalities provides the robot with
robustness against uncertainties in models and positioning. A
position-based visual servoing control law has been designed
in order to continuously align the robot hand with respect to
the object that is being manipulated, independently of cam-
era position. This allows to freely move the camera while the
task is being executed and makes this approach amenable to
be integrated in current humanoid robots without the need
of hand-eye calibration. Experimental results on a real robot
interacting with different kind of doors are presented.
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1 Introduction

Most of our physical interaction with the world is mediated
by the use of our hands. A domestic robot companion must be
able to reliably perform simple manipulation tasks in every-
day environments such as opening a door to enter another
room, or pulling a drawer open to take something out. Most
of today’s robots exhibiting such abilities do it in an ad-hoc
fashion and having little flexibility. See, for example, [3],
where the authors present a mobile manipulator for open-
ing doors without using force feedback. Instead, success in
manipulation relies on an accurate localization algorithm and
detailed models of the doors. This is also the case for sophis-
ticated humanoid robots in which the effort has been put
into locomotion, leaving manipulation unaddressed. See for
instance [4] in which a Kawada Industries HRP2 humanoid
robot is used for grasping ad-hoc cylinders by using its hands
as pincers; or [5] in which a Sony QRIO humanoid is used
which, even though it is endowed with 5-fingered hands, its
manipulative abilities are limited to grasp a ball or spongy
foam objects.

There is a need for fully autonomous robots that make use
of different and complementary sensor modalities to per-
form a great variety of tasks under all kinds of uncertainties.
In particular, vision and force are the most important sen-
sors for task execution. Whereas vision can guide the hand
towards the object and supervise the task, force feedback can
locally adapt the hand trajectory according to task forces.
When dealing with disparate sensors, a fundamental ques-
tion stands: how to effectively combine the measurements
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Fig. 1 Considered scenario

provided by these sensors? An approach of this problem is to
combine the measurements using multi-sensor fusion tech-
niques [6]. However, as pointed out by several researchers,
such method is not well adapted to vision and force sensors
since the data they provide measure fundamentally different
physical phenomena, while multi-sensory fusion is aimed in
extracting a single information from disparate sensor data.
Another approach to this problem is to combine visual and
force data at the control level.

Some researchers have addressed the problem of vision/
force control and two main approaches (impedance-based
and hybrid-based strategies) have been studied [7–10]. In
these approaches, the idea is merely to replace the classical
position controller [11] by a vision-based controller. Hybrid
control separates vision control and force control into two
separate control loops, that operate in orthogonal directions.
With this approach, it is not possible to control a direction
simultaneously in vision and force. With the impedance-
based control, the six degrees of freedom can be simulta-
neously vision- and force-controlled. However, coupling is
done at the control level and local minima can appear during
convergence.

In this article, we present a novel approach for sensor-
guided robotic task execution that is amenable to be inte-
grated in current mobile manipulators and humanoid
robots. We consider a robot which is observing simulta-
neously his hand and the object to manipulate, by using
an external camera (i.e. robot head, see Fig. 1). Task-
oriented grasping algorithms [1] are used in order to plan
a suitable grasp on the object according to the task to per-
form. A new vision/force coupling approach [2] is used in
order to, first, guide the robot hand towards the grasp position

and, second, perform the task taking into account external
forces.

The problem of hand/object alignment for grasping tasks
has been addressed by other authors. In [12], a visual servoing
framework for aligning the end-effector with an object was
presented. Instead of working in the euclidean space, visual
servoing was done on the projective space by doing projec-
tive reconstruction with a stereo camera, thus avoiding the
need for camera calibration. The desired gripper-to-object
relationship was learnt during an off-line procedure. In [13],
an external position-based visual servoing approach was used
on a humanoid robot in order to guide the hand towards the
object. Hand pose was estimated by a kalman filter taking as
input the stereo reconstruction of a set of LEDs attached on
the robot hand.

As in [13], we also adopt a position-based visual servo-
ing control law, because of the facilities that this approach
offers for task specification. Instead of using a stereo camera
and performing 3D reconstruction, we make use of a single
camera and follow the virtual visual servoing approach for
pose estimation [14]. The goal of the vision control loop is
to align the gripper with respect to some part of the object
(i.e., handle). As the pose of the gripper and the object is
estimated on-line, the relative position between both can be
computed at each iteration without the need of knowing the
position of the camera with respect to the robot base. There-
fore, the robot is still able to perform the task even in the
presence of some camera motion. Task execution is inde-
pendent of camera position. No extrinsic camera parameters
are needed, which makes the integration of this approach
into other robotic systems very easy, and opens the door to
best-view planning algorithms for head control. In addition,
instead of learning the grasp position during an offline stage
like in [12], we make use of a task-oriented grasp planning
algorithm [1] which autonomously computes which part of
the object should be grasped in order to perform a given task.
Finally, and in contrast with existing works, visual servoing
does not finish when the robot grasps the object. Instead,
a novel vision/force control framework is adopted in order
to perform a given task on the object. Thus, visual servo-
ing is not only used for hand-object alignment (reaching),
but also for task execution and supervision (interaction). Our
approach for vision/force coupling [2], based on the con-
cept of external control [15], does the coupling in sensor-
space, and not at the control level as classical impedance and
hybrid approaches do [7–10]. This allows to control vision
and force on all the degrees of freedom, whereas only the
vision control law is controlling the robot. Note that in imped-
ance and hybrid control, vision and force control outputs are
added at the lowest level, making it possible to reach local
minima when both vision and force control outputs are in
conflict.

In summary, the main contributions of this work are:
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– An external position-based visual servoing approach
for aligning object and gripper, independently of camera
motion, using virtual visual servoing pose estimation.

– A novel method for vision/force coupling where the force
control law modifies the visual reference, so that only the
vision control law is connected to the robot, thus avoiding
local minima.

– An integrated robotic manipulation system, using the
above concepts, able to robustly perform common daily
tasks by the coupling of visual and force feedback, after
the automatic planning of the grasp according to the
robot’s purpose.

In Sect. 2, we describe the concept of everyday tasks as
the kind of tasks that we want to perform with our service
robot. Section 3 introduces the theoretical framework of our
work, consisting of the task-oriented grasp planning and the
vision/force control scheme. In Sect. 4, the implementation
on a real robot is described, and experimental results are pre-
sented. Finally, some conclusions and future lines are out-
lined in Sect. 6.

2 Everyday tasks

In this section, the kind of tasks our service robot has to per-
form are described and modelled according to a well-known
task description formalism.

2.1 Considered tasks

We consider the general case of a mobile manipulator (or
humanoid) working in a home environment. We assume that
the robot is endowed with an object recognition module, so
that it is able to recognize the object to manipulate and to
retrieve its geometrical and structural model from a data-
base. The robot is able to move in front of the object by
using navigation capabilities such as mapping, localization,
obstacle avoidance, etc.

With “execution of everyday tasks”, we mean the robotic
manipulation of articulated objects that can be commonly
found in our everyday life, such as doors, drawers, windows,
etc. For this, we need a formalism that, first, allows us to
easily specify the tasks to the robot, and, second, allows the
robot to compliantly execute the tasks under uncertainties.
We make use of the task frame formalism (TFF), first devised
by Mason [16], and then reviewed in [17], because of its
suitability for all kinds of force-controlled actions. We con-
sider 1 DOF mechanisms such as revolute joints (turning a
knob, opening a door, etc.) and translational joints (opening
a drawer, pushing a button, etc.). As shown in [17], this kind
of tasks are well supported by the TFF. The programmer has
to choose a suitable task frame (TF) so that some directions

Fig. 2 Considered frames

are velocity-controlled and some others are force-controlled,
according to the natural constraints imposed by the environ-
ment (by the mechanism in our case).

2.2 Object and task modelization

Normally it is the programmer who specifies the TF in
advance according to the task [18]. In our case, the robot
chooses the most suitable TF autonomously by using a task-
oriented grasp planning algorithm [1] that needs as input
an object model including not only geometrical information,
but also kinematic information, or a description of the object
mechanism.

We describe an object as a set of different parts that are
assembled together. Each part is defined on its own refer-
ence frame, which is independent from the other parts. A set
of relations is defined between the parts, in terms of con-
strained and free degrees of freedom, i.e. a motion constraint
is defined with each frame. Therefore, each of the frames
defining the structure of the object can be used as the task
frame.

Figure 2 shows an example of a door representation. It
is composed of two parts: the door table, defined in frame
O-which is also the object reference frame- and the handle,
defined in frame H. The model, as described in [1], includes
the relation between the different object parts. In this case, the
relation between the handle and the door table is known, and
represented as an homogeneous transformation matrix OTH.
The model also includes the degrees of freedom (motion con-
straint) for each part. In the example of Fig. 2, the frame H
is fixed with respect to O, but the frame O has one degree
of freedom: a rotation around Y axis, which corresponds to
the task of opening the door. Thus, the task is specified to the
robot by means of a frame (the task frame) and the degree of
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freedom that must be activated on it. For more details on the
object representation, refer to [1].

2.3 Approaches to task execution

The task execution process for articulated objects can be
divided into two stages:

– A reaching phase, where the hand of the robot must be
moved towards the handle until the grasp is executed suc-
cessfully.

– An interaction phase, where the hand is in contact with the
object and the particular mechanism must be activated.

The reaching task can be performed in open loop if a good
estimation of the object pose with respect to the robot is avail-
able. This is the approach followed in [3], where the locali-
zation algorithm is able to provide the robot pose inside the
map with 1mm of accuracy. However, this is not the general
case, and, in the real life, the robot has to face with lots of
uncertainties. Closed loop is more adequate if we want to
deal with these uncertainties under not-structured environ-
ments. Normally, a visual servoing framework is adopted to
close the loop during reaching [12,13].

Regarding the interaction phase, it is worth noting that
the robot hand is in contact with the environment, and any
kind of uncertainty (errors in the models, bad pose estima-
tion, etc.) may produce very big forces that can damage the
environment or the robot. In [3] the authors still rely on the
localization algorithm during the interaction phase, without
using any kind of sensor feedback, which is very danger-
ous. When the robot is in contact with the environment, it is
extremely important to design a controller that can deal with
unpredicted forces and adapt the hand motion accordingly.

This is the reason why a vision/force coupling approach
is adopted in this work. Vision feedback allows the robot to
continuously track the object and to visually servo the hand
for task execution. Force feedback allows to deal with errors
in pose estimation and object models, so that any undesired
external force can be compensated by modifying the control
law, either at the control level as classical approaches do, or
at the sensor level as we present in this work.

3 General framework

In this section, the theoretical description of the two main
modules of our service robot application are described:

– Task-oriented grasp planning, in charge of choosing a
grasp on the object, which is suitable for the task to
perform.

– Vision/force control, in charge of visually guiding the
robot hand towards the planned grasp, and then perform-
ing the task with vision and force feedback.

3.1 Task-oriented grasp planning

Task-oriented grasp planning deals with the problem of find-
ing a grasp on an object which is suitable for a particular task.
There are few works about grasping that take the task into
account [19–21] and most of them do not consider the task
during grasp planning. Instead, the task is considered on the
grasp evaluation stage as a quality measure. In practice, lots
of grasps would have to be generated and evaluated, making
these approaches computationally unaffordable. In [1], we
presented a task-oriented grasp planning algorithm based on
hand preshapes [22].

The input to this algorithm is the object model (as descri-
bed previously) and the task to perform, in terms of a mech-
anism (i.e. degree of freedom) to be activated on the object.
The algorithm provides the following:

– A grasp frame, G in the example of Fig. 2, where the hand
has to be moved, which is related with the object reference
frame, O, by computing the homogeneous transformation
matrix OTG .

– A hand preshape suitable for the task, including a tool
frame, T in Fig. 2, attached to the hand, which determines
the control strategy that will be followed for grasping [1].
The tool frame is related to the end-effector frame by the
transformation ETT

The original description of the task-oriented grasp plan-
ning algorithm was prepared for the Barrett Hand [1], but we
have adapted it in order to deal with the parallel-jaw grip-
per that we use in this work. For this simple hand, we only
consider the precision hand preshape [1]. The tool frame, T ,
is set to the middle point between both fingertips as shown
in Fig. 2. The goal of the reaching phase is to move the tool
frame T towards the grasp frame G. This is done by visually
computing the relative pose between both frames, and visual
servoing the tool frame in order to reduce the pose error, as
explained in Sect. 3.2. When the visual servoing control law
has converged, the grasp frame is used as the task frame,
where the task is defined in terms of the constrained motion.
For more details, refer to [1].

3.2 Vision/force control for everyday tasks

For visually-guided reaching of the object, we propose a
position-based visual servoing closed-loop approach where a
robot head observes both the gripper and the object and tries
to achieve a relative position between both, like in [12,13].
Regarding the task execution, it is necessary to minimize
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external forces at the same time that the vision control law
guarantees the whole task execution. In the following
sections, the theoretical framework for our position-based
visual servoing approach and vision/force control is
presented.

3.2.1 External position-based visual servoing

Several vision-based control laws have been proposed in the
literature [23]. They are generally classified in three groups,
namely position-based, image-based and hybrid-based con-
trol. The first one works in 3D cartesian space and requires,
in most cases, a model of the object and the camera intrin-
sic parameters [24]. In contrast, image-based visual servoing
works directly in the image space [25]. More recently, several
researchers have explored hybrid approaches which combine
euclidean and image information [26].

As already mentioned in [13], the natural space for speci-
fying the task is the cartesian space, and there are evidences
that humans use 3D information for task planning [27]. Thus,
we adopt a position-based visual servoing approach using an
external camera which observes simultaneously the gripper
and the object. Note that this is the common configuration in
humanoid robots.

We set the vector s of visual features to:

s =
(

t
uθ

)

where t is the translational part of the homogeneous matrix
T TG , and uθ is the axis/angle representation of the rotational
part of T TG .

The matrix T TG , which relates hand and handle, is com-
puted directly from the visual observation of the gripper and
object, according to the following expression:
(

CTGP · ETGP
−1 · ETT

)−1 · CTOP · OTOP
−1 · OTG (1)

where CTGP is an estimation of the pose of an arbitrary
hand frame, expressed in camera frame. CTOP is an esti-
mation of an arbitrary object frame pose, expressed in cam-
era frame. We are currently estimating hand and object pose
by virtual visual servoing [14], using a set of point features
drawn on a pattern whose model is known. One pattern is
attached to the gripper, in a known position ETGP . Another
pattern is attached to the object, also in a known position
with respect to the object reference frame: OTOP . As future
lines we would like to implement a feature extraction algo-
rithm in order to use natural features of the object instead
of the markers. Note that this will not significantly affect
the current implementation, as virtual visual servoing pose
estimation can deal with different types of visual features
[14]. Finally, the tool frame ETT and the grasp frame OTG
are computed by the task-oriented grasp planning algorithm

Fig. 3 The vision task is to guide frame T towards frame G

presented in Sect. 3.1 and detailed in [1]. For a comprehensive
description of the frames involved in the vision task, see
Fig. 3.

We compute the velocity in the tool frame τT using a
classical visual servoing control law:

τT = −λe + ∂̂e
∂t

(2)

where e(s, s∗) = L̂+
s (s − s∗) (in our case, s∗ = 0). The last

term, ∂̂e
∂t , is the estimation of how the visual features change

over time. It is related to the object motion, and should be
taken into account when the hand is in contact with the envi-
ronment in order to reduce tracking errors. However, we can
neglect it, because the use of force feedback allows us to cope
with these small tracking errors, as long as the task velocity
is small. The interaction matrix L̂s is set for the particular
case of position-based visual servoing:
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L̂s =
(−I3×3 03×3

03×3 −Lw

)

Lw = I3×3 − θ

2
[u]× +

(
1 − sinc(θ)

sinc2( θ
2 )

)
[u]2×

where [u]× is the skew anti-symmetric matrix for the rotation
axis u. Finally, the joint velocities that are sent to the robot
are computed as:

q̇ = J−1 · L̂× ·
( ERT [E tT ]× · ERT

03×3
ERT

)
· τT

where J is the robot jacobian and L̂× relates τE and ẊE
according to ẊE = L̂× · τE [24,28]. It is worth noting that,
for very small displacements, L̂× can be taken as the iden-
tity matrix, and, thus, ẊE = τE . Finally, ERT and E tT are,
respectively, the rotational and translational part of the homo-
geneous transformation matrix ETT .

3.2.2 Vision/force control law

Computer vision can provide a powerful way of sensing the
environment and can potentially reduce or avoid the need for
environmental modeling. Vision allows accurate part align-
ment in partially unknown and/or dynamic environments
without requiring contacts. Force sensor provides localized
but accurate contact information. To combine visual and
force information, two main approaches (impedance-based
and hybrid-based strategies) have been studied [7–10]. In
these approaches, the idea is merely to replace the classical
position controller [11] by a vision-based controller. In both
cases, the addition of the vision and force control outputs is
done at the lowest level (control level). This can lead to local
minima when both outputs are in conflict (same value and
opposite signs).

In [2], we proposed a novel vision/force coupling
approach, based on external control [15] where the force con-
trol loop is closed around an internal vision control loop in
a hierarchical way (see Fig. 4). The reference trajectory sd

used as original input of the vision-based controller is mod-
ified according to the external force control loop. The force
control is performed by direct control: when the robot is mov-
ing dX against a contact surface, the force measurement is
proportional to the environment stiffness K and the displace-
ment dX. Then, instead of adding the force control output to
the vision control output as classical approaches do, the force
control output is used to modify the desired vector of visual
features sd , by projecting it on sensor space using the inter-
action matrix L̂s. Either if the end-effector is in contact with
the environment or not, the robot is only controlled by the
visual control law, and thus, the proposed control scheme has
the same stability and convergence properties as the particu-
lar visual control law we choose [23]. In other words, force

Fig. 4 External hybrid vision/force coupling

feedback does not introduce and problem of stability in the
proposed control law.

In the control scheme, shown in Fig. 4, the desired wrench
fd is added as input in the force feedback control loop. The
stiffness is controlled by the force controller (FCL) according
to a proportional control law:

dX = K−1(fd − f)

Although we have chosen stiffness control for this work,
the control scheme is general and it is possible to implement
another more complex type of force control. Unlike existing
approaches, the force controller does not modify the vision
control output. Instead, it only modifies the reference trajec-
tory of visual observations sd :

s∗ = sd + ds (3)

where s∗ is the modified reference for visual features and ds
can be computed by projecting dX by means of the interac-

tion matrix as ds = L̂s ·̂L−1× · dX. It is worth noting that dX
must be first transformed, from the force sensor frame, to the
camera frame, via the corresponding screw transformation
matrix.

The hierarchical juxtaposition of the force control loop on
the vision control loop provides several advantages according
to the existing methods [7,9]: selection matrices and time-
dependent geometric transformations are eliminated from the
control loop leading to a controller design independent of
the arm configuration. Since the force control only acts on
the reference trajectory, conflicts between force and vision
controllers are avoided. For a detailed analysis, refer
to [2].

This is shown by simulation results in Figs. 5, 6, 7 and
8, for a peg-in-hole task, where a robot with an eye-in-hand
camera has to insert a peg of 10 cm length into a hole of the
same depth. The difference between the peg and the hole
diameters is 3 mm. The hole is in the center of a pattern com-
posed by four circles forming a square, as shown in Fig. 9.
We assume that the hole, and thus also the pattern, are on
the origin of the world frame, but rotated 10◦ around Y axis
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Fig. 5 Hybrid vision/force for
a peg-in-hole task. Initial
camera position is set to X =
(0.02,−0.02,−0.36,−5, 5, 0)T

with respect to the world frame.
a Initial image, b Desired
image, c features trajectory in
the image plane, d image error
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Fig. 6 Impedance vision/force
for a peg-in-hole task. Initial
camera position is set to
X = (0, 0,−0.25, 0, 0, 90) with
respect to the world frame.
a Initial image, b desired image,
c features trajectory in the image
plane, d image error
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Fig. 7 External control for a
peg-in-hole task. Initial camera
position is set to X = (0.02,

−0.02,−0.36,−5, 5, 0)T with
respect to the world frame. a
Features trajectory in the image
plane, b image error
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Fig. 8 External control for a
peg-in-hole task. Initial camera
position is set to X = (0, 0,

−0.25, 0, 0, 90) with respect to
the world frame. a Features
trajectory in the image plane,
b image error
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(one of the axis contained in the pattern plane). The goal
of the vision part is to reach a camera position so that the
square is centered on the image at a given size (see Fig. 5b).
This desired position corresponds to the one when the peg is
successfully inserted into the hole, and can be learnt during
an off-line process.

Figures 5 and 6 show two different cases where the hybrid
vision/force control and the impedance-based control fail
(as shown in Figs. 5c,d, 6c and d, the desired goal is never
reached). Figures 7 and 8 show the convergence of our pro-
posed vision/force control law in the same conditions. For
more details on these results, refer to [2].

4 Application and implementation

The theoretical development of the previous section has been
applied to a real robot. We have used a mobile manipula-
tor composed of an Amtec 7 DOF ultra light weight robot
arm mounted on an ActivMedia PowerBot mobile robot.
The hand of the robot is a PowerCube parallel jaw grip-
per. This robot belongs to the Intelligent Systems Research
Center (Sungkyunkwan University, South Korea), and is
already endowed with recognition and navigation capabilities
[29,30], so that it is able to recognize the object to manipu-

Fig. 9 General setup for vision/force control simulations

late and to retrieve its geometrical and structural model from
a database. The robot is able to move in front of the object by
using navigation capabilities such as mapping, localization,
obstacle avoidance, etc.
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Fig. 10 Kinematic screw for reaching the pre-grasp position (closet
task)

As already mentioned, our goal is to interact with the
different furniture and articulated objects that can be found
in home environments, such as doors, windows, wardrobes,
drawers, lights, etc. Our task starts when the mobile
manipulator has navigated in front of the object that is going
to be manipulated and has a view of both the object and its
hand. For the experimental validation we have chosen a door
opening task, because it is the most common task in home
environments. Concretely, experimental results are presented
with two very different doors: a closet and a refrigerator. Both
doors are very different in size, and have different handles.
But both tasks can be described in terms of the structural
model (Fig. 2) as applying a rotational velocity around Y
axis of frame O. The task-oriented grasp planning algorithm
[1] computes the grasp frame G and the tool frame T for
each particular case, and relates them to the object reference
frame with OTG , and to the end-effector frame with ETT ,
respectively (see Fig. 3). It is worth noting that only the door
model changes from one execution to the other. The grasp
and the vision/force references are computed automatically
taking the model as input, which makes this approach suit-
able for any kind of door as long as it has been recognized
by the robot (in order to retrieve the model).

The whole manipulation process is divided into two steps:
reaching a handle with a task-suitable grasp, and interacting
with the environment (performing the task).

4.1 Reaching

The reaching task is divided into three different subtasks:
reaching a pre-grasp position, reaching the grasp position
and performing the grasp. The robot switches from one sub-
task to another when the resulting velocity of the vision/force
controller is close to zero (i.e., the desired references have
been reached).

4.1.1 Reaching a pre-grasp position

A pre-grasp frame, P , is computed by the task-oriented grasp
planning algorithm [1], and it is related to the object reference
frame with the transformation OTP . The pre-grasp position
is used in order to adopt an initial configuration with respect
to the final grasp frame so that the robot can reach the handle
from a good direction.

The transformation between the tool frame and the
pre-grasp frame T TP is computed at each iteration by
Eq. 1, and then used for building the visual features vector s.
During this step there is no contact with the environment.
Thus, the force loop in the vision/force control law is
not modifying the visual reference. This means that the
system behaves according to the vision control law of
Sect. 3.2.1

Figure 10 shows the evolution of the visual velocity for
each degree of freedom (only for the case of the closet door).
Initially, the tool frame is far from the pre-grasp frame (see
Fig. 11a), so that there is a large visual error. The visual
control law makes this error converge to zero, which corre-
sponds to the situation where the tool frame matches with
the pre-grasp frame (see Fig. 11b).

4.1.2 Reaching the grasp position

During this step, the tool frame is moved, from the pre-grasp
position towards the grasp frame, as shown in Fig. 11c. A
new vector of visual features is computed according to Eq. 1.
Thus, the handle is reached from the reaching direction estab-
lished by the transformation PTG . At the end of this step, the
grasp frame and the tool frame are the same (up to modelling
errors), which means that the handle is situated between the
robot fingertips.

4.1.3 Performing the grasp

The last step of the reaching stage is to grasp the handle. The
previous step guarantees that the handle is between the robot
fingertips. Thus, the robot gripper is closed in order to grasp
it, as shown in Fig. 11d.

During this step the first contacts appear. Thus, at the
same time that the gripper is closed, the vision/force con-
trol law is active. The reference for the vision control law is
to match the grasp and tool frames (i.e., keep the handle in
the middle point between both fingertips). The reference for
the force control law is to minimize external forces (fd = 0).
If, due to modelling errors, the handle is not perfectly placed
in the middle point between the fingertips, then one finger
will make contact before the other. This will generate a force
that the force control law will try to regulate to zero by mod-
ifying the vision reference. During this step, the stiffness
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Fig. 11 Reaching the handle. Top row: closet. Bottom row: refrigerator. From left to right: a Initial position b reaching the pre-grasp position, c
reaching the grasp position, d grasping

0 20 40 60 80 100 120
−6

−4

−2

0

2

4

6

8

Iteration number

F
or

ce
 (

N
) 

an
d 

T
or

qu
e 

(N
*m

*1
0)

f
x

f
y

f
z

m
x

m
y

m
z

Fig. 12 Forces during grasping (closet task)

coefficient on Y direction of frame E is set to a small value
in order to make the robot highly compliant in this direction.
When the grasp is finished, the task frame is set to the tool
frame in order to specify the task in terms of the constrained
motion.

The real behavior is shown in Fig. 12 (only for the case
of the closet door). Due to a premature contact on one of the
fingers, it appears a force in Y direction and a torque in X
axis (expressed in effector frame E). These forces modify the
visual reference (i.e., the grasp frame pose w.r.t. tool frame)
according to Eq. 3, and then the robot is visually-guided in
order to reduce the force. Note that it would be impossible
to correct this visual positioning error without using force
feedback.

Fig. 13 Interaction phase. Top row: closet. Bottom row: refrigerator

4.2 Interaction

Once the handle has been reached, the robot computes the
direction of the force that must be applied at the contact point
(the motion constraint in the task frame), depending on the
motion that must be applied to the object [1]. Thus, the ref-
erence for the force control law fd is set on-line, depending
on the task. However, the reference for the vision control law
is not modified, because the contact (and, thus, the relative
position between object and gripper) must be kept during the
task execution (Fig. 13).

The new force reference will modify the vision reference,
so that the robot will move in a direction suitable for the task
guided by the vision task. The natural object mechanism will
generate forces on the robot hand that the force control law
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Fig. 14 Kinematic screw computed by the vision control law during
the interaction phase (closet task)

0 100 200 300 400 500 600
−6

−4

−2

0

2

4

6

8

Iteration number

V
is

io
n 

re
fe

re
nc

e 
m

od
ifi

er
 d

s

ds
1

ds
2

ds
3

ds
4

ds
5

ds
6

ds
3

ds
4

Fig. 15 Visual reference modifier based on interaction forces (closet
task)

will try to minimize, making the robot hand to adapt to the
object motion. Simultaneously, as the object pose is being
observed at each iteration, any misalignment between the
hand and the handle will be detected and corrected by the
vision loop. Thus, both force and vision will work simulta-
neously for a common goal: performing the task while the
relative position between hand and handle is kept constant.

Experimental results on the interaction phase can be seen
in Figs. 14, 15 (only for the closet task). Figure 15 shows the
evolution of the visual reference modifier ds, which depends
directly on the task forces according to Eq. 3. The visual
reference is modified mainly in translation in Y and Z axis,
and in rotation in X axis, due to the existence of important
forces in these directions. Force in Z direction (of the end-
effector frame E) is regulated to a positive value according
to the force reference fd . This force corresponds to the resis-
tance of the particular object mechanism and is the one which

is really acting on the task direction. The rest of forces appear
on constrained directions and must be regulated to zero. The
force in Y direction and torque in X direction are generated
by the particular trajectory when opening the door. The force
control law updates the vision reference so that the robot hand
adapts to the natural trajectory (see the velocity in Y and the
rotational velocity in X in Fig. 14). It is worth noting that the
hand trajectory is never planified. Instead, the vision/force
control law adapts the hand motion automatically to the par-
ticular object mechanism.

5 Discussion

An initial step towards vision/force-guided autonomous
robotic manipulation of articulated objects has been pre-
sented. First, we have shown an object representation which
is suitable for the definition of tasks under the task frame
formalism, and enables the use of task-oriented grasp plan-
ning algorithms. The object representation does not include
a detailed geometrical model of the object. Instead, a sim-
plified model, using bounding boxes, is used, which needs
lower storage requirements, and makes grasp planning faster.
However, we still have not addressed the problem of object
recognition using such model.

Regarding vision and force sensors, a novel control law
for coupling both modalities has been developed, based on
external control [15]. The main advantage of this scheme is
that the force control law is used to modify the vision refer-
ence, and not the vision control output, so that only the vision
control law is moving the robot, thus avoiding problems of
local minima that appear with other approaches. Although
we have applied this control law to the particular case of
position-based visual servoing, it can also be used with other
kinds of visual servoing such as image-based or hybrid, as
long as we know the interaction matrix. It is worth noting that
the control law can still be improved by considering robot
dynamics in the force loop, which is one of our future lines.
We would also like to add more sensor modalities such as tac-
tile sensors or proximity sensors that could add robustness
to manipulation. Tactile sensors can detect contacts, even if
they generate very small force, and could be used in order to
correct any misalignment during grasping. Proximity sensors
could be used for the same goal, but before making contact.

We have applied task-oriented grasp planning and vision/
force control to a robot that must perform daily chores in
a home environment. Instead of putting the camera on the
hand, which may cause some problems of visibility when
the hand is close to the object, an external camera has been
used, which allows to have a suitable view of the object even
when contact is made. In addition, this is the common con-
figuration in current humanoid robots, where the camera is
placed on the head.
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An external camera also allows us to visually track the
robot hand pose and to specify the grasp (and task) in terms
of a desired relative pose between the hand and the object.
Tracking the hand could be avoided by using joint encoders
to get the hand pose with respect to the camera, assuming
that the pose of the camera with respect to the robot base
is known, which is a difficult calibration problem (specially
when the camera is not fixed). In practice, modelling errors
would generate important errors in the hand pose estimation,
making this approach unfeasible. It is for this reason that we
compute simultaneously the object and the hand pose and
work with the relative pose between both. The main advan-
tage is that the camera can be moved freely without affect-
ing the task execution. No external calibration is needed. At
this moment, we are estimating the object and hand pose
by using markers which is a quite robust and easy way for
pose estimation. However, it has several disadvantages. First,
whereas it may be acceptable to put a marker on the robot
hand, it is not appropriate to put a marker to each object the
robot has to manipulate. In addition, for certain hand-object
configurations, it may be difficult to have a good view of
all the points, and they can easily go out of the image. We
plan to solve these problems by using natural object fea-
tures for pose estimation, like in [31] or [32]. We also pro-
pose to take advantage of the independence between task
execution and camera motion, by developping head control
algorithms in order to move the robot eyes so that a suit-
able view of the hand and object is always available, accord-
ing to some optimization criteria, following an active vision
approach.

Regarding the visual servoing control law, the position-
based approach was chosen for our experiments, mainly
because it works on the cartesian space, where the grasp and
task are also defined, making easier to generate the visual ref-
erences from the grasp and task planning algorithms. How-
ever, it would be also possible to control the hand trajectory in
cartesian space even with image-based visual servoing [33].
During the interaction phase, the robot is applying a motion
on the object, and, thus, the visual features are in motion. We
are currently neglecting the term that models this motion (see
Eq. 2), and, therefore we have a tracking error, although force
control can deal with it for small task velocities. It is worth
noting that, due to image acquisition and processing times,
the vision control frequency will be usually much smaller
than the force control frequency. Thus, it is desired to run
the global control law at the force sensor rate, even if the
visual features are not updated at this high frequency. With
this, we give priority to the force sensor feedback, and are
able to detect and regulate contact at force sensor frequency,
independently of the vision rate, which can vary from 25 Hz
for ordinary cameras, up to 1 kHz for high-speed cameras.

Switching between the different tasks (reaching and
interaction phase) is done by a task scheduler (see Fig. 16)

Fig. 16 General framework of the task scheduler

according to the error function of the visual control law
(e(s, s∗)). When the error is close to zero, we assume that
the current step has finished, and update the vision and force
references in order to perform the following step given by the
task-oriented grasp planner. This clearly has the disadvantage
of a discontinuity in the velocity signal when switching from
one task to another. Our aim is to integrate current develop-
ments into a general control architecture. We have already
worked on a control architecture for compliant execution of
manipulation tasks [34]. The tasks presented in this article,
could be implemented as behaviors into this architecture, so
that the robot could make use of them according to a global
plan. Another interesting approach is the task sequencing
paradigm [35], which allows to activate/deactivate a set of
small subtasks (such as avoiding obstacles, joint limits, max-
imizing manipulability, etc.) in order to reach a global task
by taking profit of the robot redundancy.

6 Conclusions

An integrated sensor-guided robotic manipulation system
for common everyday tasks has been presented. The sys-
tem combines a task-oriented grasp planning algorithm with
advanced visual/force servoing capabilities. The task-
oriented grasp planning module computes a grasp on the
object taking into account the task to perform. An exter-
nal position-based visual servoing approach is used in order
to visually guide the hand of the robot towards the object to
grasp. During this step, the robot’s head is continuously track-
ing the hand and the object. The relative pose between both
is computed at each iteration independently of the camera

123



Intel Serv Robotics (2008) 1:253–266 265

position, which makes our approach amenable to be inte-
grated into current humanoid robots without hand-eye cal-
ibration. Finally, the task is executed by means of a novel
vision/force coupling approach which avoids control prob-
lems by making the integration in sensor space. Both vision
and force feedback cooperate during task execution in order
to keep the relative pose between gripper and object at the
same time that the natural object mechanism is tracked. As
future work, we would like to develop a feature extraction
module in order to use the natural object features as input to
the virtual visual servoing pose estimator. We would also like
to work on head control algorithms in order to keep always
a good view of the gripper and object during task execution.
Task scheduling can also be improved for taking into account
joint limits, obstacles, and other kind of task-relevant criteria.
Finally, we want to test the system on many different objects
and mechanisms that future humanoid robots will have to
deal with.
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