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Abstract

High-precision autofarming is rapidly becoming a reality with the requirements of agricultural applications.
Lots of research works have been focused on the automatic guidance control of farm vehicles, satisfactory
results have been reported under the assumption that vehicles move without sliding. Realistic paths that
farm vehicles can track successfully include not only rows but also arcs and curves. But unfortunately the
pure rolling constraints are not always satisfied especially in agriculture applications where the working
conditions are rough and not expectable. A possible solution would be to close the feedback loop using
exteroceptive sensor measurements. Thanks to GPS and attitude sensors, vehicle positions and velocities
can be obtained by absolute coordinates measurements regardless of sliding. Hence the aim of this work is
to design anti-sliding controllers for all-terrain autonomous farm vehicles relying on GPS measurements.

A kinematic model which exactly integrates uncertain sliding effects is created in path frame based on
geometric and velocity constraints. Through linearization, sliding appears as additive unknown variables to
the ideal kinematic model, which provides a good research basis for following controller design. A three-
dimensional dynamic model is constructed with Newton’s laws. Sliding effects are introduced in the form of
tire slip angles. Uncertainties of sliding effects are described by cornering stiffness coefficients which depend
on contact conditions between tires and grounds. In order to ensure GPS-based controllers are applicable
in presence of sliding, it is also proven that all the information necessary to controller design is available by
either GPS measurements or reconstruction.

Thanks to the kinematic model in which sliding effects are integrated as additive disturbances, robust
control theories are utilized. By transforming the vehicle-oriented kinematic model into a perturbed chained
system, a sliding mode controller, which is robust not only to the sliding effects but also to the input noise, is
designed with the help of the natural algebraic structure of chained systems. Simulation results show that the
proposed sliding mode controller can guarantee high path-following accuracy even in the presence of sliding.

Alternatively sliding can be regarded as unknown model parameters. Based on backstepping methods a
stepwise procedure is proposed to design an adaptive controller in which time-invariant sliding effects are
learned and compensated by parameter adaptations. It is theoretically proven that for the farm vehicles
subject to time-invariant sliding, the lateral deviation can be stabilized near zero and the orientation errors
converge into a neighborhood near the origin. To be more robust to disturbances including external noises
and unmodeled time-varying sliding components, the adaptive controller is refined by integrating Variable
Structure Controllers (VSC) or projection mappings. Simulation results show that the proposed robust
adaptive controllers can reject sliding effects and guarantee high lateral accuracy with about zero mean
values.

For automatic guidance of agriculture vehicles, lateral control is not the only duty, the problem of
longitudinal-lateral control for autonomous farm vehicles in presence of sliding is also addressed. To take
sliding effects into account, two variables which characterize sliding effects are introduced into the kinematic
model with respect to the vehicle body frame based on geometric and velocity constrains. With linearization
approximation a refined kinematic model is obtained in which sliding appears as additive unknown parame-
ters to the ideal kinematic model. By integrating parameter adaptation technique with backstepping method,
a stepwise procedure is proposed to design a robust adaptive controller in which time-invariant sliding is com-
pensated by parameter adaptation and time-varying sliding is corrected by VSC. It is theoretically proven
that for the farm vehicles subjected to sliding, the longitudinal-lateral deviations can be stabilized near zero
and the orientation errors converge into a neighborhood near the origin. To be more realistic for agricul-
ture applications, an adaptive controller with projection mapping is also proposed. Simulation results show
that the proposed (robust) adaptive controllers can guarantee high longitudinal-lateral tracking accuracy
regardless of sliding.
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Chapter 1

INTRODUCTION

1.1 Background

Precise automatic guidance and high-precision unmanned vehicle control have been the subject of research
for a long time, autonomous vehicles have some benefits for production in ordinary life

• Human factors such as the driver’s ability to see the ground, driver comfort and operator safety do not
need to consider when designing vehicles, so the manufacture cost may be reduced.

• Remove human operators from a tired uncomfortable or dangerous working environment.

• Vehicles can run at a particular speed which guarantees the tracking accuracy without constraints of
operator factors, increasing production efficiency.

Recently with the development of GPS technology, more and more researchers apply GPS to automatic
guidance systems of agricultural vehicles, since GPS can provide realtime absolute position with a centimeter
accuracy and outdoor working environment of agricultural vehicles is suitable for using GPS. Lots of satisfac-
tory results of path following control have been achieved provided vehicles satisfy the pure rolling constraints
[1]-[5]. In our previous works we have solved the problem of curved path following with unique RTK GPS
[11], the vehicle kinematic model is created under the assumption of pure rolling, a nonlinear controller guar-
anteeing high lateral and orientation accuracy has been designed by converting the kinematic model into a
chained system, Kalman filter is used to reconstruct system states only from GPS measurements, satisfactory
results of path following have been obtained in [11] providing the vehicle moves without sliding.

However due to various effects such as slipping of tires, deformability or flexibility of wheels, the conditions
of pure rolling without sliding are never strictly satisfied. Moreover with broad applications of autonomous
vehicles, in lots of cases vehicles are required to be able to move on all-terrain grounds with a high accuracy.
Typical terrains include stone and sand lands, grass lands and slopes where contact conditions between
wheels and grounds are not ideal. When vehicles move on such grounds, inevitable occurrence of sliding
violates the pure rolling constrains which are the basis of the existing controllers. Invalidation of the pure
rolling assumption consequently degrades the control accuracy even system stability. But unfortunately
exact models explaining internal relationship between grounds and vehicles are still unclear, so the problem
of high-precision control for autonomous vehicles not satisfying pure rolling constraints provides an urgent
task and challenging research subject to robotic researchers.

Until now there are very few papers dealing with sliding. [7] prevents cars from skidding by robust
decoupling of car steering dynamics, but acceleration measurements are necessary and the steering angle
is assumed small. [8] copes with the control of WMR (Wheeled Mobile Robot) not satisfying the ideal
kinematic constraints by using slow manifold methods, but the parameter characterizing the sliding effects
is assumed to be exactly known. Therefore [7][8] are not realistic for agriculture applications. In [13] a
controller is designed based on the averaged model allowing the tracking errors to converge to a limit cycle
near the origin. In [16] a general singular perturbation formulation is developed which leads to robust results
for linearizing feedback laws ensuring trajectory tracking. But above two schemes only take into account
sufficiently small skidding effects and they are too complicated for real-time practical implementation. In
[14] Variable Structure Control (VSC) is used to eliminate the harmful sliding effects when the bounds of the
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sliding effects have been known. The trajectory tracking problem of mobile robots in the presence of sliding
is solved in [15] by using discrete-time sliding mode control. But the controllers [14]-[15] counteract sliding
effects only relying on high-gain controllers which is not realistic because of limited bandwidth and low level
delay introduced by steering systems of farm vehicles. In [17] sliding effects are rejected by re-scheming
desired paths adaptively based on steady control errors which are mainly caused by modeled sliding effects.
But [17] only care about lateral control.

1.2 Problem classification

In this report two main tasks will be completed in presence of sliding. They are classified as follows

• Path following: The robot must follow a geometric path in the cartesian space starting from a given
initial configuration

• Trajectory tacking: The robot must follow a trajectory (a geometric path with an associated timing
law) starting from a given initial configuration.

In path following control, time dependence is not relevant because one only concerns about the geometric
displacement between the robot and the path.

In trajectory tracking tasks, robots must follow the desired path with a specified timing law (equivalently
it must track a moving reference robot)

1.3 Motivation

Path following is the most general tasks in real applications, high-precision path following control can fulfill
large parts of production requirements. But as refereed in last section, due to the complex principle of sliding
phenomenal and inherent nonholonomic characters of autonomous vehicles, very few remarkable research
results have been achieved in presence of sliding, even for path following control.

To remedy drawbacks of the previous works, in this work some controllers will be designed to ensure vehicles
a high-precision guidance in presence of sliding. To meet the needs for practical applications, controllers to
be proposed should have a simple structure for easy understanding, all the necessary information should be
measured and reconstructed by GPS measurements. Only some reasonable assumptions are allowed to be
used.

Common sense tells us that sliding effects influence vehicle motion like external disturbances, so first sliding
is treated as disturbances which can be corrected by robust control. On the other hand chained system theories
have advantages in controlling nonholonomic systems by transforming them into linear systems. So in this
work sliding mode controllers will be applied with chained system theories to design a robust anti-sliding
controller for path following.

In real world because of ground and vehicle physical characters, sliding never change too greatly with
time, indeed it acts more like a time-varying model parameter alternatively. So backstepping schemes would
be proposed to design an adaptive controller which can compensate time-invariant sliding. While the time-
varying sliding left can be dealt with by robust controllers. In this way the undertaking of the robust controller
is shared with adaptive controller which improves the path-following performance accordingly. So the robust
adaptive controller is a further development of sliding mode controller we had proposed.

Based on above research works we will achieve our final target of trajectory tracking control which includes
longitudinal-lateral control. Trajectory tracking control is important for drive safety control of autonomous
vehicles, furthermore it is also very necessary for platoon control. In this work different from path following
control, we will build the kinematic model of trajectory tacking errors in vehicle body frame, then we still
rely on backstepping and robust control to achieve high-precision trajectory tracking control in presence of
sliding. The results must be very meaningful for some specific applications where higher performances than
path following are required.
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1.4 Content and organization

In this report we investigate the problem of path following and trajectory tracking control of autonomous
farm vehicles subjected to sliding. The structure of this report is that, in chapter 2 a general kinematic and
dynamic model are constructed in presence of sliding, the problem of parameter reconstruction with GPS is
investigated also. In chapter 3 by transforming the vehicle-oriented kinematic model into a chained form, a
new sliding mode controller is designed and the stability of the closed-loop system is proven. In chapter 4
an adaptive controller is designed first for lateral control by using backstepping schemes, then either variable
structure control or projection mapping is applied to refine the adaptive controller to make it robust to the
unmodelled sliding. In chapter 5 the robust adaptive controller proposed in chapter 4 is extended to design a
longitudinal-lateral controller, it is theoretically proven that the longitudinal-lateral deviations are stabilized
around zero, the orientation errors converge into a neighborhood near the origin. Furthermore the controller
is simplified into an ordinary adaptive controller with projection mapping for the purpose of providing a
realistic motion.
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Chapter 2

KINEMATIC AND DYNAMIC

MODELING OF VEHICLES

SUBJECTED TO SLIDING

EFFECTS

In this chapter we investigate kinematic and dynamic modeling of vehicles that are subjected to sliding effects.
In section 2.1 based on geometric relationships and velocity constraints a kinematic model is built in the path
frame which integrates sliding effects exactly, then linear approximation is used to make sliding appear as
additive variables to the ideal kinematic model. In section 2.2 using Newton’s law, a 3-dof dynamic model is
constructed which enable one to describe full vehicle motions in x− y plane. To be convenient for designing
anti-sliding controllers, a linear tire model is used to describe sliding effects. Uncertainties of sliding effects
are described by a single unknown cornering stiffness coefficient. In section 2.3 a two-antenna GPS receiver
is proposed to obtain the knowledge of all the state variables. It is also proven that incline angles of slopes,
the important parameter for mobility analysis, can be reconstructed by a single GPS.

2.1 Kinematic model

2.1.1 Notation and Problem Description

In this chapter the vehicle is simplified into a bicycle model. The kinematic model is expressed with respect
to the path in frame (M,ηt, ηn), variables necessary in the kinematic model are denoted as follows: (see figure
2.1)

• C is the path to be followed.

• O is the center of the vehicle virtual rear wheel.

• M is the orthogonal projection of O on path C.

• ηt is the tangent vector to the path at M .

• ηn is the normal vector at M .

• y is the lateral deviation between O and M

• s is the curvilinear coordinates (arc-length) of point M along the path from an initial position.

• c(s) is the curvature of the path at point M .

• θd(s) is the orientation of the tangent to the path at point M with respect to the inertia frame.

• θ is the orientation of the vehicle centerline with respect to the inertia frame.
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s = 0

θd

θ̃

ṡ
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ηt

ηn

M

y
δ

θ

C

1
c(s)

o

R(s)

Figure 2.1: Notation and path frame description

• θ̃ = θ − θd is the orientation error.

• l is the vehicle wheelbase.

• v is the vehicle linear longitudinal velocity.

• δ is the steering angle of the virtual front wheel

So the vehicle movement can be described by (y, s, θ̃) with respect to the path frame.

2.1.2 Kinematic Model

When the vehicles move without sliding, the ideal kinematic model of the vehicles is (see [11]).























ṡ =
v cos θ̃

1 − c(s)y
ẏ = v sin θ̃

˙̃
θ = v

( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)

(2.1)

But when the vehicles move on a steep slope or the ground is slippery, sliding occurs inevitably, (2.1) is no
longer valid. The violation of the pure rolling constraints is described by introducing the lateral slip velocity
vy and steering angle bias δb (figure 2.2). From figure 2.2 the desired angular velocity is obtained

θ̇d = v
tan(δ + δb)

l
−

vy

l
(2.2)

Similar developing methods lead to

θ̇c =
ṡ
1

c(s)

=
v cos θ̃ − vy sin θ̃

1
c(s) − y

(2.3)

It is also obtained that
ẏ = v sin θ̃ + vy cos θ̃ (2.4)

Collecting (2.2)(2.3)(2.4) provides a kinematic model integrating sliding precisely























ṡ =
v cos θ̃

1 − c(s)y
−

vy sin θ̃

1 − c(s)y
ẏ = v sin θ̃ + vy cos θ̃

˙̃
θ = v

( tan(δ + δb)

l
−

c(s) cos θ̃

1 − c(s)y

)

−
vy

l
+

c(s)vy sin θ̃

1 − c(s)y

(2.5)
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Figure 2.2: Notations of sliding effects

In above kinematic model the steering bias δb is included together with δ in function tan(·). But since δb is
quite small, a linearized kinematic model can be obtained























ṡ =
v cos θ̃

1 − c(s)y
−

ψ(t) sin θ̃

1 − c(s)y
ẏ = v sin θ̃ + ψ(t) cos θ̃

˙̃
θ = v

( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)

+
v

l
η(t) +

( c(s) sin θ̃

1 − c(s)y
−

1

l

)

ψ(t)

(2.6)

where ψ(t) = vy, η(t) is linked to δb including inaccuracy due to linearization approximation. In above
kinematic model it is noticed that all the sliding effects appear as the additive unknown variables to the
ideal kinematic model. This linearized kinematic model provides a right basis for the following procedure of
controller design.

2.2 Dynamic model

2.2.1 Notations and assumption

Kinematic-based model is a simple method to cope with sliding, but dynamic analysis is rather necessary
when heavy vehicles move on a slope and follow a curved path with enough high speeds.

We have known that the most simplified vehicle dynamic model is the two-degree-freedom bicycle model.
This model represents the lateral and yaw motions but not considering the longitudinal direction, because it
does not affect the lateral and yaw stability. Most approaches developed to remedy sliding effects assume the
longitudinal velocity to be constant [26][27]. But in real cases it is not always true especially when vehicles
move on slopes. In order to perform longitudinal control as well, a three-degree-freedom model is built in this
section adding longitudinal acceleration into the model, therefore enabling one to describe the full vehicle
motions in X − Y plane.

In order to build the dynamic model, it is necessary to analyze the forces that actuate on the vehicle.
The external forces acting on the vehicle consist of the friction forces between the vehicle and ground, the
normal forces, the gravity and the control force. All the forces vertical to the slope are not considered, so the
external forces acting in the slope O − X ′Y ′ is shown in figure (2.3). In this figure O − XY Z is the inertia
coordinates, O − X ′Y ′Z ′ is the fixed slope coordinates. They are constructed such that OZ, OZ ′, OX ′ lay
in a common vertical plane. OZ ′ is normal to the slope. o− xyz is the body coordinates consisting with the
heading of the vehicle, β is the incline angle of the slope, mg sinβ is the component of the gravity parallel to
OX ′, the lateral tire force ff , fr, acting on the front and rear wheels are defined by a linear tire model.

{

ff (δb) = cfδb

fr(ϕ) = crϕ
(2.7)
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where δb, ϕ are the slip angles of the front and rear wheels defined by figure 2.2. cf = µcf0 and cr = µcr0 are
the cornering stiffness coefficients of the tires that vary with road tire contact, cf0 and cr0 are the nominal
values of the cornering stiffness for the dry roads, µ ∈ [u−, 1] is an uncertain variable depending on the road
condition, for example on dry concrete roads µ = 1; while on wet grass roads µ = µ−. F is the longitudinal
control force whose maximum value is determined by engine output capabilities and road conditions. It
can be used for several purposes: overcoming road loads, maneuvering (trajectory following) and correcting
parameter errors.

In our applications GPS is used to guide vehicles with centimeter accuracy in the absolute coordinates
frame. The GPS antenna is mounted on the top of the vehicle straight up the center of the rear axle, so we
use the middle point of the rear axle p as the reference point to build the dynamic model.

As all the external forces acting in the slope can be projected onto longitudinal and lateral forces fx and
fy with respect to the body coordinates, in o − xyz one has





fx

fy

mz



 =





− sin δ 0
cos δ 1

lf cos δ −lr





(

ff

fr

)

+





F
0
0



 +





−mg sinβ cos θ
mg sinβ sin θ

0



 (2.8)

where δ is the steering angle of the front wheel, θ is the orientation angle between axis OX ′ and ox.

The velocity and geometry notations of the vehicle are shown in figure (2.4). In this figure vr is the
translational velocity of the reference point p, vx = vr cos ϕ and vy = vr sin ϕ are the longitudinal and lateral
velocity components. Because the GPS antenna is mounted straight up p, vr can be measured directly from
the GPS signals. The wheel slip angles δb ϕ can be determined by

δb = δ −
lω + vy

vx

ϕ =
vy

vx

(2.9)

where ω = θ̇ is the raw rate around the mass center. l = lr + lf is the wheel span.

2.2.2 Dynamic model

Applying Newton’s law for the mass center in o − xyz coordinates frame, we have on the ox

mẍ − mẏω = fx (2.10)

and on the oy
mÿ + mẋω = fy (2.11)

The yaw motion around the mass center is described by

Izω̇ = Mz (2.12)

where Iz = mlf lr. From the velocity constraints between the mass center and point p, we have

Y (Y ′)
X

O

Z ′

Z

X ′

x

z

y

ff

fr

F

β

mg sin β

oθ

Figure 2.3: External force
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ẋ = vx

ẍ = v̇x

ẏ = vy + lrω
ÿ = v̇y + lrω̇

(2.13)

Substituting (2.13) into (2.10)(2.11), the dynamic model for point p is obtained

mv̇x − m(vy + lrω)ω = fx

m(v̇y + lrω̇) + mvxω = fy
(2.14)

Generally the desired path which the vehicle is going to follow is defined in the slope coordinates frame,
for example by a curvature of a circle or a straight line in O − X ′Y ′, so it is feasible to define the attitude
variables of the dynamic model in the slope coordinates frame O − X ′Y ′, while the velocity variables are
defined in the body coordinates frame o − xy.

• x1 = X ′

p the coordinates of p in OX ′

• x2 = Y ′

p the coordinates of p in OY ′

• x3 = θ the orientation angle with respect to O − X ′Y ′

• x4 = vx the longitudinal velocity of p with respect to o − xy

• x5 = vy the lateral velocity of p with respect to o − xy

• x6 = ω the yaw rate of the vehicle around the mass center

The lateral and longitudinal velocities of point p with respect to the slope coordinates O − X ′Y ′Z ′ can be
described as follow:

Ẋ ′

p = vx cos θ − vy sin θ

Ẏ ′

p = vx sin θ + vy cos θ
(2.15)

So the three-degree-of-freedom vehicle dynamic models (2.12)(2.14) are rewritten in form of first order dif-
ferential equations, to enable using the first-order numerical integration method, such as Runge-Kutta. The
state space representation of the dynamic model is

ẋ1 = x4 cos x3 − x5 sinx3

ẋ2 = x4 sin x3 + x5 cos x3

ẋ3 = x6

ẋ4 = lrx
2
6 + x5x6 +

− sin δff + F − mg sinβ cos x3

m

ẋ5 = −lrẋ6 − x4x6 +
cos δff + fr + mg sinβ sin x3

m

ẋ6 =
lf cos δff − lrfr

Iz

(2.16)

b

Y (Y ′)
X

O

Z ′

Z

X ′

x

z

y

o
lf

lr

δb

δ
vf

ϕ

vx

ω
vr

vy

Figure 2.4: Velocity and geometry notations
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In this dynamic model the control inputs are the longitudinal control force F and the steering angle δ. From
(2.7)(2.9), one has that

ẋ4 =
F − mg sinβ cos x3

m
+ x5x6 −

sin δ(δ −
lx6 + x5

x4
)

m
cf + lrx

2
6 (2.17)

ẋ5 =
mg sinβ sinx3

m
− x4x6 +

x5

x4m
cr +

cos δ(δ −
lx6 + x5

x4
)

m
cf − lrẋ6 (2.18)

ẋ6 =
lf cos δ(δ −

lx6 + x5

x4
)

Iz

cf −
lrcrx5

Izx4
(2.19)

If the steering angle δ is so small that sin δ ≈ 0, cos δ ≈ 1, then the dynamic model is

ẋ1 = x4 cos x3 − x5 sin x3 (2.20)

ẋ2 = x4 sin x3 + x5 cos x3 (2.21)

ẋ3 = x6 (2.22)

ẋ4 = −g sin β cos x3 + x5x6 +
F

m
+ lrx

2
6 (2.23)

ẋ5 = g sin β sinx3 − x4x6 +
µcf0

m
δ −

µcf0lx6

mx4
+ µ(

cr0

m
−

cf0

m
)
x5

x4
− lrẋ6 (2.24)

ẋ6 = µ
( lfcf0

Iz

δ −
lfcf0lx6

Izx4
−

(lrcr0 + lfcfo)x5

Izx4

)

(2.25)

This dynamic model is nonlinear, coupled and nonholonomic. All the state variables can be measured or
reconstructed (see section 2.3) except for µ which describes uncertainties of sliding effects. It cannot be
measured exactly or known previously, so in our model it is treated as the uncertain parameter. To track
the desired path as closely as possible, plenty of research results in robust control and adaptive control can
be relied on to cope with the uncertainty of µ [20].

2.3 State variable estimation and coordinates transformation

Incline angles of slopes have profound effects on vehicle performance; even modest incline angles may be a
quite challenge for vehicles with low power-to-weight ratio. Thus knowledge of incline angles is essential to
ensure vehicle mobility. In this chapter the incline angle is obtained relying on a single GPS. When vehicles
move on a slope, the GPS coordinates are sampled at three different points pi (i = 1, 2, 3). The normal vector
n to the slope is obtained by

n = p1p2 × p1p3 (2.26)

Since the angle between vector n and [0, 0, 1] is equal to the incline angle β, so we have

β = cos−1(
n

|n|
· [0, 0, 1]) (2.27)

When vehicles are subjected to sliding effects, the direction of the translational velocity will deviate from
the heading of the body axis because of the wheel slip, so the orientation of the vehicle body cannot be
reconstructed anymore with the velocity information derived from a single GPS [32]. There are two solutions
to this problem. The first one is using a yaw gyro to measure the vehicle body heading (yaw). The gyro can
provide higher update rates for estimating yaw angle than GPS, but the gyro biases which cannot be known
exactly may result in significant estimation errors. Another solution is utilizing a two-antenna GPS receiver.
In this application two antennas are located on top of the vehicle longitudinally, so the body pitch angle λ
with respect to the horizontal plane can be obtained easily by

λ = tan−1 |Z2 − Z1|
√

(X2 − X1)2 + (Y2 − Y1)2
(2.28)
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PSfrag

Y (Y ′)
X

O

Z ′

Z

X ′

λβ

β

θ

Figure 2.5: Geometric relationship

(Xi, Yi, Zi) are the coordinates of ith GPS antenna. From the geometric relationships shown in figure (2.5),
the yaw angle of the vehicles with respect to the frame O − X ′Y ′Z ′ can be calculated as follow

θ = cos−1(
sin λ

sin β
) (2.29)

The coordinates frames used in this application are shown is figure (2.6). Generally in practice the desired
states that the vehicle is going to follow are defined in the slope coordinates O − X ′Y ′Z ′ for convenience,
while the information from GPS is in the absolute frame which can be transferred into O − XY Z easily, so
it is very necessary to transfer the coordinates from O − XY Z into O − X ′Y ′Z ′.

The coordinates of the reference point in frame O − X ′Y ′Z ′ are deduced by





X ′

Y ′

Z ′



 =





cos β 0 sin β
0 1 0

− sin β 0 cos β









X
Y
Z



 (2.30)

If assume the incline angle β is constant, the velocity vector in O − X ′Y ′Z ′ is





Ẋ ′

Ẏ ′

Ż ′



 =





cos β 0 sin β
0 1 0

− sin β 0 cos β









Ẋ

Ẏ

Ż



 (2.31)

After coordinates transformation from O−X ′Y ′Z ′ into o−xyz, the coordinates of the reference point in the
rotating body coordinates frame is





x
y
z



 =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









X ′

Y ′

Z ′



 (2.32)

Y (Y ′)

X

Z ′(z)

Z

X ′

x

y

βθ

Figure 2.6: Coordinates frames
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From (2.30) and (2.32) we get




x
y
z



 = A





X
Y
Z



 (2.33)

where

A =





cos θ cos β sin θ cos θ sinβ
− sin θ cos β cos θ − sin θ sin β

− sin β 0 cos β



 (2.34)

So for the reference point p the velocity vector in the body coordinates frame is





vx

vy

vz



 =





ẋp

ẏp

żp



 = A





Ẋp

Ẏp

Żp



 + B





Xp

Yp

Zp



 (2.35)

where

B =





− sin θ cos βω cos θω − sin θ sinβω
− cos θ cos βω − sin θω − cos θ sin βω

0 0 0



 (2.36)

Thus all the state variables used in the dynamic model X ′, Y ′, θ, vx, vy, ω and the incline angle of the slope
β, which is the most important parameter for vehicle mobility, can be obtained by direct measurement and
reconstruction using a two-antenna GPS receiver.

2.4 Conclusion

Sliding inevitably occurs when vehicles move in a slippery environment which degrades the path following
accuracy significantly. To correct the sliding effects, using geometry relationship and velocity constraints a
kinematic model is built in which sliding effects are described by lateral sliding velocity and steering bias. The
resulting model integrates the sliding effects exactly from kinematic constraints point of view. Furthermore
the kinematic model is linearized which make it quite straightforward to design anti-sliding controllers.

Based on Newton’s law, the dynamic model is constructed. Different from pure rolling conditions, the
sliding effects are introduced into the models by tire forces which have linear relationships with wheel slip
angles. Uncertainties of sliding effects are formulated by an unknown cornering stiffness coefficient. By
regarding it as uncertainties in dynamic models, lots of nonlinear control methods such as robust control and
adaptive control can be relied on to remedy it. When sliding effects are taken into account, some vehicle
states for example the orientation angle cannot be obtained by only one GPS receiver, so a two-antenna GPS
system is proposed. With this new GPS system, all the state variables in the models can be measured or
reconstructed. It is also proven that incline angles of slopes which play a very important role in dynamic
mobility can be estimated by a single GPS.
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Chapter 3

PATH FOLLOWING CONTROL

BASED ON SLIDING MODE

CONTROLLER

It has been well known that vehicle positions and velocities cannot be measured by relative localization
systems for example incremental encoders when sliding occurs, so absolute localization is necessary for anti-
sliding control. The absolute localization technologies include active beacon, GPS, laser range scans and
multi-sensor data fusion etc. In addition, with the development of GPS technology more and more researchers
apply GPS to automatic guidance systems of agricultural vehicles [9]-[12], since GPS can provide realtime
absolute positions with centimeter accuracy and outdoor working environments of agricultural vehicles are
suitable for using GPS. Due to those two points and our previous works [11], in the following chapters the
problem of anti-sliding controller design will be addressed for the farm vehicles with GPS localization systems.

The main idea of this chapter is regarding sliding effects as additive disturbances to the ideal kinematic
model, then theories of sliding mode control are used to design a robust controller which has ability to reject
sliding effects from the vehicle’s path following performance. The structure of this chapter is that, in section
3.1 a vehicle-oriented kinematic model considering sliding is built in the path frame. In section 3.2 chained
system properties are reviewed by recalling our previous works. In section 3.3 by transforming the vehicle-
oriented kinematic model into a chained form, a new sliding mode controller is designed and the stability
of the closed-loop system is proven. In section 3.4, some comparative simulation results are presented to
validate the proposed control law.

3.1 Kinematic model

3.1.1 Notation and problem description

For simplicity the vehicle is simplified with a bicycle model such that the two actual front wheels are equivalent
to a unique virtual wheel located at the mid-distance between the actual wheels. The angle between the axis
of the front wheels and the vehicle body is called the steering angle δ which is adjusted to allow the vehicle
to follow the desired path. The direction of the rear wheels is fixed along the body axis.

In this chapter the kinematic model is expressed with respect to the path in frame (M,ηT , ηN ), variables
necessary in the kinematic model are denoted as follow: (see figure 3.1)

• C is the path to be followed.

• O is the center of the vehicle virtual rear wheel.

• M is the orthogonal projection of O on path C, M exits and is uniquely defined if the path meets some
conditions.

• ηT is the tangent vector to the path at M .

14



s = 0

θd

θ̃

ṡ

v

ηT

ηN

M
y

δ

1
c(s)

o

R(s)

θ

C

Figure 3.1: Notation and path frame description

• ηN is the normal vector at M .

• y is the lateral deviation between O and M

• s is the curvilinear coordinates (arc-length) of point M along the path from an initial position.

• c(s) is the curvature of the path at point M .

• θd is the orientation of the tangent to the path at point M .

• θ is the orientation of the vehicle centerline with respect to the inertia frame.

• θ̃ = θ − θd is the orientation error.

• l is the vehicle wheelbase.

• v is the vehicle linear longitudinal velocity.

• δ is the steering angle of the virtual front wheel

So the new set of state vectors in the path frame is (y, s, θ̃), the path following problem consists of finding
a feedback control law

δ = K(s, y, θ̃, v) (3.1)

such that

lim
t→∞

y = 0 (3.2)

and θ̃ is bounded in presence of sliding

3.1.2 Kinematic model

In section 2.1.2 we have obtained a linearized kinematic model with sliding in the path frames as follows






















ṡ =
v cos θ̃

1 − c(s)y
−

ψ(t) sin θ̃

1 − c(s)y
ẏ = v sin θ̃ + ψ(t) cos θ̃

˙̃
θ = v

( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)

+
v

l
η(t) +

( c(s) sin θ̃

1 − c(s)y
−

1

l

)

ψ(t)

(3.3)

where ψ(t) equals to the lateral sliding velocity vy, η(t) is linked to the steering bias δb. In this model it is
noticed that all the sliding effects take effects like unknown additive variables. To take advantage of such a
structure, we treat sliding effects ψ(t) and η(t) as external disturbances, then we have























ṡ =
v cos θ̃

1 − c(s)y
+ ε1

ẏ = v sin θ̃ + ε2

˙̃
θ = v

( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)

+ ε3

(3.4)
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where ε is the vector depicting the violation of the ideal rolling without sliding constraints, ε is bounded by
a known constant γ, that is |εi| ≤ γi.

In actual applications, the longitudinal friction is much larger than the sliding force and the longitudinal
velocity varies slowly enough, so in this chapter the sliding effect ε1 in the longitudinal direction is negligible,
the vehicle-oriented kinematic model is rewritten as























ṡ =
v cos θ̃

1 − c(s)y
ẏ = v sin θ̃ + ε2

˙̃
θ = v

( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)

+ ε3

(3.5)

3.2 Previous works

3.2.1 Chained system properties

As presented in [11], in our previous work a path following controller has been designed by converting the
model (2.1) into a chained system which allows using linear system theories to design nonlinear controllers
without any approximation while still relying on the actual nonlinear system model (see [2]). For a 3-D
nonlinear system with two control inputs, the general chained system is written as

derivation w.r.t t







ȧ1 = m1

ȧ2 = a3m1

ȧ3 = m2

(3.6)

where A = [a1, a2, a3] and M = [m1,m2] are respectively the states and control inputs of the chained system.
The general chained system can be converted into a single-input linear system by replacing the time derivative
with a derivation with respect to the state variable a1. Using the notation

d

da1
ai = a′

i and m3 =
m2

m1
(3.7)

the general chained system is changed into

derivation w.r.t a1







a′

1 = 1
a′

2 = a3

a′

3 = m3

(3.8)

where m3 is the virtual control input.

3.2.2 Automatic guidance based on chained form system

Considering the kinematic model (2.1), via state transformation as following

(a1, a2, a3) = (s, y, (1 − c(s)y) tan θ̃) (3.9)

the ideal kinematic model is transformed into the general chained system (3.6) in which














































m1 =
v cos θ̃

1 − yc(s)

m2 =
d

dt
((1 − yc(s)) tan θ̃)

= −vc(s) sin θ̃ tan θ̃ − v
dc(s)

ds

cos θ̃

1 − yc(s)
tan θ̃y

+ v
1 − yc(s)

cos2 θ̃

(

tan δ

l
− c(s)

cos θ̃

1 − yc(s)

)

(3.10)

Form (3.9)(3.10), the expression of the single-input linear system (3.8) can be obtained. In [11] the virtual
control input m3 is designed to be a PD-type controller

m3 = −Kda3 − Kpa2 (Kp,Kd) ∈ R+2 (3.11)
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which leads to
a′′

2 + Kda
′

2 + Kpa2 = 0 (3.12)

It is easy to prove that both the state a2 and a3 can converge to zero asymptotically by choosing Kd,Kp.
Through inverse conversion, the physical control law is obtained as

δ(y, θ̃) = arctan

(

l

[

cos3 θ̃

(1 − yc(s))2

(dc(s)

ds
y tan θ̃ − Kd(1 − yc(s)) tan θ̃ − Kpy

+c(s)(1 − yc(s)) tan2 θ̃
)

+
c(s) cos θ̃

1 − yc(s)

])

(3.13)

Satisfactory path following results have been reported in [11] provided the vehicles move without sliding.

But in actual applications especially when vehicles move on a slippery ground or make a turn on a slope,
the substantial sliding effects cannot be ignored which causes a significant lateral deviation.

3.3 Robust control law design

In this section a sliding mode controller is designed based on the vehicle-oriented kinematic model (3.5) in
which sliding effects are considered as additive disturbances.

3.3.1 Sliding mode control for perturbed chained system

[24] has designed a sliding mode controller to stabilize a nonholonomic perturbed systems, but all the distur-
bances have to satisfy a linear constraint. [25] has investigated the problem of designing robust controllers
for general chained systems. A sliding mode controller was designed after the chained system was converted
into a single-input and time-varying linear model by setting one input as a time-varying function, but un-
fortunately the system becomes no longer always controllable. To overcome this problem a new scheme is
proposed in this section to design a sliding mode controller with the help of the natural algebraic structure
of chained systems.

Considering the kinematic model (3.5), a perturbed chained system (3.14) can be obtained when the same
coordinates transformation (3.9) is used,

derivation w.r.t t



























ȧ1 =
v cos θ̃

1 − yc(s)
= m1

ȧ2 = v sin θ̃ + ε2 = a3m1 + ε2

ȧ3 =
d

dt
((1 − yc(s)) tan θ̃)

= m2 + η

(3.14)

where

η =
(1 − yc(s))ε3

cos2 θ̃
− c(s)ε2 tan θ̃ (3.15)

Noting that in (3.14) ai and mi have the same expression as it in (3.9-3.10), ε2 and η act as two additive
disturbances to the ideal system (3.6). So similarly (3.14) can be converted into a perturbed single-input
linear system by computing the derivative with respect to the state variable a1.

derivation w.r.t a1















a′

1 = 1

a′

2 = a3 +
ε2

m1

a′

3 =
m2

m1
+

η

m1
= u +

η

m1

(3.16)

where u is the virtual control input of the disturbed single-input system (3.16). Remarking that u is velocity

independent,
ε2

m1
and

η

m1
are bounded. Because the single-input model (3.16) contains uncertain bounded

disturbances, theories of sliding mode control are applied to design a robust controller which may guarantee
the system states converge to a neighborhood of the origin.
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Concerning the states a2, a3 for the path following problem, the sliding surface is defined as

z = Λa2 + a3 (3.17)

where Λ > 0. One condition that guarantees the system states reach the sliding manifold z = 0 is zż < 0.
Once the sliding manifold is encountered, the system stability is achieved.

Theorem 2: Define a strictly increasing function

s(t) =

∫ t

0

v+(τ)dτ (3.18)

where v+ is positive definite and use the notation that (⋄)′ =
d⋄

ds
, if the sign of v+(τ) is kept positive, then

the condition zz′ < 0 is equivalent to the reaching condition zż < 0.

Prove:

zz′ = z
dz

ds
= z

dz

dt

dt

ds
= zż

1

v+(τ)
(3.19)

if zz′ < 0 then it is easy to prove that the reaching condition zż < 0 is satisfied provided v+(τ) is kept
positive. 2

In our applications, s(t) is the curvilinear coordinates of point M , v+(τ) is the linear velocity of point M
along the desired path C. v+(τ) = m1, since the orientation deviation θ̃ of the vehicle with respect to the
desired path C varies in the range of (−π

2 , π
2 ) and the vehicle remains closed to the desired path which means

that 1 − yc > 0, from (3.10) the condition of v+(τ) > 0 is satisfied.

Theorem 3: Considering the system (3.14) where (a1, a2, a3) =
(

s, y, (1 − c(s)y) tan θ̃
)

, define

z = Λa2 + a3 = Λy + (1 − yc(s)) tan θ̃ (3.20)

the achievement of sliding motions on the sliding surface (3.20) can be guaranteed by the control law

u = −kz − Λa3 − ρsign(z) (3.21)

where

ρ ≥ |ς| =
∣

∣

∣

Λε2 + η

m1

∣

∣

∣
(3.22)

Prove: For the states a2, a3, consider the reaching condition of sliding mode control:

zz′ = z(Λa′

2 + a′

3)

= z
(

Λa3 + u +
Λε2 + η

m1

)

= z
(

Λa3 + u + ς
)

(3.23)

Applying (3.21) into (3.23), we get

zz′ = z
(

Λa3 − kz − Λa3 − ρsign(z) + ς
)

< −kz2 − (ρ − |ς|)|z|
(3.24)

if we choose ρ following (3.22), then the reaching condition zz′ < 0 is satisfied guaranteeing a sliding motion
on the sliding surface (3.20). On the sliding surface (3.20), one has

z = Λa2 + a3 = 0 (3.25)

which leads to
a′

2 = −Λa2 +
ε2

m1
= −Λa2 + ̟ (3.26)

The stability of system (3.26) has been analyzed in [21] in detail, from (3.26) a2 can be expressed as

a2 = e−Λsa2(0) +
̟

Λ
= a2(0)e−Λ

∫

t
0

v+(τ)dτ +
̟

Λ
(3.27)

so the solutions of the resulting closed-loop system are globally uniformly ultimately bounded. 2
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3.3.2 Stability Analysis

Because of the condition z = 0, the following relationship can be obtained

Λa2 + a3 = 0 (3.28)

Due to the definition of a2, a3 in (3.9) and (3.16) , one get that

a′

2 = y′ = −Λy + ν (3.29)

where ν = ε2

m1
. So it is proven that the lateral deviation y is globally uniformly ultimately bounded in the

presence of sliding effects. Similarly the orientation error θ̃ is proven uniformly ultimately bounded also.

3.3.3 Modified Sliding Mode Controller

Sliding mode control (3.21) is simple, robust and can guarantee transient performances, but the low level
delay caused by hydraulic-driven steering systems always results in chattering responses which may wear
down the actuator and excite unmodeled dynamics, possibly compromising performance and even stability.
To mitigate the problem of chatter, the signum function is replaced by the hyperbolic tangent function
tanh()

u = −kz − Λa3 − ρtanh(
0.2785ρz

σ
) σ > 0 (3.30)

Combining (3.10) with (3.30), the physical steering angle is obtained by inverse conversion of the virtual
robust control law u.

δ(y, θ̃) = arctan

(

l

[

cos3 θ̃

(1 − yc(x))2

(dc(s)

ds
y tan θ̃ + u + c(s)(1 − yc(s)) tan2 θ̃

)

+
c(s) cos θ̃

1 − yc(s)

])

(3.31)

Remarking that some constraints have to be added to the system to ensure the validity of the controller:

• Because of the definition of m1 in (3.10) which requires 1− yc(s) 6= 0, the vehicle is not allowed to pass
the curvature center of the path c, which means that y < 1

c(s) holds and makes the definition of ρ in

(3.22) ture.

• Because of the definition of m2 in (3.10) which requires cos θ̃ 6= 0, the vehicle body axis cannot be
vertical to the path, the orientation error varies only in the range of (−π

2 , π
2 ).

However the importance of the constraints is limited due to the small path curvatures and the restricted
range of the steering angle in most practical cases.

3.4 Simulation results

In this section, some simulation results are presented to validate the proposed control law. In order to fully
demonstrate the effectiveness of the controller, two reference paths consisting of straight lines and curves are
followed (see figure 3.2 and 3.5), the sliding effects are introduced to the system when the vehicle follows the
desired path stepping into a curve. To simulate all the other external unconsidered disturbances, noises are
always added to the system through the same channel as the control inputs. In the simulations, the gains
used in the control law (3.21) are set as Λ = 0.3 ρ = 0.08, k = 0.3. To compare the control performances
with the previous works, the control laws (3.13) are applied under the same condition except that we set the
controller gains as kp = 0.09, kd = 0.6.

The simulation results of the lateral deviation for two path-following experiments are shown by figure 3.3
and 3.6 respectively, the results of the orientation errors are shown in figure 3.4 and 3.7. In the simulation
results, the dashed line represents the results yielded by using the controller (3.13), the solid line depicts the
results obtained by applying the sliding mode controller (3.31) proposed in this chapter.

Because the control law (3.13) does not take sliding effects into account and from theoretical point of view,
the PD-type virtual control law is not robust against disturbances, it is clear that in figure (3.3) and (3.4)
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it suffers from sliding greatly, when the sliding effects appear, its lateral deviation becomes more significant
than the other. While the sliding mode control law proposed in this chapter provides satisfactory simulation
results, it has good transient responses and is robust against not only the sliding effects but also other input
noises which inevitably occur in actual applications, the simulation results show that the sliding effects affect
both the lateral deviation and the orientation error weakly.

In figure(3.6) (3.7) although initial orientation errors lead to significant lateral deviations, the proposed
robust controller still make both lateral deviation and orientation errors converge and stable around zero.
But too much initial errors degrade the performance of robust controller by causing large overshoots in the
starting stage. It is because that high gains of the robust controller yield too strong control signals which
make the chattering effects worse than before.

3.5 Conclusion

The path following problem of autonomous agricultural vehicles in the presence of sliding is investigated in this
chapter. A vehicle-oriented kinematic model which integrates the sliding effects as additive disturbances is
used. From this model, a particular perturbed chained system is evolved. The use of the attractive structure
of chained systems together with the sliding mode control leads to a robust controller which is robust to
both the sliding effects and external disturbances. The system states have been theoretically proved globally
uniformly ultimately bounded. The advantage of this new scheme is that

• The anti-sliding controller proposed in this chapter is developed still relying on chained system proper-
ties, so abundant linear system theories are available to design more powerful controllers without loss
of nonlinear features.

• This scheme is a primary work of designing robust controllers for chained systems. Since chained systems
have a perfect natural structure for the use of sliding mode control, some skillful high-dimensional
sliding surfaces can be designed to fulfill more complicated tasks, for example longitudinal control or
anti-sliding control of vehicles with four-wheel steering kinematic model.

• This scheme does not require more sensors and costs less on-board computation which yields a easy
actual implementation.

Experimental comparative results with previous schemes show the effectiveness of the proposed control law.
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Figure 3.2: Path to be followed
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Figure 3.3: Lateral deviation
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Figure 3.4: Orientation error
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Figure 3.5: Path to be followed
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Figure 3.6: Lateral deviation
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Figure 3.7: Orientation error
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Chapter 4

ROBUST ADAPTIVE LATERAL

CONTROL BY BACKSTEPPING

Most research works including chapter 3 treated sliding as disturbances which can be rejected by robust
controllers. But as demonstrated in chapter 3, high-gain robust controllers are not realistic for autonomous
vehicles with low-level delay, so another promising solution would be to develop low-gain controllers to share
the undertaking of the robust controllers.

Alternatively sliding can be also regarded specifically as time-varying parameters. On the other hand
backstepping methods which have been used widely in controller design are proven powerful in controlling
nonholonomic systems with uncertain parameters [21][23], so the purpose in this chapter is to use backstepping
methods to design a practical path following controller in presence of sliding with small control gains. The
main idea of this chapter is to regard sliding effects as unknown parameters added to the ideal kinematic
model. Based on backstepping method an adaptive controller is designed to estimate and compensate modeled
time-invariant sliding components, furthermore two approaches are proposed to make the adaptive controller
more robust to the time-varying sliding effects and noises. This chapter is organized as follows, in section
4.1 a vehicle-oriented kinematic model considering sliding is constructed in the path frame. In section 4.2 by
assuming sliding is time-invariant, an adaptive controller is designed using backstepping methods. In section
4.3 robust adaptive controllers are obtained by integrating VSC or applying projection mapping. In section
4.4, some comparative simulation results are presented to validate the proposed control law.

4.1 Kinematic model

4.1.1 Notation and Problem Description

In this chapter the vehicle is simplified into a bicycle model. The kinematic model is expressed with respect
to the path in frame (M,ηt, ηn), variables necessary in the kinematic model are denoted as follows: (see figure
4.1)

• C is the path to be followed.

• O is the center of the vehicle virtual rear wheel.

• M is the orthogonal projection of O on path C.

• ηt is the tangent vector to the path at M .

• ηn is the normal vector at M .

• y is the lateral deviation between O and M

• s is the curvilinear coordinates (arc-length) of point M along the path from an initial position.

• c(s) is the curvature of the path at point M .
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ηn
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1
c(s)

o

R(s)

Figure 4.1: Notation and path frame description

• θd(s) is the orientation of the tangent to the path at point M with respect to the inertia frame.

• θ is the orientation of the vehicle centerline with respect to the inertia frame.

• θ̃ = θ − θd is the orientation error.

• l is the vehicle wheelbase.

• v is the vehicle linear longitudinal velocity.

• δ is the steering angle of the virtual front wheel

So the vehicle movement can be described by (y, s, θ̃). In this chapter path following control law

δ = K(s, y, θ̃, v) (4.1)

will be designed to guarantee

lim
t→∞

y = 0 (4.2)

and θ̃ is bounded in presence of sliding.

4.1.2 Kinematic Model

In section 2.1.2, we have obtained a linearized kinematic model taking into account sliding























ṡ =
v cos θ̃

1 − c(s)y
−

ψ(t) sin θ̃

1 − c(s)y
ẏ = v sin θ̃ + ψ(t) cos θ̃

˙̃
θ = v

( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)

+
v

l
η(t) +

( c(s) sin θ̃

1 − c(s)y
−

1

l

)

ψ(t)

(4.3)

where ψ(t) = vy indicates the lateral sliding velocity, η(t) is linked to the steering bias δb including inaccuracy
due to linearization approximation. (see figure 4.2)

Since we only concern about lateral control, the reduced kinematic model for path following control is






ẏ = v sin θ̃ + ψ(t) cos θ̃

˙̃
θ = v

( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)

+
v

l
η(t) +

( c(s) sin θ̃

1 − c(s)y
−

1

l

)

ψ(t)
(4.4)

24



4.2 Adaptive Control Law Design

In actual agriculture applications, farm vehicles always move with smooth velocities and most paths to be
followed are straight lines and circles. The accelerations and the path curvature vary quite slowly with time,
hence ψ(t), η(t) can be approximated as

{

ψ(t) = ψs + ψ̆(t)
η(t) = ηs + η̆(t)

(4.5)

where the sliding components ψs, ηs are almost time-invariant, ψ̆(t), η̆(t) are time-varying variables. In this

section by assuming ψ̇s = η̇s = 0 and ψ̆(t) = η̆(t) = 0, an adaptive controller will be designed. The
inaccuracy of this approximation mainly consisting of trivial time-varying sliding effects is not important, it
will be treated as disturbances and rejected by robust controller design in forthcoming section 4.3.

4.2.1 Backstepping-based Control Design Scheme

In the model (4.4), the lateral deviation y is not directly controlled. To overcome this problem the idea of
backstepping is used; see [22] for details. Using backstepping we propose a stepwise control design procedure
for this 2-order nonholonomic system with unknown parameters.

step 1: Consider the lateral subsystem of (4.4) and assumption of time-invariant sliding, the Lyapunov
function candidate is chosen as

V1 = 1
2y2 + 1

2 (ψ̂s − ψs)
T Γ−1(ψ̂s − ψs) (4.6)

where Γ is positive definite, ψ̂s indicates the estimation of ψs. The time derivative of V1 along the kinematic
model is

V̇1 = y(v sin θ̃ + ψ̂s cos θ̃) + (ψ̂s − ψs)
T Γ−1(

˙̂
ψs − Γy cos θ̃) (4.7)

Regard u1 = sin θ̃ as the virtual control input of the first step. If choose u1 as

u1d =
−k1y − ψ̂s cos θ̃

v
(4.8)

and
˙̂
ψs = Γy cos θ̃ (4.9)

then we have
V̇1 = −k1y

2 (4.10)

u1d is the desired value of the virtual control input u1 for the first step. If u1 tracks (4.8) precisely, then the
lateral subsystem of (4.4) can be stabilized asymptotically.

δb

δ

vy

v

O

y

x

o

C

ϕ

Figure 4.2: Notations of sliding effects
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In the closed-loop system u1 is not the actual control input, tracing u1d with some errors indeed, so an
error variable ũ1 is defined as

ũ1 = u1 − u1d (4.11)

The time derivative of ũ1 can be computed as

˙̃u1 = cos θ̃
˙̃
θ +

k1ẏ +
˙̂
ψs cos θ̃ − ψ̂s sin θ̃

˙̃
θ

v

= m1

(

v
( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)

+ m3ηs + m2ψs

)

+
˙̂
ψs cos θ̃ + k1(v sin θ̃ + ψs cos θ̃)

v

(4.12)

where

m1 = cos θ̃ −
ψ̂s sin θ̃

v

m2 =
c(s) sin θ̃

1 − c(s)y
−

1

l

m3 =
v

l

(4.13)

Note that

m1 =
1

cos ϕ
cos(θ̃ + ϕ) (4.14)

where ϕ is the slip angle defined in figure 4.2, so assuming |θ̃ + ϕ| < π
2 , one get m1 > 0.

Remark: For simplicity it is assumed that v is constant, in case v is time-varying, only variation is adding

(−k1y − ψ̂s cos θ̃)v̇

v2
in (4.12).

step 2: Considering the Lyapunov function as

V2 = V1 + 1
2 ũ2

1 + 1
2 (η̂s − ηs)

T γ−1(η̂s − ηs) (4.15)

where γ is positive definite, η̂s indicates the estimation of ηs. Regard u2 = tan δ as the virtual control input
of the second step, then the time derivative of V2 along (4.7)(4.12) is

V̇2 = y(vu1 + ψ̂s cos θ̃) + (ψ̂s − ψs)
T Γ−1(

˙̂
ψs − Γy cos θ̃)

+ũ1m1

(

v(
u2

l
−

c(s) cos θ̃

1 − c(s)y
) + m3ηs + m2ψs

)

+ũ1

k1(v sin θ̃ + ψs cos θ̃) +
˙̂
ψs cos θ̃

v
+ (η̂s − ηs)

T
γ
−1 ˙̂ηs

(4.16)

Substituting (4.8)(4.11) into (4.16), we have the following equation

V̇2 = −k1y
2 + yvũ1 + (ψ̂s − ψs)

T Γ−1(
˙̂
ψs − Γy cos θ̃)

+ũ1m1

(

v(
u2

l
−

c(s) cos θ̃

1 − c(s)y
) + m3ηs + m3η̂s − m3η̂s + m2ψs + m2ψ̂s − m2ψ̂s

)

+ũ1

k1(v sin θ̃ + ψs cos θ̃ + ψ̂s cos θ̃ − ψ̂s cos θ̃) +
˙̂
ψs cos θ̃

v
+ (η̂s − ηs)

T
γ
−1 ˙̂ηs

= −k1y
2 + yvũ1 + (ψ̂s − ψs)

T Γ−1(
˙̂
ψs − Γy cos θ̃)

+ũ1m1

(

v(
u2

l
−

c(s) cos θ̃

1 − c(s)y
) + m3η̂s + m2ψ̂s

)

+ ũ1m1m3(ηs − η̂s) + ũ1m1m2(ψs − ψ̂s)

+ũ1

k1(v sin θ̃ + ψ̂s cos θ̃) +
˙̂
ψs cos θ̃

v
+ ũ1

k1(ψs − ψ̂s) cos θ̃

v
+ (η̂s − ηs)

T
γ
−1 ˙̂ηs

= −k1y
2 + ũ1m1

(

v(
u2

l
−

c(s) cos θ̃

1 − c(s)y
) + m3η̂s + m2ψ̂s

)

+yvũ1 + ũ1

k1(v sin θ̃ + ψ̂s cos θ̃) +
˙̂
ψs cos θ̃

v
+(η̂s − ηs)

T γ−1( ˙̂ηs − ũ1γm1m3)

+(ψ̂s − ψs)
T Γ−1(

˙̂
ψs − Γy cos θ̃ − Γk1

ũ1 cos θ̃

v
− Γũ1m1m2)

(4.17)

In (4.17) let

˙̂
ψs = Γy cos θ̃ +

Γk1 cos θ̃

v
ũ1 + Γũ1m1m2

˙̂ηs = γm1m3ũ1

(4.18)
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and choose u2 as

u2 = l(−
y

m1
−

k2ũ1

m1v
−

m3η̂s + m2ψ̂s

v
+ α + β) (4.19)

where

α = −
k1(v sin θ̃ + ψ̂s cos θ̃) +

˙̂
ψs cos θ̃

v2m1

(4.20)

β =
c(s) cos θ̃

1 − yc(s)
(4.21)

then we get
V̇2 = −k1y

2 − k2ũ
2
1 (4.22)

Finally the vehicle steering angle δ is determined by

δ = arctanu2 (4.23)

4.2.2 Stability Analysis

From (4.22) it is known that the solutions y, ũ1 and estimation errors ψ̃s, η̃s are bounded on [0,+∞). The
direct application of LaSalle invariance principle yields that all the solutions converge to the set Ω with

Ω = {(y, ũ1, ψ̂s, η̂s) : y = 0, ũ1 = 0} (4.24)

From (4.24), one gets that the lateral deviation will converge to zero asymptotically, simultaneously the
steady orientation error θ̃ is bounded by

tan θ̃ = −
ψ̂s

v
(4.25)

It is obvious that when vehicles move without sliding (ψ̂s = 0), the orientation error will converge to zero.

4.3 Robust Adaptive Controller Design

4.3.1 Kinematic Model with Time-varying Sliding

We have designed an adaptive controller when assuming that the sliding effects are time-invariant, but the
precise kinematic model with sliding is







ẏ = v sin θ̃ + ψs cos θ̃ + ε1

˙̃
θ = v

( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)

+ m3ηs + m2ψs + ε2

(4.26)

where
ε1 = ψ̆(t) cos θ̃ + ς1
ε2 = m3η̆(t) + m2ψ̆(t) + ς2

(4.27)

ς1, ς2 are unknown external disturbances. It is still an open problem to design controllers using backstepping
algorithm for a system with time-varying parameters in presence of bounded disturbances and noise. In the
latest literature [23] a new parametrization and filter structure that take into account parameter variation
lead to a new backstepping controller when the time variation of the parameters is known. It is indicated
that the uncertainty in the parameters can be counteracted by increasing the values of the design parameters.
But high-gain controllers are not realistic for farm vehicles because of constrained control inputs and limited
bandwidth of the steering systems.

The time-varying sliding components ψ̆(t), η̆(t) have small amplitudes and we also assume that external
disturbances are bounded, so it is reasonable to assume that ε1, ε2 are bounded

|εi| < ρi (4.28)
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Using the similar backstepping procedures, we can prove that

V̇1 = y(v sin θ̃ + ψ̂s cos θ̃) + (ψ̂s − ψs)
T Γ−1(

˙̂
ψs − Γy cos θ̃) + yε1

(4.29)

Still choose ũ1d as (4.8), then ˙̃u1 becomes

˙̃u1 = cos θ̃
˙̃
θ +

k1ẏ +
˙̂
ψs cos θ̃ − ψ̂s sin θ̃

˙̃
θ

v

= m1

(

v
( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)

+ m3ηs + m2ψs + ε2

)

+
˙̂
ψs cos θ̃ + k1(v sin θ̃ + ψs cos θ̃ + ε1)

v

(4.30)

Substituting (4.29) and (4.30) into the derivative of V2, moreover applying the resulting adaptive laws (4.18)
and the controller (4.19), we can prove that

V̇2 = −k1y
2 − k2ũ

2
1 + yε1 + ũ1(m1ε2 +

k1ε1

v
) (4.31)

which implies that the closed-loop system is globally uniformly bounded.

4.3.2 Robust Adaptive Controller with Variable Structure Controller

Here we are in the place to design a controller which is robust to εi. Combining classical robust controllers
with adaptive controllers is straightforward [28]. Considering the derivative of V1 (4.29), in the first step if
we choose

u1d =
−k1y − ψ̂s cos θ̃ − ρ1sign(y)

v
(4.32)

and the conditions u1 = u1d and
˙̂
ψs = Γy cos θ̃ are hold, then we can obtain

V̇1 < −k1y
2 − |y|(ρ1 − |ε1|) (4.33)

which yields the lateral deviation converges to zero.

Since sign(·) is not differentiable, in this section sign(·) is replaced by tanh(·) which is continuously dif-
ferentiable in the stepwise procedures to design robust controllers. Following the similar stepwise procedures
as section 4.2.1, in the first step we choose

u1d =
−k1y − ψ̂s cos θ̃ − ρ1 tanh( y

σ3
)

v
(4.34)

so the derivative of ũ1 is

˙̃u1 = cos θ̃
˙̃
θ +

k1ẏ +
˙̂
ψs cos θ̃ − ψ̂s sin θ̃

˙̃
θ +

d
[

ρ1 tanh( y
σ3

)
]

dt
v

= m1

(

v
( tan δ

l
−

c(s) cos θ̃

1 − c(s)y

)

+ m3ηs + m2ψs + ε2

)

+
1

v

[

˙̂
ψs cos θ̃ +

[

k1 +
(

1 − tanh2(
y

σ3
)
)ρ1

σ3

]

ẏ
]

(4.35)

Substituting (4.33) (4.34) and (4.35) into the derivative of V2, following the similar developing procedures as
section 4.2.1, finally we have the following equation

V̇2 < −k1y
2 − (ρ1 − |ε1|)|y| + ũ1m1

(

v(
1

l
u2 −

c(s) cos θ̃

1 − c(s)y
) + m3η̂s + m2ψ̂s + ε2

)

+yvũ1 + ũ1

̟(v sin θ̃ + ψ̂s cos θ̃) +
˙̂
ψs cos θ̃

v
+

1

v
ũ1̟ε1

+(η̂s − ηs)
T γ−1( ˙̂ηs − ũ1γm1m3)

+(ψ̂s − ψs)
T Γ−1(

˙̂
ψs − Γy cos θ̃ − Γ̟

ũ1 cos θ̃

v
− Γũ1m1m2) + ς1

(4.36)

where
̟ = k1 +

(

1 − tanh2(
y

σ3
)
)ρ1

σ3
(4.37)
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Then we can design a robust adaptive controller

u2 = l(−
y

m1

−
k2ũ1

m1v
−

m3η̂s + m2ψ̂s

v
+ α + β + s1 + s2) (4.38)

where β, ˙̂ηs are defined as before and

α = −
̟(v sin θ̃ + ψ̂s cos θ̃) +

˙̂
ψs cos θ̃

v2m1

s1 = −
ρ1̟

v2m1
tanh(

ũ1

σ1
)

s2 = −
ρ2

v
tanh(

ũ1

σ2
)

˙̂
ψs = Γy cos θ̃ +

Γ̟ cos θ̃

v
ũ1 + Γũ1m1m2

(4.39)

where σi > 0. In this controller s1 is developed to reject ε1 appearing in the derivative of ũ1, s2 is to reject

ε2 in
˙̃
θ. The controller (4.38) leads to

V̇2 < −k1y
2 − k2ũ

2
1 − (ρ1 − |ε1|)|y| − m1|ũ1|(ρ2 − |ε2|) −

̟

v
|ũ1|(ρ1 − |ε1|) + ς2 (4.40)

ςi is trivial errors due to the substitution of sign() by tanh(). So the robust adaptive controller (4.38) and
adaptive laws (4.39) can guarantee the closed-loop system stable.

4.3.3 Projection Mapping for Parameter Adaptation

Another approach to design robust adaptive controllers is utilizing projection mapping for the parameter
adaptation procedures. The projection mapping Projξ(•) is defined by [29, 30]

Projξ(•) =







0 if ξ̂ = ξmax and • > 0

0 if ξ̂ = ξmin and • < 0
• otherwise

(4.41)

By using projection mapping Projξ(•), the robust adaptive laws become

˙̂
ψs = Projψs

(

Γ[cos θ̃
k1 cos θ̃

v
+ m1m2][y ũ1]

T
)

(4.42)

˙̂ηs = Projηs

(

γm1m3ũ1

)

(4.43)

The system will converge into a neighborhood of zero. The prior information on the bounds of the sliding
effects ψs, ηs can be obtained off-line after performing large number of absolute coordinates measurements
under different typical working conditions.

4.4 Simulation Results

First a classical “U” path with a perfect circular arc (path #1) is followed to test the adaptive controller.
In the simulations, the gains used in (4.18), (4.19-4.20) are set as k1 = 0.15, k2 = 1.14, Γ = 0.15, γ = 0.02.
In actual implementations, the gains should be tuned gradually to make an optimal compromise between
transient characteristic and limited bandwidth of the steering system. The constant sliding is introduced
with vy = −0.1, δb = −0.048. The control law of our previous work (3.13) is applied also with the controller
gains kp = 0.09, kd = 0.6. Because this control law does not take sliding effects into account, in figure 4.3
when the sliding appears the lateral deviation (dashed line) becomes significant. While the controller (4.19)
can compensate sliding effects through estimating them on line, the lateral deviation (solid line) converges
to zero with small offsets (due to linearization approximation in (4.4)) after deviating from the desired path.
Since small control gains are used, the vehicle movements are kept smooth. The remarkable overshoots
at the beginning and end of the curve are caused by ”jump change” of the sliding effects and low level
delay. The robust adaptive controller with VSC (4.38) is simulated also. Because the modeling inaccuracy
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is counteracted by VSC, the lateral deviation can converge to zero with a good transient response (dotted
line in figure 4.3). The bounded orientation errors are shown by figure 4.4. As analyzed by section 4.2.2
the orientation errors do not converge to zero, indeed they are bounded by (4.25), it is normal when sliding
occurs known as “crab sliding”. The evolution of the sliding parameters ψ (solid line), η (dashed line) is

shown by figure 4.5. It is clear that at the beginning and end of the circle, ψ̂ varies greatly which explains the
overshoots of the lateral deviation, but as the vehicle follows the circle, ψ̂,η̂ evolve smoothly close to the real
values. To simulate the actual working condition, a set of real measurement data is used in the simulation
to reconstruct the actual vy and δb. In figure 4.6 the adaptive controllers yield small lateral deviation with
zero mean value, while the lateral deviation of the controller (3.13) is significant and has obvious bias.

In order to compare the performances between the robust controllers (4.38) and projection mappings
(4.42-4.43), another reference path #2 consisting of straight lines and curves is followed (see figure 4.7), the
lateral deviation is shown by figure 4.8. The experimental data indicates that the robust controller with
VSC yields better transient performances at the expense of non-smooth movements (dotted line) especially
when low level delay is considered. While the controller with projection mapping yields a movement with
less oscillation following the reference path (solid line). So for the vehicles with good low-level characters,
the controller with VSC is favorable, but for the vehicles whose bandwidth is limited, the robust controller
with projection mapping is preferred.

4.5 Conclusion

The path following problem of autonomous agricultural vehicles in the presence of sliding is investigated in
this chapter. A vehicle-oriented kinematic model which integrates the sliding effects as additive unknown
parameters is constructed. From this model, a practical adaptive controller is designed based on the back-
stepping method which can stabilize the lateral derivation near zero and guarantees the orientation error
converge into a neighborhood near the origin. In addition two approaches are proposed to refine the adaptive
controller, allowing it to be robust to the time-varying sliding components and external disturbances. Ex-
perimental comparative results show the effectiveness of the proposed control laws. The advantages of this
scheme are that

• When no sliding occurs, it provides a path following controller which can guarantee lateral deviation
and orientation error converge to zero.

• Instead of using high gains or powerful functions to counteract sliding effects, small controller gains
are used to stabilize the system and the sliding effects are estimated by parameter adaptation, yielding
precision path following with less oscillation.

• Backstepping procedures are used to design a path-following controller for a 2-order nonholonomic
system, it can be extended to high order nonholonomic systems.
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Figure 4.3: Lateral deviation of path #1
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Figure 4.4: Orientation errors of path #1
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Figure 4.5: Evolution of sliding parameters
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Figure 4.6: Lateral deviation of path #1 with real measurements
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Figure 4.7: Path #2 to be followed
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Figure 4.8: Lateral deviation of path #2 with real measurements
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Chapter 5

TRAJECTORY TRACKING

CONTROL IN PRESENCE OF

SLIDING

In agriculture fields it is quite common that several vehicles (including cropping, threshing, cleaning, seeding
and spraying machines) compose a platoon for combined harvesting. In this case driving safety requiring
constant longitudinal distances between the leading vehicle and following vehicles is an additional requirement
along with the effort of improving lateral path-following performances. Therefore vehicle motions are specified
not only by a geometric path but also by a time law with respect to the longitudinal motions. Since
longitudinal-lateral control becomes more and more important, many research teams have paid their attention
to trajectory tracking control, satisfactory results have been reported as soon as vehicles satisfy pure rolling
constraints [1], [3]-[6]. But as explained in last chapters, due to complex factors between tires and grounds
the pure rolling constraints are never satisfied strictly especially for agriculture applications.

In chapter 4 we have applied backstepping successfully to design a path following controller, so the purpose
of this chapter is to extend our lateral controller to design a practical longitudinal-lateral controller in presence
of sliding. The main idea of this chapter is that sliding effects are introduced as additive unknown parameters
to the ideal kinematic model, based on backstepping method a robust adaptive controller is designed. Moreover
to be of benefit to actual applications the robust adaptive controller is simplified into an adaptive controller
with projection mapping. This chapter is organized as follows, in section 5.1 a kinematic model considering
sliding is constructed in the vehicle body frame. In section 5.2 a robust adaptive controller is designed by
using backstepping methods. In section 5.3 the robust adaptive controller is simplified into an adaptive
controller with projection mapping. In section 5.4 some comparative simulation results are presented to
validate the proposed control laws.

5.1 Kinematic Model for Trajectory Tracking Control

5.1.1 Notation and Problem Description

In this chapter the vehicle is simplified into a bicycle model, the kinematic model is expressed in the vehicle
body frame (o, x′, y′) (see figure 5.1). Variables necessary in the kinematic model are denoted as follows:

• o (or) is the center of the (reference) vehicle virtual rear wheel.

• x′ is the vector corresponding to the vehicle body axis

• y′ is the vector vertical to x′

• (xr, yr) are the coordinates of the reference vehicle or with respect to the inertia frame.

• (x, y) are the coordinates of the vehicle o with respect to the inertia frame.

• (xe, ye) are the coordinates of the vector −→oor in the frame (o, x′, y′)
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• c(s) is the curvature of the path, s is the curvilinear coordinates (arc-length) of the point or along the
reference path from an initial position.

• θ (θr) is the orientation of the (reference) vehicle centerline with respect to the inertia frame.

• θe = θr − θ is the orientation error.

• l is the vehicle wheelbase.

• v (vr) is the linear velocity of the (reference) vehicle with respect to the inertia frame.

• vx is the longitudinal velocity of the vehicle in the direction of ox′ in the inertia frame. In this chapter
we assume that only lateral sliding occurs between tires and grounds, so vx always equals to the wheel
rotating velocity Vω.

• δ is the steering angle of the virtual front wheel

So the trajectory tracking errors can be described by (xe, ye, θe). The aim of this chapter is to design a con-
troller (vx, δ) which can guarantee the longitudinal-lateral errors xe, ye approach to zero and the orientation
error θe is bounded in presence of sliding.

5.1.2 Kinematic Model

From figure 5.1, it is easy to obtain the following geometric relationship





xe

ye

θe



 =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









xr − x
yr − y
θr − θ



 (5.1)

In this chapter it is assumed that |θe| < π
2 . When vehicles move without sliding, the angular velocity can be

expressed by

θ̇ = ω =
v

l
tan δ (5.2)

The angular velocity of the reference vehicle is

θ̇r =
vr

1
c(s)

(5.3)

The ideal kinematic model with respect to (o, x′, y′) can be developed directly by differentiating (5.1)











ẋe = −v + vr cos θe + ωye

ẏe = vr sin θe − ωxe

θ̇e = vrc(s) −
v

l
tan δ

(5.4)

But when vehicles move on a steep slope or the ground is slippery, sliding occurs inevitably, (5.4) is no
longer valid. Since the longitudinal tire sliding is neglected, the violation of the pure rolling constraints
is described by introducing the lateral sliding velocity vy and bias of the steering angle δb. Therefore the
velocity constraints become

{

ẋ = v cos(θ + ϕ)
ẏ = v sin(θ + ϕ)

(5.5)

where

v =
√

v2
x + v2

y (5.6)

and ϕ is the side sliding angle defined by

ϕ = arctan(
vy

vx

) (5.7)
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By using the similar method the kinematic model when sliding is taken into account is obtained











ẋe = −vx + vr cos θe + ωye

ẏe = −vy + vr sin θe − ωxe

θ̇e = vrc(s) − (
vx

l
tan(δ + δb) −

vy

l
)

(5.8)

Remark that
vx = v cos ϕ (5.9)

equals to the wheel rotating velocity which is the control law to be designed. In case no sliding occurs, vx = v.

5.1.3 Kinematic Model with Linearization Approximation

In actual agriculture applications farm vehicles always move smoothly and most trajectories to be tracked are
straight lines and circles without abrupt change of curvature, so the lateral sliding velocity and the steering
bias vary not too greatly with time. Hence the sliding effects can be described exactly by

vy = v̄y + ε1

δb = δ̄b + ε′2
(5.10)

where v̄y, δ̄b are time-invariant, ε1, ε′2 are time-varying variables with zero mean value. Furthermore since
the steering bias δb is quite small, the orientation kinematic equation in (5.8) can be linearized resulting in
trivial errors. Therefore the kinematic model (5.8) is rewritten as

ẋe = −vx + vr cos θe + ωye (5.11a)

ẏe = vr sin θe − ωxe − (v̄y + ε1) (5.11b)

θ̇e = c(s)vr −
vx

l
tan δ +

v̄y + ε1

l
−

vx

l
(tan δ̄b + ε2) (5.11c)

where ε2 = tan ε′2 + ǫ, ǫ is the error due to linearization approximation.

5.2 Backstepping-based Robust Adaptive Control Design

5.2.1 Trajectory Tracking Control for Ideal Kinematic Model

First the ideal kinematic model (5.4) is considered. Notice that (5.4) is a 2-3 nonholonomic system in which
ye is not directly controlled. To overcome this problem the idea of backstepping is used: see [22] for details.
Using backstepping we propose a stepwise design procedure for this 3-order nonholonomic system.

o

or

ϕ

θe

c(s)

y′

x′
δ

xe

ye

O

Y

X

δb

Figure 5.1: Notations of the kinematic model
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Step 1 : Considering the ideal kinematic model (5.4), we choose the Lyapunov function candidate as

V1 =
1

2
x2

e +
1

2
y2

e (5.12)

The derivative of V1 along (5.4) is

V̇1 = xe(−vx + vr cos θe) + ye(vr sin θe) (5.13)

Regard u1 = sin θe as the virtual control input of the first step. If choose u1 as

u1d =
−kyye

vr

(5.14)

and choose the longitudinal velocity as

vx = vr cos θe + kxxe (5.15)

then we have
V̇1 = −kxx2

e − kyy2
e (5.16)

So u1d of (5.14) is the desired value of the virtual control input u1 for the first step. If u1 tracks (5.14)
precisely, then the longitudinal and lateral deviations will converge to zero asymptotically.

Indeed in the closed loop system u1 is not the actual control input, tracking u1d with some errors, therefore
ũ1 is defined as

ũ1 = u1 − u1d (5.17)

Computing the time derivative of ũ1 yields to

˙̃u1 = cos θe

(

c(s)vr −
vx

l
tan δ

)

+
ky

vr

(vr sin θe − ωxe) (5.18)

step 2: Consider the Lyapunov function as

V2 = V1 +
1

2
ũ2

1 (5.19)

Then the time derivative of V2 along (5.13) and (5.18) is

V̇2 = xe(−vx + vr cos θe) + yevru1 + ũ1(cos θevrc(s) − (cos θe +
kyxe

vr

)ω + ky sin θe) (5.20)

after substituting (5.14) (5.15) and (5.17) into (5.20), the following equation can be deduced

V̇2 = −kxx2
e − kyy2

e + ũ1(yevr + cos θevrc(s) − (cos θe +
kyxe

vr

)ω + ky sin θe) (5.21)

In (5.21) if ω is chosen as

ω =
yevr + cos θevrc(s) + ky sin θe + kuũ1

cos θe +
kyxe

vr

(5.22)

where

ũ1 = sin θe +
kyye

vr

(5.23)

Then we can obtain
V̇2 = −kxx2

e − kyy2
e − kuũ2

1 (5.24)

The resulting control laws are
vx = vr cos θe + kxxe

δ = arctan(
lω

vx

)
(5.25)
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5.2.2 Stability Analysis

(5.24) leads to the stability of the closed-loop system. The direct application of LaSalle invariance principle
yields that all the solutions converge to the set Ω with

Ω = {(xe, ye, ũ1) : xe = 0, ye = 0, ũ1 = 0} (5.26)

Moreover from (5.17), one gets that when the lateral deviation converges to zero, simultaneously the steady
orientation error θe converges to zero also. So when vehicles move without sliding, the proposed controller
can stabilize the closed-loop system to zero.

5.2.3 Robust Adaptive Control for Kinematic Model with Sliding

Consider the kinematic model with sliding (5.11). It is a 2-3 nonholonomic system with unknown constant
parameters v̄y, δ̄b and time-varying disturbances εi. In this chapter it is assumed that εi is bounded by

|εi| < ρi (5.27)

So we are in the place to design a controller which not only can estimate and compensate unknown parameters
but also is robust to εi. To solve this problem a robust adaptive controller will be designed by combining
backstepping schemes with Variable Structure control (VSC).

step 1: Consider the sub-kinematic equations (5.11a) and (5.11b). The Lyapunov function candidate is
chosen as

V1 =
1

2
x2

e +
1

2
y2

e +
1

2
(v̂y − v̄y)T Γ−1(v̂y − v̄y) (5.28)

where Γ is positive definite, v̂y indicates the estimation of v̄y. The time derivative of V1 along the kinematic
model is

V̇1 = xe(−vx + vr cos θe) + ye(vr sin θe − v̂y − ε1) + (v̂y − v̄y)T Γ−1( ˙̂vy + Γye) (5.29)

Regard u1 = sin θe as the virtual control input of the first step. If choose u1 as a variable structure controller

u1d =
−kyye + v̂y − ρ1sign(ye)

vr

(5.30)

and let

vx = vr cos θe + kxxe (5.31)
˙̂vy = −Γye (5.32)

then we have
V̇1 < −kxx2

e − kyy2
e − (ρ1 − |ε1|)|ye| (5.33)

So u1d of (5.30) is the desired value of the virtual control input u1 for the first step. If u1 tracks (5.30)
precisely, then the longitudinal and lateral deviations will converge to zero asymptotically.

Indeed in the closed loop system u1 is not the actual control input, tracking u1d with some errors, therefore
ũ1 is defined as

ũ1 = u1 − u1d (5.34)

In backstepping schemes the derivative of u1d must appear in the following steps, but sign() included in
(5.30) is not differentiable, so sign() is replaced by tanh() which is continuously differentiable. Therefore u1d

becomes

u1d =
−kyye + v̂y − ρ1 tanh(

ye

σ1
)

vr

(5.35)

where σ1 > 0. Substituting (5.35) into (5.34) and computing the time derivative yield to

˙̃u1 = cos θe

(

c(s)vr −
vx

l
tan δ +

v̄y + ε1

l
−

vx

l
(η + ε2)

)

+
1

vr

(̟ẏe − ˙̂vy) (5.36)
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where

η = tan δ̄b (5.37)

̟ = ky +
(

1 − tanh2(
ye

σ1
)
)ρ1

σ1
(5.38)

Remark: For simplicity it is assumed that vr is constant, in case vr is time-varying, only variation is

adding
v̇r

v2
r

(

− kyye + v̂y − ρ1 tanh
ye

σ1

)

in (5.36).

step 2: consider the Lyapunov function as

V2 = V1 +
1

2
ũ2

1 +
1

2
(η̂ − η)T γ−1(η̂ − η) (5.39)

where γ is positive definite, η̂ indicates the estimation of η. Regard u2 = tan δ as the virtual control input of
the second step, then the time derivative of V2 along (5.29) is

V̇2 = xe(−vx + vr cos θe) + ye(vru1 − v̂y − ε1) + (v̂y − v̄y)T Γ−1( ˙̂vy + Γye) + ũ1
˙̃u1 + (η̂ − η)T γ−1 ˙̂η (5.40)

Substituting (5.31)(5.35)(5.36) into (5.40), we have the following equation

V̇2 ≤ −kxx2
e − kyy2

e − (ρ1 − |ε1|)|ye| + yevrũ1 + (v̂y − v̄y)T Γ−1( ˙̂vy + Γye)

+ũ1

(

cos θe

(

c(s)vr −
vx

l
tan δ +

v̄y + ε1

l
−

vx

l
(η + ε2)

)

+
1

vr

(̟ẏe − ˙̂vy)
)

+(η̂ − η)T γ−1 ˙̂η + ζ1

(5.41)

where ζ1 is a trivial variation due to the replacement of sign() by tanh() in (5.35). In (5.41) ẏe is substituted
by the kinematic model with sliding (5.11b), the following equation can be obtained

V̇2 ≤ −kxx2
e − kyy2

e − (ρ1 − |ε1|)|ye| + (v̂y − v̄y)T Γ−1( ˙̂vy + Γye)

+ũ1

(

yevr + cos θec(s)vr − (cos θe

vx

l
+

̟xevx

vrl
)u2 +

1

l
(cos θe +

̟xe

vr

)(v̄y + ε1) −
̟ε1

vr

+
̟(vr sin θe − v̂y) − ˙̂vy

vr

)

+(η̂ − η)T γ−1( ˙̂η + γũ1β) − ũ1βη̂ − ũ1βε2 − (v̄y − v̂y)
ũ1̟

vr

+ ζ1

(5.42)
where β is defined by (5.47). By algebraic transformation the derivative of V2 becomes

V̇2 ≤ −kxx2
e − kyy2

e − (ρ1 − |ε1|)|ye| + (v̂y − v̄y)T Γ−1( ˙̂vy + Γye)

+ũ1

(

yevr + cos θec(s)vr − (cos θe

vx

l
+

̟xevx

vrl
)u2 + τ(v̂y + ε1) −

̟ε1

vr

+ α
)

+ ũ1τ(v̄y − v̂y)

+(η̂ − η)T γ−1( ˙̂η + γũ1β) − ũ1βη̂ − ũ1βε2 − (v̄y − v̂y)
ũ1̟

vr

+ ζ1

(5.43)

where α and τ are defined by (5.45) and (5.46). Finally the derivative of V2 is simplified into

V̇2 ≤ −kxx2
e − kyy2

e − (ρ1 − |ε1|)|ye| + ũ1(λ − βu2 + α −
̟ε1

vr

− βη̂ + τε1 − βε2)

+(v̂y − v̄y)T Γ−1( ˙̂vy + Γye − Γũ1τ + Γ
̟

vr

ũ1)

+(η̂ − η)T γ−1( ˙̂η + γũ1β) + ζ1

(5.44)

where

α =
̟(vr sin θe − v̂y) − ˙̂vy

vr

(5.45)

τ =
1

l
(cos θe +

̟xe

vr

) (5.46)

β = vxτ (5.47)

λ = yevr + cos θec(s)vr + τ v̂y (5.48)

In (5.44) let
˙̂η = −γũ1β
˙̂vy = −Γye + Γũ1τ − Γ

̟

vr

ũ1
(5.49)
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and choose u2 as

u2 =
1

β

(

kuũ1 + λ + α − βη̂ + ρ1

(cos θe

l
+

̟

vr

∣

∣

∣

xe − l

l

∣

∣

∣

)

tanh(
ũ1

σ2
) + |β|ρ2 tanh(

ũ1

σ3
)
)

(5.50)

where sign() has been substituted by tanh() and σi > 0, then we get

V̇2 ≤ −kxx2
e − kyy2

e − kuũ2
1 − (ρ1 − |ε1|)|ye| − (ρ2 − |ε2|)|β||ũ1| − (ρ1 − |ε1|)(

cos θe

l
+

̟

vr

∣

∣

∣

xe − l

l

∣

∣

∣
)|ũ1| + ζ

(5.51)
where ζ = ζ1 + ζ2, ζ2 is another trivial variation due to the substitution of sign() by tanh() in (5.50). (5.51)
implies that the closed-loop system is uniformly bounded.

5.2.4 Stability Analysis

From (5.51) it is known that the longitudinal deviation xe, lateral deviation ye and ũ1 are all bounded. Indeed
all of them converge into a neighborhood of zero. The range of the neighborhood is determined by ζ which
is linked to σi. The smaller σi is, the smaller the range of the neighborhood is, yielding higher accuracy.

When ye and ũ1 vary around zero, from (5.34) and (5.35) one gets that the orientation error θe converges
into a neighborhood of

θe = arcsin
( v̂y

vr

)

(5.52)

5.3 Simplified adaptive controller with projection mapping

The robust adaptive controller (5.50) with VSC can guarantee high tracking accuracy from academic point of
view. But in actual applications due to limited bandwidth of agriculture vehicles and lag of hydraulic-drive
steering systems, performances of the robust adaptive controller (5.50) may be deteriorated by significant
”Chattering”.

To be of more benefit to actual applications, the robust adaptive controller is simplified by setting ρi to
zero, then we get ̟ = ky and the controller (5.50) is reduced into an ordinary adaptive controller without
VSC components.

u2 =
1

β

(

kuũ1 + λ + α − βη̂
)

(5.53)

By using the similar Lyapunov’s direct method, it is proven that the adaptive controller (5.53) leads to the
following result

V̇2 = −kxx2
e − kyy2

e − kuũ2
1 + ε1(

ũ1 cos θe

l
−

ũ1ky

vr

− ye) − ũ1 cos θe

vx

l
ε2 (5.54)

In (5.54) the effect of ε1 is introduced through its appearance in (5.29)(5.36), the effect of ε2 is introduced
by its appearance in (5.36). (5.54) implies the closed-loop system is uniformly bounded. But comparing with
(5.51) in which only ζ is a negligible disturbance, (5.54) is subjected to all the unmodeled sliding effects.

To make the adaptive controller (5.53) more robust to the unmodelled sliding effects, projection mapping
is used for the parameter adaptation procedure. The projection mapping Projξ(•) is defined by [29, 30]

Projξ(•) =







0 if ξ̂ = ξmax and • > 0

0 if ξ̂ = ξmin and • < 0
• otherwise

(5.55)

By using the projection mapping Projξ(•), the robust adaptive laws become

˙̂vy = Projv̄y

(

− Γye + Γũ1τ − Γ
̟

vr

ũ1) (5.56)

˙̂η = Projη

(

− γũ1β
)

(5.57)

The prior information on the bounds of the sliding effects v̄y, η can be obtained off-line after performing
large number of absolute coordinates measurements under different typical working conditions.
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5.4 Simulation Results

First a classical “U” path with a perfect circular arc (path #1) is applied as the reference trajectory to test
the proposed controllers. In the simulations, the gains used in (5.31) and (5.50) are set as kx = 0.6, ky = 0.15,
ku = 1.14. The gains of the adaptive laws (5.49) as set as Γ = 0.2, γ = 0.05. In actual implementations
these gains should be tuned gradually to make an optimal compromise between transient characteristic and
limited bandwidth of the steering system. The reference velocity is set as vr = 8.4km/h which is the normal
velocity of agriculture vehicles in agriculture applications.

In the first simulation the constant sliding is introduced with vy = −0.1, δb = −0.048. The control law
(5.25) without considering sliding is applied also with the same controller gains. The simulation results
of the longitudinal, lateral and orientation errors are shown by figure 5.2-5.4. Since the vehicle velocity is
initialized to zero, obvious longitudinal errors are noticed at the beginning of the simulations. The initial
orientation errors are also nonzero. Those initial errors quite fit with the real working conditions. From
the simulations it is clear that all the controllers can make the longitudinal-lateral errors approach to zero
before sliding occurs. But when sliding appears, because the control law (5.25) does not take sliding effects
into account, the longitudinal-lateral deviations (dashed line) become significant. While the robust adaptive
controller (5.50) can compensate sliding effects through estimating them on line and counteract modeling
inaccuracy by VSC, so the longitudinal-lateral deviations can converge to zero with a good transient response
(solid line). Finally the adaptive controller (5.53) is simulated also. (5.53) can compensate time-invariant
sliding, the effects of the time-varying sliding are moderated by projection mapping, hence its longitudinal-
lateral deviations (dotted line) converge to zero with small offsets (due to linearization approximation in
(5.11c)). The remarkable overshoots at the beginning and end of the curve are caused by ”jump change” of
the sliding effects and low level delay. The bounded orientation errors are shown by figure 5.4. As analyzed
by section 5.2.4 the proposed controllers cannot make the orientation errors converge to zero, indeed they
are bounded around (5.52). It is normal when sliding occurs known as “crab sliding”. The evolution of the
sliding parameters v̂y (solid line), η̂ (dashed line) is displayed by figure 5.5. At the beginning and end of the
circle, v̂y varies greatly which explains the overshoots of the lateral deviation, but as the vehicle follows the
circle, v̂y, η̂ evolve smoothly close to the real values.

To simulate the actual working conditions, a set of real measurement data is used in the simulation
to reconstruct the actual sliding effects vy and δb. The longitudinal-lateral deviations are shown by 5.6,
5.7. The (robust) adaptive controllers yield small lateral deviations with zero mean value, while the lateral
deviation of the controller (5.25) is significant and has obvious bias. The longitudinal errors of the (robust)
adaptive controller are also less than it of (5.25). It is because when the lateral sliding and steering bias are
compensated by (robust) adaptive controllers, the negative influences of ye and θe (due to sliding) on the
longitudinal tracking accuracy is moderated.

In order to fully present the proposed controllers, another realistic reference trajectory #2 which is sampled
in an actual agriculture application is tracked (see figure 5.8). The longitudinal and lateral deviations are
displayed by figure 5.9, 5.10. The experimental data indicates that although the trajectory #2 is more
complex than trajectory #1, the proposed controllers can still track it with high accuracy in presence of
sliding. Furthermore the robust adaptive controller with VSC yields better transient performances at the
expense of non-smooth movements (solid line) especially when low level delay is considered. While the
adaptive controller (5.53) with projection mapping yields a movement with less oscillation (dotted line), but
its bias is larger than VSC’s. So in case when sliding is dominant, the robust adaptive controller with VSC is
favorable. But for the vehicles whose bandwidth is limited, the adaptive controller with projection mapping
is preferred.

5.5 Conclusion

The problem of trajectory tracking control of autonomous agricultural vehicles in the presence of sliding is
investigated in this chapter. A kinematic model which integrates the sliding effects as additive unknown
parameters is constructed. From this model, a robust adaptive controller is designed based on backstepping
methods which can stabilize the longitudinal-lateral derivations into a neighborhood of zero and guarantees
the orientation error converge into a neighborhood near the origin. In addition a reduced adaptive controller
with projection mapping is proposed for the purpose of smooth vehicle movements. Experimental comparative
results show the effectiveness of the proposed control laws. The advantages of this scheme are that

40



• When no sliding occurs, the proposed controller can guarantee longitudinal-lateral deviations and ori-
entation errors converge to zero.

• Integrating parameter adaptation with backstepping schemes yields a practical trajectory tracking
controller for agriculture vehicles. Also it is applicable for platoon control.

• Backstepping procedures can be extended easily to high-order nonholonomic systems, for example
trailer control.
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Figure 5.2: Longitudinal deviation of path #1
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Figure 5.3: Lateral deviation of path #1
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Figure 5.4: Orientation errors of path #1
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Figure 5.5: Evolution of sliding parameters
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Figure 5.6: Longitudinal deviation of path #1 with real measurements
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Figure 5.7: Lateral deviation of path #1 with real measurements
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Figure 5.8: Path #2 to be followed
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Figure 5.9: Longitudinal deviation of path #2 with real measurements
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Figure 5.10: Lateral deviation of path #2 with real measurements
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Chapter 6

SUMMARY AND FUTURE WORKS

6.1 Summary

The aim of this work is to design some advanced controllers for autonomous vehicles to guarantee them
enough mobility including high lateral and longitudinal tracking accuracy when they move on several typical
grounds. In order to face the facts that in real worlds pure rolling constraints are seldom strictly satisfied, this
work expanded the previous work of [11] which is under the assumption of pure rolling. Several anti-sliding
controllers have been developed. The numerical simulations have validated their effectiveness.

To take sliding effects into account, a kinematic and a dynamic models with sliding are constructed. The
kinematic model is finally transformed into a specific form in which sliding appears as additive uncertainties
to the ideal kinematic model. In the dynamic model uncertain sliding effects are indicated by corning stiffness
coefficients. Although throughout this work all the controllers are designed based on the kinematic model,
the structure of the resulting dynamic model is still beneficial to robust controller designing.

To facilitate GPS-based applications, this work has proven that all the state variables of the vehicle models
can be measured or reconstructed with GPS. The detailed reconstruction schemes are rather easy and quite
straightforward which is realistic for real applications.

Since the kinematic model with sliding have been obtained, it is intrinsic to regard sliding effects as
external disturbances to the ideal kinematic model. Therefore robust control theories are utilized to design
a controller which makes the vehicles robust to the sliding. On the other hand chained system properties
are attractive for nonholonomic system control. They can transform a nonholonomic system into a linear
system which allows us to use linear system theories to design a controller. So sliding mode control was
combined with chained system theories to design a robust controller. It has been theoretically proven that
the closed-loop system is globally uniformly bounded.

Robust controllers can remedy sliding effects in some degrees, but since all the sliding effects are counter-
acted only by adjusting the gains of the sliding mode controllers, the negative ”Chattering” effects become
significant especially for vehicles with time delay. Sometimes a smooth vehicle motion is more preferred than
a high tracking accuracy. To share the undertaking of the sliding mode controller, a robust adaptive con-
troller is designed. Backstepping has been proven effective in designing adaptive controllers for nonholonomic
systems, so combination of backstepping schemes with variable structure control leads to a robust adaptive
controller. In this controller the time-invariant sliding component is rejected by adaptive adaptation, while
the variable structure controller is responsible for correcting the time-varying sliding component. Although
its structure is more complex than the sliding mode controller’s, the robust adaptive controller allows us to
use low gain control which can yield a smooth vehicle motion. With Lyapunov’s direct method, it is proven
that the proposed robust adaptive controller make the lateral deviation stable in neighborhood of zero, the
orientation error is stabilized into a neighborhood near the origin in presence of sliding.

Above two path following controllers can guarantee high lateral and orientation accuracy, but longitudinal
control is very required for high-way vehicle safety and platoon control. Longitudinal-lateral control is the
final target of this project, it is also the highlight of this work. First instead of building kinematic model with
respect to the path frame, in longitudinal-lateral control the kinematic model is constructed in the vehicle
body frame. Then a robust adaptive controller is designed similarly by combining backstepping schemes with
variable structure control. Benefitting from the utilization of backstepping methods, the developing procedure
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is quite easy and straightforward for understanding despite the complicated model of 2-3 nonholonomic
systems with uncertainties. The resulting controller allows the lateral-longitudinal deviations to converge
into a neighborhood of zero and the orientation error to be stabilized into a neighborhood near the origin in
presence of sliding.

6.2 Future works

The prospective works include extending the backstepping methods to high-order nonholonomic system
control. High-precision control for the general case of N trailers is still open. It may be one of the promising
subjects for the application of backstepping. Furthermore platoon control also may be benefited from these
works. The longitudinal-lateral controller can be applied directly to platoon control, what we need to do is
just computing the “virtual reference vehicle” for each following vehicle based on the required safety distances
and path curvature.

Utilize other techniques such as filter theories, signal processing, observer theories to identify system
parameters in real time. It is very important for actual applications in which prior knowledge is very limited
and iterative training is not allowed. In such cases real-time online system parameter identification has great
sense, since it can improve adaptive control by offering accurate model parameters.

Refine kinematic models to concern about real vehicle systems, for example mechanical limitations, back-
lash at the steering wheels, actuator saturation and dead-zone, noise and biases of the sensors. All of them
have important influence on the control accuracy. In this work we ignored them in the kinematic model
which deteriorated the control accuracy in actual applications. There are two solutions to this problem. One
is to refine the kinematic model to take into account all the important factors. Another is to improve the
control robustness with respect to theses kinds of uncertainties. The latter seems to be more easily, but it is
still an open and challenging subject of research.

Throughout this study we have dealt with a kinematic model in which velocity and steering angle were
assumed to be the control inputs. But for heavy vehicles and high-speed vehicles, dynamics is no longer
negligible. The inherent relationships between vehicles and grounds can be explained clearly only by dynamic
models. So for high-precision automatic guidance, the dynamic model of vehicles, tires and actuators are very
necessary. In future works kinematic models should be extended to integrate dynamic models with generalized
forces as inputs. We have obtained a dynamic model whose structure is convenient for application of robust
control. But the exact dynamic model describing internal reaction between different kinds of grounds and
vehicles is still not available.
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