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Abstract

Proposed in this paper is a kinetostatic performance index for the optimum dimensioning of planar
manipulators of the serial type. The index is based on the concept of distance of the underlying Jacobian
matrix to a given isotropic matrix that is used as a reference model for the purpose of performance eval-
uation. Applications of the index fall in the realm of design, but control applications are outlined. The
paper focuses on planar manipulators, the basic concepts being currently extended to their three-dimen-
sional counterparts. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Various performance indices have been devised to assess the kinetostatic performance of serial
manipulators. Among these, the concepts of service angle [1], dexterous workspace [2] and ma-
nipulability [3] are worth mentioning. All these different concepts allow the definition of the ki-
netostatic performance of a manipulator from correspondingly different viewpoints. However,
with the exception of Yoshikawa’s manipulability index [3], none of these considers the invert-
ibility of the Jacobian matrix. A dimensionless quality index was recently introduced by Lee et al.
[4] based on the ratio of the Jacobian determinant to its maximum absolute value, as applicable to
parallel manipulators. This index does not take into account the location of the operation point in
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the end-effector, for the Jacobian determinant is independent of this location. The proof of the
foregoing fact is available in [5], as pertaining to serial manipulators, its extension to their parallel
counterparts being straightforward. The condition number of a given matrix is well known to
provide a measure of invertibility of the matrix [6]. It is thus natural that this concept found its
way in this context. Indeed, the condition number of the Jacobian matrix was proposed by
Salisbury and Craig [7] as a figure of merit to minimize when designing manipulators for maxi-
mum accuracy. In fact, the condition number gives, for a square matrix, a measure of the relative
roundoff-error amplification of the computed results [6] with respect to the data roundoff-error.
As is well known, however, the dimensional inhomogeneity of the entries of the Jacobian matrix
prevents the straightforward application of the condition number as a measure of Jacobian in-
vertibility. The characteristic length was introduced in [8] to cope with the above-mentioned in-
homogeneity. Apparently, nevertheless, this concept has found strong opposition within some
circles, mainly because of the lack of a direct geometric interpretation of the concept. It is the aim
of this paper to shed more light on this debate, while proposing a novel performance index that
lends itself to a straightforward manipulation and leads to sound geometric relations. Briefly
stated, the performance index proposed here is based on the concept of distance in the space of
m� n matrices, which is based, in turn, on the concept of inner product of this space. The per-
formance index underlying this paper thus measures the distance of a given Jacobian matrix from
an isotropic matrix of the same gestalt. With the purpose of rendering the Jacobian matrix di-
mensionally homogeneous, we resort to the concept of posture-dependent conditioning length.
Thus, given at an arbitrary serial manipulator in an arbitrary posture, it is possible to define a
unique length that renders this matrix dimensionally homogeneous and of minimum distance to
isotropy. The characteristic length of the manipulator is then defined as the conditioning length
corresponding to the posture that renders the above-mentioned distance a minimum over all
possible manipulator postures. This paper is devoted to planar manipulators, the concepts being
currently extended to spatial ones.

2. Algebraic background

Given two arbitrary m� n matrices A and B of real entries, their inner product, represented by
ðA;BÞ, is defined as

ðA;BÞ � tr AWBT
� �

; ð1Þ
where W is a positive-definite n� n weighting matrix that is introduced to allow for suitable
normalization. The entries of W need not be dimensionally homogeneous, and, in fact, they
should not if A and B are not. However, the product AWBT must be dimensionally homogeneous;
else, its trace is meaningless. The norm of the space of m� n matrices induced by the above inner
product is thus the Frobenius norm, namely,

kAk2 ¼ tr AWAT
� �

: ð2aÞ
Moreover, we shall be handling only nondimensional matrix entries, and hence, we choose W
nondimensional as well, and so as to yield a value of unity for the norm of the n� n identity
matrix 1. Hence,
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W � 1
n
1: ð2bÞ

The foregoing inner product is thus expressed as

ðA;BÞ � 1
n
tr ABT
� �

: ð2cÞ

Henceforth we shall use only the Frobenius norm; for brevity, this will be simply referred to as the
norm of a given matrix.
When comparing two dimensionless m� n matrices A and B, we can define their distance

dðA;BÞ as the Frobenius norm of their difference, namely,
dðA;BÞ � kA� Bk; ð3aÞ

i.e.,

dðA;BÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
tr ðA� BÞðA� BÞT
h ir

: ð3bÞ

An m� n isotropic matrix, with m < n, is one with a singular value r > 0 of multiplicity m, and
hence, if the m� n matrix C is isotropic, then

CCT ¼ r21; ð4Þ

where 1 is the m� m identity matrix. Note that the generalized inverse of C can be computed
without a roundoff-error, for it is proportional to CT, namely,

CCT
� ��1

CT ¼ 1

r2
CT: ð5Þ

Furthermore, the condition number jðAÞ of a square matrix A is defined [6] as

jðAÞ ¼ kAkkA�1k; ð6Þ

where any norm can be used. For the purpose of the paper, we shall use the Frobenius norm for
matrices and the Euclidean norm for vectors. Henceforth we assume, moreover, a planar n-re-
volute manipulator, as depicted in Fig. 1, with Jacobian matrix J given in [5] as

Fig. 1. Planar n-revolute manipulator.
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J ¼ 1 1 � � � 1
Er1 Er2 � � � Ern

� �
; ð7Þ

where ri is the vector directed from the center of the ith revolute to the operation point P of the
end-effector, while matrix E is defined as

E ¼ 0 �1
1 0

� �
; ð8Þ

i.e., E represents a counterclockwise rotation of 90�. It will prove convenient to partition J in the
form

J ¼ A

B

� �

with A and B defined as

A ¼ 1 1 � � � 1½ 
 and B ¼ Er1 Er2 � � � Ern½ 
:
Therefore, while the entries of A are dimensionless, those of B have units of length. Thus, the

sole singular value of A, i.e. the nonnegative square root of the scalar of AAT, is
ffiffiffi
n
p
, and hence,

dimensionless, and pertains to the mapping from joint-rates into end-effector angular velocity.
The singular values of B, which are the nonnegative square roots of the eigenvalues of BBT, have
units of length, and account for the mapping from joint-rates into operation-point velocity. It is
thus apparent that the singular values of J have different dimensions and hence, it is impossible to
compute jðJÞ as in Eq. (6), for the norm of J, as defined in Eqs. (2a) and (2b), is meaningless. The
normalization of the Jacobian for the purpose of rendering it dimensionless has been judged to be
dependent on the normalizing length [9] . As a means to avoid the arbitrariness of the choice of
that normalizing length, the characteristic length L was introduced in [10]. Since the calculation of
L is based on the minimization of an objective function that is elusive to a straightforward geo-
metric interpretation, namely, the condition number of the normalized Jacobian, the character-
istic length has been found cumbersome to use in manipulator design. We introduce below the
concept of conditioning length to render the Jacobian matrix dimensionless, which will allow us to
define the characteristic length using a geometric approach. In the sequel, we will need the partial
derivative of the trace of a square matrix N with respect to a scalar argument x of N. The said
derivative is readily obtained as

o

ox
trðNÞ ¼ tr oN

ox

	 

: ð9aÞ

Moreover, in some instances, we will need the partial derivative of a scalar function f of the
matrix argument N with respect to the scalar x, which is, in turn, an argument of N. In this case,
the desired partial derivative is obtained by application of the chain rule:

of
ox
¼ tr of

oN

oNT

ox

	 

: ð9bÞ

In particular, when f ðNÞ is the kth moment Nk of N with respect to x, defined as

Nk � trðNkÞ; ð9cÞ
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the partial derivative of Nk with respect to x is given by

oNk

ox
¼ k tr Nk�1 oN

T

ox

	 

: ð9dÞ

Furthermore, we recall that the trace of any square matrix N equals that of its transpose, i.e.,

tr NT
� �

¼ trðNÞ ð10Þ

and, finally, the trace of a product of various matrices compatible under multiplication does not
change under a cyclic permutation of the factors, i.e., if A, B, and C are three matrices whose
product ABC is possible and square, then trðABCÞ ¼ trðBCAÞ ¼ trðCABÞ.

3. Isotropic sets of points

Consider the setS � fPkgn
1 of n points in the plane, of position vectors fpkg

n
1 and centroid C, of

position vector c, i.e.,

c � 1
n

Xn

1

pk: ð11Þ

The summation appearing in the right-hand side of the above expression is known as the first
moment ofS with respect to the origin O from which the position vectors stem. The second moment
of S with respect to C is defined as a tensor M, namely,

M �
Xn

1

ðpk � cÞðpk � cÞ
T: ð12Þ

It is now apparent that the root-mean-square value of the distances fdkgn
1 of S, drms, to the

centroid is directly related to the trace of M, namely,

drms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

1

ðpk � cÞ
Tðpk � cÞ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
trðMÞ

r
: ð13Þ

Further, the moment of inertia I ofS with respect to the centroid is defined as that of a set of unit
masses located at the points of S, i.e.,

I �
Xn

1

kpk

h
� ck21� ðpk � cÞðpk � cÞ

T
i

ð14aÞ

in which 1 is the 2� 2 identity matrix. Hence, in light of definitions (12) and (13),
I ¼ trðMÞ1�M: ð14bÞ

We shall refer to I as the geometric moment of inertia of S about its centroid. It is now apparent
that I is composed of two parts, an isotropic matrix of norm tr(M) and the second moment of S
with the sign reversed. Moreover, the moment of inertia I can be expressed in a form that is more
explicitly dependent upon the set fpk � cg

n
1, if we recall the concept of cross-product matrix [5],
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Briefly stated, for any three-dimensional vector v, we define the cross-product matrix Pk of
ðpk � cÞ, or of any other three-dimensional vector for that matter, as

Pk �
o½ðpk � cÞ � v


ov
: ð15aÞ

Further, we recall the identity [5]

P2k � �kpk � ck
2
1þ ðpk � cÞðpk � cÞ

T: ð15bÞ

It is now apparent that the moment of inertia of S takes the simple form

I ¼ �
Xn

1

P2k : ð16Þ

We thus have:

Definition 1 (Isotropic set). The set S is said to be isotropic if its second-moment tensor with
respect to its centroid is isotropic.

As a consequence, we have:

Lemma 1. The geometric moment of inertia of an isotropic set of points about its centroid is iso-
tropic.

3.1. Geometric properties of isotropic sets of points

We describe below some properties of isotropic sets of points that will help us better visualize
the results that follow.

3.1.1. Union of two isotropic sets of points
Consider two isotropic sets of points in the plane,S1 ¼ fPkgn

1 andS2 ¼ fPkgnþm
nþ1 . If the centroid

C of the position vector c of S1 coincides with that of S2, i.e., if

c � 1
n

Xn

1

pk �
1

m

Xnþm

nþ1
pk; ð17Þ

then the set S ¼S1 [S2 is isotropic.
For example, let S1 be a set of three isotropic points and S2 a set of four isotropic points, as

displayed in Fig. 2, i.e.,

S1 ¼
�

ffiffiffi
6
p

=2

�
ffiffiffi
2
p

=2

" #
;

ffiffiffi
6
p

=2

�
ffiffiffi
2
p

=2

" #
;

0ffiffiffi
2
p
" #( )

;

S2 ¼
0

�
ffiffiffi
2
p

" #
;
�

ffiffiffi
2
p

0

" #
;

0ffiffiffi
2
p
" #

;

ffiffiffi
2
p

0

" #( )
;

ð18aÞ
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where the centroid C is the origin. The second moment ofS with respect to C is isotropic, namely,

M �
X3þ4
1

ðpk � cÞðpk � cÞ
T ¼ 7 0

0 7

� �
¼ ð7Þ1; ð18bÞ

where 1 denotes the 2� 2 identity matrix. Furthermore, the geometric moment of inertia of S is

1 ¼ ð14Þ1� ð7Þ1 ¼ ð7Þ1:
We thus have:

Lemma 2. The union of two isotropic sets of points sharing the same centroid is also isotropic.

3.1.2. Rotation of an isotropic set of points
Let R denote a rotation matrix in the plane through an angle a, andS ¼ fPkgn

1 a set of isotropic
points. A new set of pointsS0 ¼ fP 0kg

n
1 is defined upon rotatingS through an angle a about C as a

rigid body. The second moment of S0 with respect to C is shown below to be isotropic as well.
Indeed, letting this moment be M0, we have

M0 �
Xn

1

p0k
�
� c0

�
p0k
�
� c0

�T
;

where, by definition,

p0k � c0 ¼ Rðpk � cÞ:
Thus,

M0 �
Xn

1

Rðpk � cÞðpk � cÞ
T
RT ¼ R

Xn

1

ðpk

"
� cÞðpk � cÞ

T

#
RT:

But the summation in brackets is the second moment M of the set S, which is, by assumption,
isotropic, and hence, takes the form

M ¼
Xn

1

ðpk � cÞðpk � cÞ
T ¼ r21

for a real number r > 0 and 1 denoting the 2� 2 identity matrix. Hence,
M0 ¼ r2RRT ¼ r21

thereby proving that the rotated set is isotropic as well. We thus have:

Fig. 2. Union of two isotropic sets of points.
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Lemma 3. The rotation of an isotropic set of points as a rigid body with respect to its centroid is also
isotropic.

The counterclockwise rotation of an isotropic set of three points, S, through an angle of 60�
and the union of the original set and its rotated counterpart are depicted in Fig. 3. Note that the
union of the two sets is isotropic as well.

3.1.3. Trivial isotropic set of points
An isotropic set of points can be defined by the union or rotation, or a combination of both, of

isotropic sets. The simplest set of isotropic points is the set of vertices of a regular polygon. We
thus have:

Definition 2 (Trivial isotropic set). A set of n pointsS is called trivial if it is the set of vertices of a
regular polygon with n vertices.

Trivial isotropic sets, S ¼ fPkgn
1, are depicted in Fig. 4 for n ¼ 3; . . . ; 6.

Also note that:

Lemma 4. A trivial isotropic set S remains isotropic under every reflection about an axis passing
through the centroid C.

4. An outline of kinematic chains

The connection between sets of points and planar manipulators of the serial type is the concept
of simple kinematic chain. For completeness, we recall here some basic definitions pertaining to
this concept.

4.1. Simple kinematic chains

The kinematics of manipulators is based on the concept of kinematic chain. A kinematic chain is
a set of rigid bodies, also called links, coupled by kinematic pairs. In the case of planar chains, two
lower kinematic pairs are possible, with the revolute allowing pure rotation of the two coupled
links, and the prismatic pair allowing a pure relative translation, along one direction, of the same

(a) (b)

Fig. 3. (a) Rotation of an isotropic set S and (b) union of S with its rotated image.
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links. For the purpose of this paper, we study only revolute pairs, but prismatic pairs are also
common in manipulators.

Definition 3 (Simple kinematic chain). A kinematic chain is said to be simple if each and every one
of its links is coupled to at most two other links.

A simple kinematic chain can be open or closed; in studying serial manipulators we are in-
terested in the former. In such a chain, we distinguish exactly two links, the terminal ones,
coupled to only one other link. These links are thus said to be simple, with all other links being
binary. In the context of manipulator kinematics, one terminal link is arbitrarily designated as
fixed, with the other terminal link being the end-effector (EE), which is the one executing the task
at hand. The task is defined, in turn, as a sequence of poses – positions and orientations – of
the EE, with the position being given at a specific point P of the EE that we term the operation
point.

4.2. Isotropic kinematic chains

To every set S of n points it is possible to associate a number of kinematic chains. To do this,
we number the points from 1 to n, thereby defining n� 1 links, the ith link carrying joints i and
iþ 1. Links are thus correspondingly numbered from 1 to n, the nth link, or EE, carrying joint n
on its proximal (to the base) end and the operation point P on its distal end. Furthermore, we
define an additional link, the base, which is numbered as 0.
It is now apparent that, since we can number a given set S of n points in n! possible ways, we

can associate n! kinematic chains to the above set S of n points. Clearly, these chains are, in
general, different, for the lengths of their links are different as well. Nevertheless, some pairs of
identical chains in the foregoing set are possible.

Fig. 4. Trivial isotropic sets for n ¼ 3; . . . ; 6.
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Definition 4 (Isotropic kinematic chain). If the foregoing set S of n points is isotropic, and the
operation point P is defined as the centroid of S, then any kinematic chain stemming from S is
isotropic.

5. The posture-dependent conditioning length of planar n-revolute manipulators

Under the assumption that the manipulator finds itself at a posture P that is given by its set of
joint angles, fhkgn

1, we start by dividing the last n rows of the Jacobian by a length lP, as yet to be
determined. This length will be found so as to minimize the distance of the normalized Jacobian to
a corresponding isotropic matrix K, subscript P reminding us that, as the manipulator changes its
posture, so does the length lP. This length will be termed the conditioning length of the manip-
ulator at P.

5.1. A dimensionally homogeneous Jacobian matrix

In order to distinguish the original Jacobian matrix from its dimensionally homogeneous
counterpart, we shall denote the latter by J, i.e.,

J ¼ 1 1 � � � 1
ð1=lPÞEr1 ð1=lPÞEr2 � � � ð1=lPÞErn

� �
:

Now the conditioning length will be defined via the minimization of the distance of the dimen-
sionally homogeneous Jacobian matrix J of an n-revolute manipulator to an isotropic 3� nmodel
matrix K whose entries are dimensionless and has the same gestalt as any 3� n Jacobian matrix.
To this end, we define an isotropic setK ¼ fKign

1 of n points in a dimensionless plane, of position
vectors fkign

1, which thus yields the dimensionless matrix

K ¼ 1 1 � � � 1
Ek1 Ek2 � � � Ekn

� �
: ð19Þ

Further, we compute the product KKT:

KKT ¼ n
Pn

1 k
T
i E

TPn
1 Eki

Pn
1 Ekik

T
i E

T

� �
:

Upon expansion of the summations occurring in the above matrix, we have

Xn

1

kiE
T ¼

Xn

1

Eki

 !T
¼ E

Xn

1

ki

 !T
; ð20aÞ

Xn

1

Ekik
T
i E

T ¼ E
Xn

1

kik
T
i

 !
ET: ð20bÞ

Now, by virtue of the assumed isotropy of K, the terms in parentheses in the foregoing ex-
pressions become
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Xn

1

ki ¼ 0;

Xn

1

kik
T
i ¼ k212�2;

where the factor k2 is as yet to be determined and 12�2 denotes the 2� 2 identity matrix. Hence,
the product KKT takes the form

KKT ¼ n 0T

0 k212�2

� �
: ð21Þ

Now, in order to determine k2, we recall that matrix K is isotropic, and hence that the product
KKT has a triple eigenvalue. It is now apparent that the triple eigenvalue of the said product must
be n, which means that

k2 ¼ n; ð22Þ
and hence,Xn

1

kik
T
i ¼ ðnÞ12�2:

5.2. Example 1. A three-DOF planar manipulator

Shown in Fig. 5(a) is an isotropic set K of three points, of position vectors fkign
1, in a non-

dimensional plane. The position vectors are given by

k1 ¼
1

2

ffiffiffi
6
pffiffiffi
2
p
� �

; k2 ¼
1

2
�

ffiffiffi
6
pffiffiffi
2
p

� �
; k3 ¼

0
�

ffiffiffi
2
p

� �
: ð23aÞ

Hence, the corresponding model matrix is

K ¼
1 1 1

�
ffiffiffi
2
p

=2 �
ffiffiffi
2
p

=2
ffiffiffi
2
pffiffiffi

6
p

=2 �
ffiffiffi
6
p

=2 0

2
4

3
5; ð23bÞ

(a) (b)

Fig. 5. Two isotropic manipulator postures stemming from the same isotropic set upon a relabelling of its points.
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which can readily be proven to be isotropic, with a triple singular value of k ¼
ffiffiffi
3
p
. When the

order of the three vectors is changed, the isotropic condition is obviously preserved, for such a
reordering amounts to nothing but a relabelling of the points ofK. Also note that two isotropic
matrices K are associated with two symmetric postures, as displayed in Fig. 5(b).

5.3. Example 2. A four-DOF redundant planar manipulator

An isotropic set K of four points, fKig41 is defined in a nondimensional plane, with position
vectors ki given below:

k1 ¼
ffiffiffi
2
pffiffiffi
2
p
� �

; k2 ¼ �
ffiffiffi
2
pffiffiffi
2
p

� �
; k3 ¼ �

ffiffiffi
2
p

�
ffiffiffi
2
p

� �
; k4 ¼

ffiffiffi
2
p

�
ffiffiffi
2
p

� �
; ð24aÞ

which thus lead to

K ¼
1 1 1 1
�

ffiffiffi
2
p

�
ffiffiffi
2
p ffiffiffi

2
p ffiffiffi

2
pffiffiffi

2
p

�
ffiffiffi
2
p

�
ffiffiffi
2
p ffiffiffi

2
p

2
4

3
5: ð24bÞ

We thus have 4! ¼ 24 isotropic kinematic chains for a four-DOF planar manipulator, but we
represent only 6 in Fig. 6 because the choice of the first point is immaterial, since this choice
amounts to a rotation of the overall manipulator as a rigid body.

Fig. 6. Six isotropic postures for the same isotropic set.
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5.4. Computation of the conditioning length

We can now formulate a least-square problem aimed at finding the conditioning length lP that
renders the distance from J to K a minimum. The task will be eased if we work rather with the
reciprocal of lP, k � 1=lP, and hence,

z � 1
2

1

n
tr ðJ
h
� KÞðJ� KÞT

i
! min

k
: ð25Þ

Upon expansion,

z ¼ 1
2

1

n
tr JJ

T
�

� JKT � KJT þ KKT
�
:

Since the trace of a matrix equals that of its transpose, i.e.,

tr JKT
� �

¼ tr KJT
� �

the foregoing expression for z reduces to

z � 1
2

1

n
tr JJ

T
�

� 2KJT þ KKT
�
: ð26Þ

It is noteworthy that the above minimization problem is (a) quadratic in k, for J is linear in k and
(b) unconstrained, which means that the problem accepts a unique solution. This solution can be
found, additionally, in closed form. Indeed, the optimum value of k is readily obtained upon
setting up the normality condition of the above problem, namely,

oz
ok
� 1

2n
tr

o JJ
T

� �
ok

0
@

1
A� 1

n
tr K

oJ
T

ok

 !
¼ 0; ð27Þ

where we have used the linearity property of the trace and the derivative operators. We calculate
below the quantities involved:

JJ
T ¼

n k
Pn

1 r
T
j E

T

k
Pn

1 3Erj k2
Pn

1 Erjr
T
j E

T

" #
; KJ

T ¼ n k
Pn

1 r
T
j E

TPn
1 Ekj k

Pn
1 Ekjr

T
j E

T

" #
:

Thus,

o JJ
T

� �
ok

¼ 0
Pn

1 r
T
j E

TPn
1 Erj 2k

Pn
1 Erjr

T
j E

T

" #
; K

oJ
T

ok
¼ 0

Pn
1 r
T
j E

T

0
Pn

1 Ekjr
T
j E

T

" #
;

whence the normality condition (27) becomes

k
Xn

1

krjk2 �
Xn

1

kTj rj ¼ 0:

Now, if we notice that krjk is the distance dj from the operation point P to the center of the jth
revolute, the first summation of the above equation yields nd2rms, with drms denoting the root-mean-
square value of the set of distances fdjgn

1, and hence,
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k ¼
Pn

1 k
T
i rj

nd2rms
) lP ¼

nd2rmsPn
1 k

T
j rj

: ð28Þ

Thus, the conditioning length is defined so that
ffiffiffi
n
p

drms is the geometric mean between lP and the
sum of the projections of the set frjgn

1 onto the corresponding vectors of the set fkjgn
1, as illus-

trated in Fig. 7.

5.5. A rotation of the isotropic set as a rigid body

Since a rigid-body rotation of a set of isotropic points preserves isotropy, we can find the
orientation of this set, as parameterized by the angle of rotation a, that renders z a minimum, for a
given manipulator posture. Let this rotation be RðaÞ, which can be expressed as [11]

RðaÞ ¼ ðcos aÞ1þ ðsin aÞE ð29Þ

with E defined in Eq. (8). Thus, upon rotating the set K through an angle a about its centroid
C or, equivalently, about the operation point P , the isotropic matrix K becomes ~KK, and is given
by

~KK ¼ 1 1 � � � 1
ERðaÞk1 ERðaÞk2 � � � ERðaÞkn

� �
: ð30aÞ

The objective function z then becomes

z ¼ 1

2n
tr JJ

T
� �h

� 2tr J~KKT
� �

þ tr ~KK~KKT
� �i

! min
a
: ð30bÞ

Before setting up the normality conditions for the problem at hand, we note that

~KK~KKT ¼ n
Pn

1 ki

� �T
ETRTðaÞ

RðaÞE
Pn

1 ki RðaÞE
Pn

1 kik
T
i

� �
ETRTðaÞ

" #
; ð31Þ

which can be shown to reduce to

~KK~KKT ¼ n
Pn

1 ki

� �T
ETRTðaÞ

RðaÞE
Pn

1 ki k212�2

� �
;

Fig. 7. A geometric interpretation of the conditioning length.
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and hence,

o tr ~KK~KKT
� �h i
oa

¼ 0:

On the other hand, J is independent of a, and hence, the normality condition of problem (30b)
reduces to

oz
oa
� � 1

n
tr J

o~KKT

oa

 !" #
¼ 0: ð32Þ

We calculate below the partial derivative required above:

o~KK

oa
¼ 0 0 � � � 0

R0ðaÞEk1 R0ðaÞEk2 � � � R0ðaÞEkn

� �
;

where R0ðaÞ can be expressed, in light of relation (29), as
R0ðaÞ ¼ ERðaÞ;

and hence,

o~KK

oa
¼ 0 0 � � � 0

ERðaÞEk1 ERðaÞEk2 � � � ERðaÞEkn

� �

whence,

tr J
o~KKT

oa

 !
¼ k tr

Xn

1

Erj ErðaÞEkj

� �T( )
¼ k

Xn

1

rTj E
TERðaÞEKj ¼ k

Xn

1

rTj RðaÞEkj:

Now, under the plausible assumption that lP is finite, k 6¼ 0, and hence, the normality condition
(32) reduces toXn

1

rTj RðaÞEkj ¼ 0:

Further, substitution of expression (29) into the above expression leads to

ðcos aÞ
Xn

1

rTj Ekj � ðsin aÞ
Xn

1

rTj kj ¼ 0: ð33Þ

Therefore, the value of a minimizing the distance of J to ~KKðaÞ is, for the given posture P,

a ¼ arctan
Pn

1 r
T
j EkjPn

1 r
T
j kj

" #
� arctan

ð1=nÞ
Pn

1 r
T
j Ekj

ð1=nÞ
Pn

1 r
T
j kj

" #
: ð34Þ

Thus, the angle a through which the given isotropic setK is to be rotated in order to obtain the
conditioning length of the manipulator pose P is given as the arctan function of the ratio of a
numerator N to a denominator D, whose geometric interpretations are straightforward: D is
simply the mean value of the projections of the rj vectors onto their corresponding kj vectors.
Now, since Ekj is vector kj rotated 90� counterclockwise, N is the mean value of the projections of
the rj vectors onto their corresponding Ekj vectors. We can call the latter the transverse projections
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of the said vectors. Once we have found the optimum value aopt of a for a given manipulator
posture, we redefine, for conciseness,

K ~KKðaoptÞ: ð35Þ
With aopt known, lP is readily computed from Eq. (28). Now, if we regard the columns of J and K
as three-dimensional vectors, then a rotation Q of the corresponding three-dimensional space
about an axis normal to the plane of the sets frjgn

1 and fkjgn
1 through an angle q can be represented

as

Q ¼ 1 0T

0 RðqÞ

� �
;

where RðqÞ is a 2� 2 rotation matrix similar to RðaÞ, as defined in Eq. (29). Hence, under rotation
Q, J and K change as described below:

QJ ¼ 1 0T

0 RðqÞ

� �
1 1 � � � 1

ð1=lPÞEr1 ð1=lPÞEr2 � � � ð1=lPÞErn

� �

¼ 1 1 � � � 1
RðqÞEr1 RðqÞEr2 � � � RðqÞErn

� �
;

QK ¼ 1 1 � � � 1
RðqÞEk1 RðqÞEk2 � � � RðqÞEkn

� �
:

Now it is apparent that z, as defined in Eq. (25), is invariant under a rotation RðqÞ of the sets S
and K. Indeed, under such a rotation,

zQ �
1

2

1

n
tr QJJ

T
QT

�
�QKJTQT �QJKTQT þQKKTQT

�
¼ 1
2

1

n
tr Q JJ

T
�h

� KJT � JKT þ KKT
�
QT
i
:

If we recall relation (10), the above expression becomes

zQ �
1

2

1

n
tr QTQ JJ

T
�h

� KJT � JKT þ KKT
�i
¼ z: ð36Þ

We thus have proven:

Lemma 5. The distance of J to K is invariant under a rotation of the sets S and K.

5.6. The optimum posture

It is now apparent that we can always orient theK set optimally, so that, for any posture P, J
lies at a minimum distance from the corresponding matrix K. Moreover, by virtue of Lemma 5, a
rotation of the whole manipulator as a rigid body about its first joint, i.e., a motion of the
manipulator with all its joints but the first one locked, does not affect z. That is, z is a function of
only fhign

2, which can thus be termed the set of conditioning joint variables, with the associated
joints being the conditioning joints. Now we aim at finding the optimum posture Po that yields a
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dimensionless Jacobian J lying at a minimum distance to the reference matrix K. To this end, we
adopt a given setK at a given orientation at the outset, which thus leads to a constant matrix K in
the process of finding Po, with the optimum orientation of K being readily determined from
Eq. (34) once Po has been found. Thus, in the derivations that follow, h1 can be set arbitrarily
equal to zero, or to any other constant value, for that matter. We now aim at solving the problem

z ¼ 1
2

1

n
tr JJ

T
�

� 2KJT þ KKT
�
! min

fhign
2

: ð37Þ

An attempt to solving this problem using the approach of the foregoing sections proved to be
impractical. Indeed, since z depends on the set of conditioning joint variables both via the set frjgn

1

and via k, this dependence leads to a normality condition that does not lend itself to a closed-form
solution. As a consequence, the said normality condition does not lead to a direct geometric
interpretation of the optimum posture.
We thus follow a different approach here. For each posture, the value of k is computed using

Eq. (28), while a is computed with Eq. (34). With the foregoing expressions substituted into the
expression of z given in Eq. (37), the corresponding normality conditions for angles fhign

2 yield a
system of algebraic equations in the foregoing conditioning variables that are amenable to so-
lutions using modern methods, like polynomial continuation, Gr€oobner bases, or resultant
methods [12], that yield all roots of the problem at hand. These roots then lead to the globally
optimum posture Po.

5.7. The characteristic length

The optimum postures of a given manipulator, i.e., those with a Jacobian matrix closest to a
corresponding model matrix K are thus found upon solving the optimization problem (37).
Moreover, the conditioning length associated with the posture yielding a global minimum of the
foregoing distance is defined as the characteristic length of the manipulator at hand. Prior to
discussing some examples, we would like to find out whether the characteristic length thus found
bears a minimality geometric property, e.g., whether the characteristic length is the minimum
conditioning length of the manipulator over its whole workspace. To this end, we rewrite the
objective function z in the form

z ¼ 1

2n
k2nd2rms

 
� 2k

Xn

1

kTj rj þ
Xn

1

kkjk2
!
: ð38Þ

Upon substitution of the sum
Pn

1 k
T
j rj in terms of the optimum value of k found in Eq. (28) into

Eq. (38), we obtain

z ¼ 1

2n

Xn

1

kkjk2 �
1

2
k2d2rms �

1

2n

Xn

1

kkjk2 �
1

2

drms
lP

	 
2
: ð39Þ

It is apparent from the above expression that minimizing z is not equivalent to minimizing lP, but
rather to maximizing the ratio drms=lP. Hence, minimizing z is equivalent to minimizing the inverse
ratio, i.e., lP=drms. In other words, minimizing z is equivalent to minimizing the ratio of the
conditioning length to the rms value of the distances of the joint centers from the operation point.
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5.8. Examples. A three-DOF planar manipulator

5.8.1. An isotropic manipulator
In the first example, we have a1 ¼ a2 ¼ l and a3 ¼

ffiffiffi
3
p

l=3, with the frjg31 vectors given by

r1 ¼ l
cosðh1Þ þ cosðh12Þ þ cosðh123Þ
sinðh1Þ þ sinðh12Þ þ sinðh123Þ

" #
;

r2 ¼ l
cosðh12Þ þ cosðh123Þ
sinðh12Þ þ sinðh123Þ

" #
; r3 ¼

ffiffiffi
3
p

l
3

cosðh123Þ
sinðh123Þ

" #

with the definition hij���p � hi þ hj þ � � � þ hp. Moreover, the model matrix K used for this case is
that found for the case of an isotropic set of three points, as discussed in Section 5.2, and re-
produced below for quick reference:

K ¼
1 1 1

�
ffiffiffi
2
p

=2 �
ffiffiffi
2
p

=2
ffiffiffi
2
p

ffiffiffi
6
p

=2 �
ffiffiffi
6
p

=2 0

2
64

3
75: ð40Þ

One optimum posture found with the procedure discussed in Section 5.6 is displayed in Fig. 8,
with the objective function attaining a minimum of zero at this posture, which means that the
manipulator can match exactly an isotropic model matrix K within its workspace, with the ma-
nipulator thus being termed isotropic. The objective function attains the values displayed in Fig. 9
over its whole workspace.
At the optimum posture, we have the values of the joint variables given below:

h1 ¼ 0�; h2 ¼ 120�; h3 ¼ 150�
with the conditioning length lP being equal to ð

ffiffiffi
6
p

=6Þl, which is thus the characteristic length of
this manipulator, as found using an alternative approach in [5]. Moreover, the normalized Ja-
cobian J becomes

J ¼
1 1 1

�
ffiffiffi
2
p

=2 �
ffiffiffi
2
p

=2
ffiffiffi
2
p

ffiffiffi
6
p

=2 �
ffiffiffi
6
p

=2 0

2
64

3
75:

Fig. 8. An isotropic posture with h1 ¼ 0�.
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5.8.2. An equilateral manipulator
In the second example, we assume that all the link lengths are equal to l, and hence,

r1 ¼ l
cosðh1Þ þ cosðh12Þ þ cosðh123Þ
sinðh1Þ þ sinðh12Þ þ sinðh123Þ

� �
;

r2 ¼ l
cosðh12Þ þ cosðh123Þ
sinðh12Þ þ sinðh123Þ

� �
; r3 ¼ l

cosðh123Þ
sinðh123Þ

� �
:

ð41Þ

We call this manipulator equilateral.
For this case, we use the same model matrix K that we used in the previous example, for the

manipulator has the same number of joints, and only one K was found – up to a reflection – for
this number of joints. The minimization of the objective function leads to the optimum values

h1 ¼ 0�; h2 ¼ 81:8�; h3 ¼ 155:2�;
which correspond to a minimum value of z ¼ 0:178, with the associated characteristic length being
lP ¼ 0:563l. The corresponding posture is displayed in Fig. 10, while the objective function,
evaluated throughout the workspace of the manipulator, is displayed in Fig. 11.

Fig. 9. Objective function of the isotropic manipulator.

Fig. 10. The posture closest to isotropy with h1 ¼ 0�.
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Finally, the normalized Jacobian at the posture of Fig. 10 is

J ¼
1 1 1

�0:268 �0:268 1:489
1:061 �0:714 �0:966

2
4

3
5:

5.9. The isocontours of the objective function

The minimum of the objective function z corresponds to the posture closest to isotropy. At the
other end of the spectrum, the maximum of this function is attained at those singular postures
whereby the rank of the Jacobian matrix is 2. The curves of constant z-values, termed the iso-
contours of the manipulator, can be used to define a performance index to compare manipulators,
as described below. The isocontours were obtained with Surfer, a Surface Mapping System, for h2
and h3 2 ½0; 2p
. The isocontours of the isotropic manipulator, of the first example, are displayed
in Fig. 12; those of the equilateral manipulator in Fig. 13.
It is apparent from the two foregoing figures that the isocontours can be closed or open. If

closed, the curves enclose the optimum point in the space of conditioning joints; in the second case,
the curves are periodic. The shape of the closed curves, additionally, provides useful information
on the manipulator performance: For the isotropic manipulator, when the objective function is
below 0.25, the curves are close to circular, as shown in Fig. 14; for the equilateral manipulator,
these curves are close to elliptical, as shown in Fig. 15. This means that, in the neighborhood of an
optimum, the isocontours behave in a way similar to the manipulability ellipsoid [3]: An isotropic
manipulator entails a manipulability ellipsoid with semiaxes of identical lengths.

6. Applications to design and control

Manipulators are designed for a family of tasks, more so than for a specific task – manipulator
design for a specific task defeats the purpose of using a manipulator, in the first place! The first

Fig. 11. Objective function of the equilateral manipulator.
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step in designing a manipulator, moreover, is to dimension its links. It is apparent that from a
purely geometric viewpoint, the link lengths are not as important as the link-length ratios. Once
these ratios are optimally determined, the link lengths can be obtained based on requirements
such as maximum reach for a given family of tasks, e.g., whether the manipulator is being used for
cleaning a wide body or a regional aircraft. Now, the maximum reach is directly proportional to
the drms value of the distance of the joint centers to the operation point at the optimum posture,
and hence, we can obtain the optimum link-length ratios by assuming that drms is equal to one unit
of length. This means that minimizing the objective function z, as given by Eq. (39), is equivalent
to minimizing the normalized conditioning length lP, where the normalization is carried out upon

Fig. 13. The isocontours of the objective function of the equilateral manipulator.

Fig. 12. The isocontours of the objective function of the isotropic manipulator.
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dividing this length by drms. Furthermore, when deciding on the manipulator link-length ratios, we
may specify a certain useful workspace region as a subset of the whole workspace. How to decide
on the boundaries of this region is something that can be done based on the value of z, so that we
can establish a maximum allowable value of z, say zM < zmax that we are willing to tolerate so as to
keep the manipulator far enough from singularities. In this regard, the area enclosed by the
isocontour z ¼ zM will give a nondimensional measure, and hence, a measure independent of the
scale of the manipulator, of the useful workspace region.
Under no constraints on the link-length ratios, for example, the designer should choose the

optimum ratios of the isotropic manipulator of Fig. 8. On the other hand, when the manipulator
is given, and it is desired to control it so as to keep it away from singularities, function z can be

Fig. 14. The isocontours closest to isotropy of the objective function of the isotropic manipulator.

Fig. 15. The isocontours closest to isotropy of the objective function of the equilateral manipulator.
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used again as a measure of the distance to singularities: when z attains its global maximum, the
manipulator finds itself at a rank-two singularity. A rank-one singularity occurs at a local
maximum. Furthermore, if a manipulator of given link-length ratios – e.g., one out of a family of
manipulators with identical architectures, but of different scales, like the Puma 260, 560, or 760 –
is to be used for are welding, then (a) the most suitable dimensions should be chosen according to
the dimensions of the welding seam, and (b) the seam should be placed with respect to the ma-
nipulator in such a way that as the EE traces that seam with the welding nozzle at a given angle
with the seam, the objective function z must remain within a maximum value zM . This means that
the seam should lie as close as possible to the optimum posture of Fig. 10. Furthermore, note that
a rotation of the manipulator about the first joint axis, while keeping its other two joints locked,
does not perturb z, and hence, a set of optimum postures is available. This set comprises the circle
centered at the center of the first joint, of radius d1 – the distance of the operation point P to the
center of the first joint. This circle is similar to the isotropy circle of isotropic manipulators [5], and
thus, can be termed the conditioning circle. Therefore, a good criterion to properly place the seam
is that the seam lie as close as possible to the conditioning circle.
Finally, while detecting singularities of nonredundant robots is a rather trivial task, detecting

those of their redundant counterparts is more involved, and a fast estimation of the proximity of a
given manipulator posture to singularity is always advantageous. This estimation is provided by
the objective function z proposed in this paper.

7. Conclusions

The conditioning length lP was defined for a given posture of a planar manipulator. This
concept allows us to normalize the Jacobian matrix so as to render it in nondimensional form. We
base the definition of the characteristic length on an objective function z that gives a geometric
significance to the conditioning length. Moreover, the objective function introduced here is de-
fined as a measure of the distance of the normalized – nondimensional – Jacobian matrix to an
isotropic reference matrix. Isotropic sets of points in the plane are defined as well as operations on
these sets. The paper is limited to planar manipulators, with the treatment of spatial manipulators
being as yet to be reported.
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Architecture Optimization of a 3-DOF Translational
Parallel Mechanism for Machining

Applications, the Orthoglide
Damien Chablat and Philippe Wenger

Abstract—This paper addresses the architecture optimization
of a three-degree-of-freedom translational parallel mechanism
designed for machining applications. The design optimization is
conducted on the basis of a prescribed Cartesian workspace with
prescribed kinetostatic performances. The resulting machine, the
Orthoglide, features three fixed parallel linear joints which are
mounted orthogonally, and a mobile platform which moves in the
Cartesian - - space with fixed orientation. The interesting fea-
tures of the Orthoglide are a regular Cartesian workspace shape,
uniform performances in all directions, and good compactness.
A small-scale prototype of the Orthoglide under development is
presented at the end of this paper.

Index Terms—Isotropic design, optimal design, parallel mecha-
nism, singularity, workspace.

I. INTRODUCTION

PARALLEL kinematic machines (PKM) are commonly
claimed to offer several advantages over their serial

counterparts, like high structural rigidity, high dynamic capac-
ities, and high accuracy [1], [2]. Thus, PKM are interesting
alternative designs for high-speed machining applications.

This is why PKM tools attract the interest of more and more
researchers and companies. Since the first prototype was pre-
sented in 1994 during the IMTS in Chicago, IL, by Gidding and
Lewis (the VARIAX), many other prototypes have appeared.

However, the existing PKM suffer from two major draw-
backs, namely, a complex workspace and highly nonlinear
input/output relations. For most PKM, the Jacobian matrix
which relates the joint rates to the output velocities is not
constant and not isotropic. Consequently, the performances
(e.g., maximum speeds, forces, accuracy, and rigidity) vary
considerably for different points in the Cartesian workspace
and for different directions at one given point. This is a serious
drawback for machining applications [1], [3], [4]. To be of in-
terest for machining applications, a PKM should preserve good
workspace properties, that is, regular shape and acceptable
kinetostatic performances throughout. In milling applications,
the machining conditions must remain constant along the
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whole tool path [5]. In many research papers, this criterion is
not taken into account in the algorithmic methods used for the
optimization of the workspace volume [6], [7].

Most industrial three-axis machine tools have a serial kine-
matic architecture with orthogonal linear joint axes along the,
, and directions. Thus, the motion of the tool in any of these

directions is linearly related to the motion of one of the three
actuated axes. Also, the performances are constant throughout
the Cartesian workspace, which is a parallelepiped. The main
drawback is inherent to the serial arrangement of the links,
namely, poor dynamic performances. The purpose of this paper
is to design a translational three-axis PKM with the advantages
of serial machine tools but without their drawbacks. Starting
from a Delta-type architecture with three fixed linear joints and
three articulated parallelograms, an optimization procedure
is conducted in which two criteria are used successively, the
conditioning of the Jacobian matrix of the PKM [8]–[11], and
the manipulability ellipsoid [12]. The first criterion leads to an
isotropic architecture that features a configuration where the
tool forces and velocities are equal in all directions. The second
criterion makes it possible to define the actuated joint limits and
the link lengths with respect to a desired Cartesian workspace
size and prescribed limits on the transmission factors. The re-
sulting PKM, the Orthoglide, has a Cartesian workspace shape
that is close to a cube whose sides are parallel to the planes

, , and , respectively. A systematic design procedure is
proposed to define the geometric parameters as a function of
the size of a prescribed cubic Cartesian workspace and bounded
velocity and force transmission factors throughout.

The next section presents the existing PKM. The design pa-
rameters and the kinematics of the mechanism to be optimized
are reported in Section III. Section IV is devoted to the design
procedure of the Orthoglide and the presentation of the proto-
type.

II. EXISTING PKM

Most existing PKM can be classified into two main families.
The PKM of the first family have fixed foot points and vari-
able-length struts. These PKM are generally called “hexapods”
when they have six degrees of freedom (DOFs). Hexapods have
a Stewart–Gough parallel kinematic architecture. Many proto-
types and commercial hexapod PKM already exist, including
the VARIAX (Gidding and Lewis), the CMW300 (Compagnie
Mécanique des Vosges), the TORNADO 2000 (Hexel), the
MIKROMAT 6X (Mikromat/IWU), the hexapod OKUMA
(Okuma), the hexapod G500 (GEODETIC). In this first family,
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we find also hybrid architectures with a two-axis wrist mounted
in series to a 3-DOF “tripod” positioning structure (e.g., the
TRICEPT from Neos-Robotics [13]). Since many machining
tasks require only three translational DOFs, several three-axis
translational PKM have been proposed. There are several
ways to design such mechanisms [20], [14]–[16]. In the first
family, we find the Tsai mechanism and its variants. In these
mechanisms, the mobile platform is connected to the base
by three extensible limbs with a special arrangement of the
universal joints that restrains completely the orientation of the
mobile platform [18], [19].

The PKM of the second family have fixed length struts with
moveable foot points gliding on fixed linear joints. In this cate-
gory, we find the HEXAGLIDE (ETH Zürich) which features
six parallel (also in the geometrical sense) and coplanar linear
joints. The HexaM (Toyoda) is another example with three
pairs of adjacent linear joints lying on a vertical cone [21]. A
hybrid parallel/kinematic PKM with three inclined linear joints
and a two-axis wrist is the GEORGE V (IFW Uni Hanover).
Many three-axis translational PKMs belong to this second
family and use an architecture close to the linear Delta robot
originally designed by Reymond Clavel for pick-and-place
operations [22]. In this architecture, three parallelograms are
used to provide the moving platform with pure translations.
The TRIGLIDE (Mikron) has three parallel linear joints in a
horizontal plane. The LINAPOD and the INDEX V100 have
three vertical (non-coplanar) linear joints [23]. The Urane
SX (Renault Automation) and the QUICKSTEP (Krause and
Mauser) have three non-coplanar horizontal linear joints [24].
The aforementioned five machines have parallel linear joints.
This feature provides these machines with high stiffness in the
direction of the linear joints and poor stiffness in the orthog-
onal directions. Thus, these machines are more suitable for
specialized operations like drilling, than for general machining
tasks. The STAR mechanism has three horizontal linear joints
intersecting at one point [14]. Isotropic conditions for the
STAR mechanisms were studied in [25], but a special type of
singularity was shown to occur at the isotropic configuration if
one prescribes unitary transmission factors [26]. At this singu-
larity (a so-called “RPM-IO-II singularity” in the classification
of [27]), there is a loss of both input and output motions and, at
the same time, a redundant passive motion of each leg occurs.
Recently, one 3-DOF translational mechanism with gliding
foot points was found in three separate works to be isotropic
throughout the Cartesian workspace [15]–[17]. The mobile
platform is connected to three orthogonal linear drives through
three identical planar three-revolute jointed serial chains. Full
isotropy is clearly an outstanding property. On the other hand,
bulky legs are required to assure stiffness because these legs
are subject to bending.

PKM with fixed-length struts and moveable foot points are in-
teresting because the actuators are fixed and the moving masses
are lower than in the hexapods and tripods.

III. PROBLEM FORMULATION

A. Design Parameters

The machine tool we want to design is a spatial translational
PKM dedicated to general three-axis machining tasks with the
following requirements:

Fig. 1. Basic kinematic architecture.

1) a configuration should exist where the transmission fac-
tors are equal to one in all directions, like in a translational
serial machine;

2) the Cartesian workspace shape should be close to a cube
of prescribed size with regular performances throughout;

3) the design should be symmetric and use simple joints to
lower the manufacturing costs;

4) the PKM should be intrinsically stiff;
5) the PKM should have fixed linear actuated joints to lower

the moving masses.
To meet the last requirement, we start with a PKM architec-
ture of the second family, i.e., with fixed linear joints. The use
of three articulated parallelograms assembled in an overcon-
strained way is an interesting solution to comply with require-
ment 4). Requirements 1) and 2) will be satisfied in Section IV
by the isotropic conditions and limited transmission factors con-
straints. It will be shown that requirement 1) imposes that the
three actuated linear joint must be orthogonal, hence the name
“orthoglide.” To fulfill requirement 3), finally, the three legs
should use only revolute joints and be identical.

Fig. 1 shows the basic kinematic architecture of a PKM that
complies with requirements 3), 4), and 5), and that we will opti-
mize with respect to requirements 1) and 2). For more simplicity,
the figure shows the PKM with the optimized (i.e., orthogonal)
linear joints arrangement.

The linear joints can be actuated by means of linear mo-
tors or by conventional rotary motors with ball screws. Like
the Delta-type PKM, the output body is connected to the linear
joints through a set of three parallelograms of equal lengths

, so that it can move only in translation. The three legs are
identical chains, where , , and stands for pris-

matic, revolute and parallelogram joint, respectively. Thus, the
mechanism is overconstrained. The arrangement of the joints in
the chains have been defined to eliminate any special
singularity [26]. Each base point is fixed on the th linear
axis such that . The points and
are located on theth parallelogram, as shown in Fig. 2.

The design parameters to be optimized are the parallelogram
length, the position and orientation of each linear actuated joint
axis, and the range of the linear actuators.

B. Kinematic Equations and Singular Configurations

Let and denote the joint angles of the parallelogram
about the axes and , respectively (Fig. 2). Let , , and

denote the linear joint variables, .
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Fig. 2. Leg kinematics.

Let be referred to as the vector of actuated joint rates and
as the velocity vector of point

can be written in three different ways by traversing the three
chains

(1)

where and are the position vectors, in a given reference
frame, of the points and , respectively, and is the direc-
tion vector of the linear joints, for 1, 2, 3.

We want to eliminate the two passive joint ratesand
from (1), which we do upon dot-multiplying (1) by

(2)

Equation (2) can now be cast in vector form, namely

where and are the parallel and serial Jacobian matrices,
respectively

(3a)

(3b)

with for .
The parallel singularities occur when the determinant of the

matrix vanishes, i.e., when . In such configura-
tions, it is possible to move locally the mobile platform, whereas
the actuated joints are locked. These singularities are particu-
larly undesirable because the structure cannot resist any force.
Equation (3a) shows that the parallel singularities occur when
the three vectors are linearly dependent, that is, when the
pairs of points ( , ) lie in parallel planes (Fig. 3). To interpret
this singularity, it is more convenient to regard the pointsas
coincident (this does not change the analysis, since each offset

can be included in ). Then, a parallel singularity occurs
when the points , , , and
are coplanar. Since, at a parallel singular configuration,is al-
ways equally distant from , , and , is at the center of a
circle of radius that cuts the , , and axes at , , and ,

Fig. 3. Parallel singular configuration in the general case.

Fig. 4. Parallel singular configuration whenB C are parallel.

respectively, where, , and are parallel to the three linear ac-
tuated joints, respectively (Fig. 3). The parallel singularities are
defined by the surface generated bywhen this circle “glides”
along the , , and axes. A particular parallel singularity oc-
curs when the links are parallel. The surface generated is
a sphere of radius and centered at the intersection of the, ,
and axes (Fig. 4).

Serial singularities arise when the serial Jacobian matrix
is no longer invertible, i.e., when . At a serial sin-
gularity, a direction exists along which any Cartesian velocity
cannot be produced. Equation (3b) shows that when
for one leg , , where is the position
vector of . Thus, the serial singularities form three planes or-
thogonal to the , , and axes, respectively.

It will be shown in Section IV-D that the optimization of
the Orthoglide puts the serial and parallel singularities far away
from the Cartesian workspace. Also, even if the direct and in-
verse kinematics may, theoretically, have several solutions, only
one solution exists in the Cartesian workspace [28].

IV. OPTIMIZATION OF THE DESIGN PARAMETERS

The aim of this section is to define the geometric parame-
ters of the Orthoglide as a function of the size of a prescribed
cubic Cartesian workspace with bounded transmission factors.
We first show that the orthogonal arrangement of the linear
joints is imposed by the condition on the isotropy and manip-
ulability: we want the Orthoglide to have an isotropic configu-
ration with velocity and force transmission factors equal to one.
Then, we impose that the transmission factors remain under pre-
scribed bounds throughout the prescribed Cartesian workspace
and we deduce the link dimensions and the joint limits. Limiting
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the force and velocity transmission factors makes it possible to
guarantee a minimal kinematic stiffness throughout the Carte-
sian workspace. The structural stiffness (i.e., including the stiff-
ness of all rods) is guaranteed by the overconstrained design and
preliminary rods stiffness analyses [2]. A more detailed study of
the Othoglide structural stiffness is currently conducted at IR-
CCyN with finite element analyses.

A. Condition Number and Isotropic Configuration

The Jacobian matrix is said to be isotropic when its condi-
tion number attains its minimum value of one [28]. The condi-
tion number of the Jacobian matrix is an interesting performance
index which characterizes the distortion of a unit ball under the
transformation represented by the Jacobian matrix. The Jaco-
bian matrix of a manipulator is used to relate the joint rates and
the Cartesian velocities, and the static load on the output link
and the joint torques or forces. Thus, the condition number of
the Jacobian matrix can be used to measure the uniformity of
the distribution of the tool velocities and forces in the Cartesian
workspace.

B. Isotropic Configuration of the Orthoglide

For parallel manipulators, it is more convenient to study the
conditioning of the Jacobian matrix that is related to the inverse
transformation, . When is not singular, is defined by

with

Thus

(4)

with for .
The matrix is isotropic when , where

is the identity matrix. Thus, we must have

(5a)

(5b)

(5c)

(5d)

Equation (5a) states that the angle between the axis of the
linear joint and the link must be the same for each leg.
Equations (5b)–(5d) mean that the links must be orthog-
onal to each other. Fig. 5 shows the isotropic configuration of the
Orthoglide. Note that the orthogonal arrangement of the linear
joints is not a consequence of the isotropy condition, but it stems
from the condition on the transmission factors at the isotropic
configuration, as shown in the next section.

C. Transmission Factors

For serial three-axis machine tools, a motion of an actuated
joint yields the same motion of the tool (the transmission fac-
tors are equal to one). For parallel machines, these motions are

Fig. 5. Isotropic configuration and Cartesian workspace of the Orthoglide
mechanism and pointsQ andQ .

generally not equivalent. When the mechanism is close to a par-
allel singularity, a small joint rate can generate a large velocity
of the tool. This means that the positioning accuracy of the tool
is lower in some directions for some configurations close to par-
allel singularities because the encoder resolution is amplified. In
addition, a velocity amplification in one direction is equivalent
to a loss of stiffness in this direction.

The manipulability ellipsoids of the Jacobian matrix of
robotic manipulators was defined two decades ago [9]. This
concept has then been applied as a performance index to
parallel manipulators [3]. Note that, although the concept of
manipulability is close to the concept of condition number, they
do not provide the same information. The condition number
quantifies the proximity to an isotropic configuration, i.e.,
where the manipulability ellipsoid is a sphere, or, in other
words, where the transmission factors are the same in all
the directions, but it does not inform about the value of the
transmission factor.

The manipulability ellipsoid of is used here for defining
the orientation of the linear joints and defining the joint limits of
the Orthoglide, such that the transmission factors are bounded
in the prescribed Cartesian workspace.

We want the transmission factors to be equal to one at the
isotropic configuration, as for a serial machine tool. This condi-
tion implies that the three terms of (5a) must be equal to one

(6)

which implies that and must be collinear for
each .

Since, at this isotropic configuration, links are orthog-
onal, (6) implies that the links are orthogonal, i.e., the
linear joints are orthogonal. For joint rates belonging to a unit
ball, namely, , the Cartesian velocities belong to an el-
lipsoid such that
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The eigenvectors of matrix define the direction of its
principal axes of this ellipsoid, and the square roots, , and

of the eigenvalues of are the lengths of the afore-
mentioned principal axes. The velocity transmission factors in
the directions of the principal axes are defined by ,

, and . To limit the variations of this factor,
we impose

(7)

throughout the Cartesian workspace. This condition determines
the link lengths and the linear joint limits. To simplify the
problem, we set .

D. Design of the Orthoglide for a Prescribed Cartesian
Workspace

For usual machine tools, the Cartesian workspace is generally
given as a function of the size of a right-angled parallelepiped.
Due to the symmetrical architecture of the Orthoglide, the
Cartesian workspace has a fairly regular shape. In fact, the
workspace is defined by the intersection of three orthogonal
cylinders topped with spheres. As shown in Fig. 5, it is easy to
include a cube whose sides are parallel to the planes, , and

, respectively. The aim of this section is to define the position
of the base point , the link lengths , and the linear actuator
range with respect to the limits on the transmission factors
defined in (7) and as a function of the size of the prescribed
Cartesian workspace .

The proposed optimization scheme is divided into three steps.

1) First, two points and are determined in the
prescribed cubic Cartesian workspace (Fig. 5) such that
if the transmission factor bounds are satisfied at these
points, they are satisfied in all the prescribed Cartesian
workspace.

2) The points and are used to define the leg length
as function of the size of the prescribed cubic Cartesian
workspace.

3) Finally, the positions of the base points and the linear
actuator range are calculated such that the prescribed
cubic Cartesian workspace is fully included in the Carte-
sian workspace of the Orthoglide.

Step 1: The transmission factors are equal to one at the
isotropic configuration. These factors increase or decrease
when the tool center point moves away from the isotropic con-
figuration and they tend toward zero or infinity in the vicinity of
the singularity surfaces. It turns out that the pointsand
defined at the intersection of the Cartesian workspace boundary
with the axis (in a reference frame [O,, , ]
centered at the intersection of the three linear joint axes, Fig. 5)
are the closest ones to the singularity surfaces, as illustrated
in Fig. 6, which shows on the same top view the Orthoglide
in the two parallel singular configurations of Figs. 3 and 4.
Thus, we may postulate the intuitive result that if the prescribed
bounds on the transmission factors are satisfied atand ,
then these bounds are satisfied throughout the prescribed cubic
Cartesian workspace. In fact, this result can be proved using
interval analysis [29].

Fig. 6. PointsQ andQ and the singular configurations (top view).

Fig. 7. Q configuration.

Step 2: At the isotropic configuration, the angles and
are equal to zero by definition. When the tool center point
is at , (Fig. 7). When is at ,

(Fig. 8).
We pose for more simplicity.
The position of along the axis can be written equivalently

as and by traversing the
two chains and , respectively. On the axis

, and . We note

and (8)

Thus, the angle can be written as a function of

(9)

Finally, by substituting (9) into (4), the inverse Jacobian matrix
can be simplified as follows:

Thus, the square roots of the eigenvalues of are

and
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Fig. 8. Q configuration.

And the three velocity transmission factors are

and

(10)

The joint limits on are located on both sides of the isotropic
configuration. To calculate the joint limits, we solve the fol-
lowing inequations:

(11a)

(11b)

where the value of depends on the performance require-
ments. Two sets of joint limits ( and ) are
found in symbolic form. The detail of this calculation is given
in the Appendix.

The position vectors and of the points and ,
respectively, can be easily defined as a function of(Figs. 7
and 8)

and (12a)

with

and (12b)

The size of the Cartesian workspace is

Thus, can be defined as a function of

Step 3: We want to determine the positions of the base
points, namely, . When the tool
center point is at defined as the projection onto theaxis
of , and (Fig. 9)

Fig. 9. PointQ used for the determination ofa.

Fig. 10. Catia model of the Orthoglide (left) and prototype (right).

Since , . With ,
, and , we get

Since is known from (12a) and (17b), can be calculated
as function of , , and .

Now, we have to calculate the linear joint range
(we have posed ).

When the tool center point is at , . Projecting
on the axis yields

E. Prototype

Using the aforementioned two kinetostatic criteria, a
small-scale prototype has been constructed in our laboratory
(Fig. 10). The three parts (1), (2), and (3) have been designed
to prevent each parallelogram from colliding with the cor-
responding linear motion guide. Also, the shifted position
of the tool center point limits the collisions between the
parallelograms and the workpiece. The actuated joints used
for this prototype are rotary motors with ball screws. The
prescribed performances of the Orthoglide prototype are a
Cartesian velocity of 1.2 m/s and an acceleration of 14 m/sat
the isotropic point. The desired payload is 4 kg. The size of its
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Fig. 11. Three velocity transmission factors in az cross section of the
Cartesian workspace passing throughQ .

prescribed cubic Cartesian workspace is 200200 200 mm.
We limit the variations of the velocity transmission factors as

(13)

The resulting length of the three parallelograms is mm
and the resulting range of the linear joints is mm.
Thus, the ratio of the range of the actuated joints to the size of
the prescribed Cartesian workspace is .
This ratio is high compared to other PKM. The three velocity
transmission factors are depicted in Fig. 11. These factors are
given in a cross section of the Cartesian workspace passing
through .

V. CONCLUSIONS

The Orthoglide is a new Delta-type PKM dedicated to
three-axis rapid machining applications that was designed to
meet the advantages of both serial three-axis machines (regular
workspace and homogeneous performances) and parallel
kinematic architectures (good dynamic performances). A
systematic procedure has been provided to define the geometric
parameters of the Orthoglide as functions of the size of a
prescribed cubic Cartesian workspace and bounded velocity
and force transmission factors.

The Orthoglide has been designed under isotropic conditions
and limited transmission factors. Low inertia and intrinsic
stiffness have been set as additional design requirements. Thus,
three articulated parallelograms have been used, rather than
legs subject to bending as in the fully isotropic mechanisms
proposed in [15]–[17]. At the isotropic configuration, a dis-
placement of a linear joint yields the same displacement of
the tool in the corresponding Cartesian direction, as in a serial
machine. The Cartesian workspace is simple, regular, and
free of singularities and self collisions. It is fairly regular and
the performances are homogeneous throughout the Cartesian
workspace. Thus, the entire Cartesian workspace is really
available for tool paths. These features make the Orthoglide
a novel design, compared with the existing Delta-type PKM
structures. A small-scale prototype Orthoglide has been built at
IRCCyN to demonstrate the feasibility of the design. Dynamic
model-based control laws will be implemented [30] and first
machining experiments with plastic parts will be conducted.

APPENDIX

To calculate the joint limits on and , we solve the follow-
ings inequations, from (11)

(14)

Fig. 12. f andf as functions of� along(Q Q ).

Thus, we note

(15)

Fig. 12 shows and as functions of along . The
four roots of in are

(16a)

(16b)

(16c)

(16d)

with

(16e)

(16f)

The isotropic configuration is located at the configuration where
. The limits on and are in the vicinity of this

configuration. Along the axis , the angle is lower than
0 when it is close to , and greater than 0 when it is close to

.
To find , we study the functions and , which are both

decreasing on . Thus, we have

(17a)

(17b)

In the same way, to find , we study the functions and
on . The three roots , , and define two intervals. If

, we have

(18a)

(18b)

otherwise, if

(18c)

(18d)
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Abstract

The paper addresses the geometric synthesis of Orthoglide-type mechanism, a family of 3-DOF
parallel manipulators for rapid machining applications, which combine advantages of both serial
mechanisms and parallel kinematic architectures. These manipulator possess quasi-isotropic kinematic
performances and are made up of three actuated fixed prismatic joints, which are mutually orthogonal
and connected to a mobile platform via three parallelogram chains. The platform moves in the Carte-
sian space with fixed orientation, similar to conventional XYZ-machine. Three strategies have been
proposed to define the Orthoglide geometric parameters (manipulator link lengths and actuated joint
limits) as functions of a cubic workspace size and dextrous properties expressed by bounds on the
velocity transmission factors, manipulability or the Jacobian condition number. Low inertia and intrin-
sic stiffness have been set as additional design goals expressed by the minimal link length requirement.
For each design strategy, analytical expressions for computing the Orthoglide parameters are proposed.
It is showed that the proposed strategies yield Pareto-optimal solutions, which differ by the kinematic
performances outside the prescribed Cartesian cube (but within the workspace bounded by the actuated
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joint limits). The proposed technique is illustrated with numerical examples for the Orthoglide prototype
design.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Parallel kinematic machines (PKM) are commonly claimed to offer several advantages over
their serial counterparts, such as high structural rigidity, better payload-to-weight ratio, high dy-
namic capacities and high accuracy [1–3]. Thus, they are prudently considered as promising alter-
natives for high-speed machining and have gained essential attention of a number of companies
and researchers. Since the first prototype presented in 1994 during the IMTS in Chicago by Gid-
ding and Lewis (the VARIAX), many other parallel manipulators have appeared. However, most
of the existing PKM still suffer from two major drawbacks, namely, a complex workspace and
highly non-linear input/output relations [4,5].

For most PKM, the Jacobian matrix, which relates the joint rates to the output velocities, is not
isotropic. Consequently, the performances (e.g. maximum speeds, forces, accuracy and rigidity)
vary considerably for different points in the Cartesian workspace and for different directions at
one given point. This is a serious disadvantage for machining applications [6,7], which require reg-
ular workspace shape and acceptable kinetostatic performances throughout. In milling applica-
tions, for instance, the machining conditions must remain constant along the whole tool path
[8]. Nevertheless, in many research papers, this criterion is not taken into account in the algorith-
mic methods used for the optimization of the workspace volume [9,10].

In contrast, for the conventional XYZ-machines, the tool motion in any direction is linearly
related to the motions of the actuated axes. Also, the performances are constant throughout
the Cartesian parallelepiped workspace. The only drawback is inherent to the serial arrangement
of the links, which causes poor dynamic performances. So, in recent years, several new parallel
kinematic structures have been proposed. In particular, a 3-dof translational mechanism with
gliding foot points was found in three separate works to be fully isotropic throughout the Carte-
sian workspace [11–13]. Although this manipulator behaves like the conventional Cartesian mech-
anism, its legs are rather bulky to assure stiffness. The latter motivates further research in PKM
architecture that seeks for compromise solutions, which admit a partial isotropy in favour of
other manipulator features.

One of such compromise solutions is the Orthoglide proposed by Wenger and Chablat [14],
which was derived from a Delta-type architecture with three fixed linear joints and three articu-
lated parallelograms. As follows from the previous works, this manipulator possesses good
(almost isotropic) kinetostatic performances and also has some technological advantages, such
as (i) symmetrical design; (ii) quasi-isotropic workspace; and (iii) low inertia effects [15]. In a pre-
vious work, the Orthoglide was optimised with respect to the Jacobian matrix conditioning and
transmission factor limits throughout a prescribed Cartesian workspace [16].

This paper further contributes to the Orthoglide kinematic synthesis and focuses on the com-
parison of different design strategies and inherited criteria. It proposes a systematic design proce-
dure to define the manipulator geometric parameters (the actuated joint limits and the link
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lengths) as function of the prescribed cubic workspace size and performances measure bounds.
The reminder of the paper is organized as follows. Section 2 briefly describes the Orthoglide kine-
matics and defines the design goals. Section 3 investigates the manipulator performances through
the workspace. Section 4 deals with the design of the dextrous workspace with bounded manip-
ulability, condition number and velocity transmission factors. Section 5 focuses on defining the
largest cube inscribed in the dextrous workspace. Section 6 illustrates the proposed design strat-
egies by numerical examples and also contains some discussions. And, finally, Section 7 summa-
rises the main contributions of the paper.
2. Orthoglide kinematics and design goals

2.1. Manipulator geometry

The kinematic architecture of the Orthoglide is shown in Fig. 1. It consists of three identical
parallel chains that may be formally described as PRPaR, where P, R and Pa denote the prismatic,
revolute, and parallelogram joints, respectively. The mechanism input is made up of three actu-
ated orthogonal prismatic joints. The output machinery (with a tool mounting flange) is con-
nected to the prismatic joints through a set of three parallelograms, so that it is restricted for
translational movements only.

Because of its symmetrical structure, the Orthoglide can be presented in a simplified model,
which consists of three bar links connected by spherical joints to the tool centre point at one side
and to the corresponding prismatic joints at another side (Fig. 2a).

Thus, if the origin of a reference frame is located at the intersection of the prismatic joint axes
and the x, y, z-axes are directed along them, the manipulator geometry may be described by the
equations
ðpx � qxÞ
2 þ p2

y þ p2
z ¼ L2; p2

x þ ðpy � qyÞ
2 þ p2

z ¼ L2; p2
x þ p2

y þ ðpz � qzÞ
2 ¼ L2; ð1Þ
where p = (px,py,pz) is the output position vector, q = (qx,qy,qz) is the input vector of the pris-
matic joints variables, and L is the length of the parallelogram principal links. It should be noted
B1

P

A1

C1

A2

B2

C2

A3

C3

B3 x

y

Fig. 1. Kinematic architecture of the Orthoglide.
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Fig. 2. Orthoglide simplified model (a) and its ‘‘zero’’ configuration (b).
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that, for this convention, the ‘‘zero’’ position p0 = (0,0,0) corresponds to the joints variables
q0 = (L,L,L), see Fig. 2b.

It is also worth mentioning that the Orthoglide geometry and relevant manufacturing techno-
logy impose the following constraints on the joint variables:
0 < qx 6 2L; 0 < qy 6 2L; 0 < qz 6 2L; ð2Þ
which essentially influence on the workspace shape. While the upper bound is implicit and obvi-
ous, the lower one is caused by practical reasons, since safe mechanical design encourages avoid-
ing risk of simultaneous location of prismatic joints in the same point of the Cartesian workspace.
Hence the kinematic synthesis must produce required joint limits within (2).

2.2. Inverse kinematics

From Eq. (1), the inverse kinematic relations can be derived in a straightforward way
qx ¼ px þ sx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � p2

y � p2
z

q
; qy ¼ py þ sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � p2

x � p2
z

q
; qz ¼ pz þ sz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � p2

x � p2
y

q
; ð3Þ
where sx, sy, sz 2 { ±1} are the configuration indices defined as signs of qx � px, qy � py, qz � pz,
respectively. Their geometrical meaning is illustrated by Fig. 2a, where hx, hy, hz are the angles
between the bar links and corresponding prismatic joint axes. It can be easily proved that
s = +1 if ha 2 (90�, 180�) and s = �1 if ha 2 (0�, 90�), where the subscript a belongs to the set
a2{x,y,z}. It should be also stressed that the border (h = 90�) corresponds to the serial singularity
(when the link is orthogonal to the relevant translational axis and the input joint motion does not
produce the end-point displacement), so corresponding Cartesian points must be excluded from
the Orthoglide workspace during the design.

It is obvious that expressions (3) define eight different solutions to the inverse kinematics and
their existence requires the workspace points to belong to a volume bounded by the intersection of
three cylinders CL ¼ fp j p2

x þ p2
y 6 L2; p2

x þ p2
z 6 L2; p2

y þ p2
z 6 L2g. However, the joint limits (2)

impose additional constraints, which reduce a potential solution set. For example, for the ‘‘zero’’
location p0 = (0,0,0), Eq. (3) give eight solutions q = (±L,±L,±L) but only one of them is feasible.
As proved in [17], with respect to number of inverse kinematic solutions, the Orthoglide with joint
limits (2) admits only 2 alternatives: (i) a single inverse kinematic solution (sx, sy, sz = +1) inside
the sphere SL ¼ fp 2 CL j p2

x þ p2
y þ p2

z < L2g; and (ii) eight inverse kinematic solutions
(sx, sy, sz 2 { ±1}) inside GL ¼ fp 2 CL j px; py ; pz > 0; p2

x þ p2
y þ p2

z > L2g. It can be also proved that
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the border between these two cases corresponds to the serial singularity. Hence, the kinematic
synthesis must focus on the location of the workspace inside of the sphere SL.
2.3. Direct kinematics

After subtracting three possible pairs of the equation (1) and analysis of the differences, the
Cartesian coordinates px, py, pz can be expressed as
px ¼
qx

2
þ t

qx
; py ¼

qy

2
þ t

qy
; pz ¼

qz

2
þ t

qz
; ð4Þ
where t is an auxiliary scalar variable. This reduces the direct kinematics to the solution of a qua-
dratic equation, At2 + Bt + C = 0 with coefficients A = (qxqy)

2 + (qxqz)
2 + (qy qz)

2; B = (qxqyqz)
2;

C ¼ ðq2
x þ q2

y þ q2
z � 4L2ÞðqxqyqzÞ

2=4. The quadratic formula yields two solutions t ¼
ð�Bþ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

Þ=(2A) that differ by the configuration index m = ±1, which, from a geomet-
rical point of view, distinguishes two possible locations of the target point with respect to
the plane passing through the prismatic joint centres. Algebraically, this index can be defined
as m ¼ sgnðpxq

�1
x þ pyq

�1
y þ pzq

�1
z � 1Þ. It should be stressed that the case B2 = 4AC corre-

sponds to a parallel singularity, so corresponding joint coordinates must be excluded during
the design.

It is obvious that the direct kinematic solution exists if and only if B2 P 4AC, which defines a
closed region in the joint variable space RL ¼ fq j ðq2

x þ q2
y þ q2

z � 4L2Þðq�2
x þ q�2

y þ q�2
z Þ1g. Tak-

ing into account (2), the feasible joint space may be presented as RþL ¼ fq 2 RL j qx;qy; qz P 0g.
Hence, with respect to the number of direct kinematic solutions, the Orthoglide with joint limits
(2) admits 2 alternatives [17]: (i) two direct kinematic solutions (m = ±1) inside the region RþL ; and
(ii) a single direct kinematic solution on the positive border of the region RþL . Since the second
case corresponds to the singularity, the kinematic synthesis must focus on using the inner part
of RþL .
2.4. Design goals and parameters

Because the Orthoglide is dedicated to general 3-axis machining, its kinematic performances
should be close to the performances of the classical XYZ-machine. Therefore, the design goals
may be stated as follows:

(i) manipulator workspace should be close to a cube of prescribed size;
(ii) kinematic performances within this cube should be quasi-isotropic;

(iii) link lengths should be minimal to lower the manufacturing costs.

The requirements (i) and (ii) will be satisfied in Section 4 by constraining the manipulability,
condition number and/or velocity transmission factor inside the Cartesian workspace boun-
ded by the joint limits. To fulfil requirement (iii), Section 5 evaluates the largest cube inscribed
in this workspace, which defines the smallest link lengths required to achieve the prescribed cube
size.
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The design parameters to be optimised are the parallelogram length L, the actuated joint limits
(qmin,qmax) and related location of the prescribed cube (pmin,pmax). Taking into account the linear
relation between L and the workspace size, the design process is decomposed into two stages:

(i) defining the joint limits (qmin,qmax) and the largest cube size/location (pmin,pmax) to satisfy
given kinematic performances for the normalised manipulator (L = 1);

(ii) scaling the normalised manipulator parameters to achieve the prescribed size of the cubic
workspace.

Numerical example for this two-stage design process is given in Section 6.
3. Jacobian analysis

3.1. Jacobian matrix

As follows from the previous Section and a companion paper [17], the singularity-free work-
space of the Orthoglide W0 is located within the sphere SL of radius L with the centre point
(0,0,0) and bounded by the parallel ‘‘flat’’ singularity surface in the first octant (Fig. 3). Also,
the remaining part of the sphere surface corresponds to the parallel ‘‘bar’’ singularity. Hence,
the kinematic design should define the inner part of this workspace that possesses the desired
kinematic properties.

Mathematically, these properties are defined by the manipulator Jacobian describing the differ-
ential mapping from the jointspace to the workspace (or vice versa). For the Orthoglide, it is more
convenient to express analytically the inverse Jacobian, which is derived from (1) in a straight-
forward way:
p
z

p
y

p
x

Q-axis

Fig. 3. The singularity-free workspace of the Orthoglide (97.2% of the sphere volume).
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J�1ðp;qÞ ¼
1 py=ðpx � qxÞ pz=ðpx � qxÞ

px=ðpy � qyÞ 1 pz=ðpy � qyÞ
px=ðpz � qzÞ py=ðpz � qzÞ 1

2
64

3
75: ð5Þ
Accordingly, the determinant of the Jacobian may be expressed as
detðJ�1Þ ¼
pxqyqz þ qxpyqz þ qxqypz � qxqyqz

ðpx � qxÞðpy � qyÞðpz � qzÞ
ð6Þ
and admits two cases of ill-conditioning, det(J) = 0 and det(J�1) = 0, corresponding to the serial
and parallel singularities mentioned above. It is also clear that the full isotropy is achieved only in
the ‘‘zero’’ point p0 = (0,0,0), where the Jacobian reduces to the identity matrix: J0 = I.

3.2. Q-axis properties

Since the Orthoglide workspace is symmetrical with respect to the axes x, y, z, its kinematic de-
sign requires a detailed study of the points belonging to the Q-axis, which is the bisector line of the
first octant [16]. For this axis, let us denote px = py = pz = p and, consequently, qx = qy = qz = q.
Then, as follows from (5), the inverse Jacobian may be presented as:
; ð7Þ
where v is the dimensionless scalar parameter expressed as v ¼ �p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � 2p2

p
and related to the

input/output variables via the expressions p ¼ �vL=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2v2

p
; q ¼ ð1� vÞL=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2v2

p
. To define

the feasible range of the parameter v, let us consider specific points belonging to the Q-axis (see
Fig. 4 and Table 1). They include three parallel singularity points P1, P2, P3 and one serial singu-
larity point P4. As follows from the analysis, the singularity-free region of the Q-axis is bounded
by the interval v 2 (�0.5,1.0) which corresponds to the coordinate ranges p 2 ð�L=

ffiffiffi
3
p

;L=
ffiffiffi
6
p
Þ;

q 2 ð0;
ffiffiffiffiffiffiffiffi
3=2

p
LÞ. It is important for the kinematic design that, within these limits, the relation be-

tween the coordinates p, q and the parameter v is monotonously decreasing (see Table 1). It
should be also noted that the employed parameterisation may be converted to the one used in
Fig. 4. Workspace regions for the Q-axis.



Table 1

Specific points in the Q-axis for the unit manipulator (L = 1)

Feature P1 O P2 P3 P4

p �
ffiffiffiffiffiffiffiffi
1=3

p
0

ffiffiffiffiffiffiffiffi
1=6

p ffiffiffiffiffiffiffiffi
1=3

p ffiffiffiffiffiffiffiffi
1=2

p
q 0 1

ffiffiffiffiffiffiffiffi
3=2

p ffiffiffiffiffiffiffiffi
4=3

p ffiffiffiffiffiffiffiffi
1=2

p
v 1 0 �0.5 �1 �1
det(J) 1 1 1 1 0
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[16] by defining v ¼ � tanðhÞ, where h is the angle between the manipulator links and correspond-
ing prismatic joint axes.
4. Dexterity-based design

Since the design specifications require the manipulator to possess the quasi-isotropic kinematics
[18–20], the original joint limits (2) must be narrowed to increase the distance from the dextrous
workspace points to the singularities. In this section, the desired joint limits are computed using
the Q-axis technique, which reduces the problem to locating two points Q+ and Q� on the bisector
line (see Fig. 4). These points bound the Q-axis region with the required properties and, therefore,
define the joint limits. It is obvious that the interval [Q+,Q�] must include the fully-isotropic
‘‘zero’’ point O, and the kinematic performances at the points Q+, Q� should be similar. To com-
pute the joint limits, we apply three different criteria evaluating the workspace dexterity. It should
be also mentioned that all results of this section are valid for the ‘‘unit’’ manipulator (L = 1),
which will be scaled on the subsequent design steps.

4.1. Constraining the manipulability

The manipulator manipulability w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðJ�1J�TÞ

q
is the simplest performance measure

assessing the dexterity [21], which is the product of the singular values of the Jacobian or its
inverse. For the Q-axis, where J�1 is a square and symmetrical matrix, the manipulability can
be computed as
w ¼ j detðJ�1Þj ¼ ð1� vÞ2� j 1þ 2v j; ð8Þ

where v 2 ]�0.5,1.0[. As follows from (6), the maximum value of the manipulability w is equal to 1
and is achieved in the ‘‘zero’’ (isotropic) point
detðJ�1ðp0ÞÞ ¼ 1; detðJ�1ðpÞÞ < 1 if p 6¼ p0: ð9Þ

Therefore, the joint limits can be found from the inequality
detðJ�1ðqÞÞP D 8q 2 ½qmin;qmax�; ð10Þ

where D is the prescribed lower bound of the manipulability (D < 1). Since the relation q(v) is
monotonous and v = 0 corresponds to the isotropic posture (see Section 3.2), the desired param-
eter range can be obtained from the cubic equation 2v3 � 3v2 + (1 � D) = 0 by selecting two roots
closest to zero. Applying the trigonometric method, it can be obtained that v1 ¼ 0:5� cosðu=3Þ,
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v2 ¼ 0:5þ cosðu=3� p=3Þ, where u = acos(1 � 2D), v1 < 0, v2 > 0, and, consequently, qmin =
q(v2); qmax = q(v1) and pmin = p(v2); pmax = p(v1), where functions q(v) and p(v) are defined in
Section 3.2. The graphical interpretation of this result is presented in Fig. 5. The open question,
however, is how to interpret the manipulability design specification D in engineering sense, to be
understandable for the designer with a practical background.

4.2. Constraining the condition number

The Jacobian condition number evaluates the distance to the singularities by the ratio of the
largest to the smallest matrix eigenvalues, which is also the ratio of the largest and smallest axis
length of the manipulability ellipsoid [21]. As follows from (5), the Orthoglide condition number
achieves its best value (equal to 1) in the zero point, while in other workspace points it is greater
than 1:
condðJ�1ðp0ÞÞ ¼ 1; condðJ�1ðpÞÞ > 1; if p 6¼ p0: ð11Þ

Hence, the joint limits can be found from the inequality
condðJ�1ðqÞÞ 6 d 8q 2 ½qmin; qmax�; ð12Þ

where d is the admitted upper bound of this performance index (d > 1). Since along the Q-axis the
inverse Jacobian is symmetrical, the condition number can be computed via the ratio of the largest
to the smallest eigenvalues of J�1. The relevant characteristic equation det(J�1 � kI) = 0 may be
rewritten as k3 � 3k2 + 3(1 � v2)k � (1 � v)2(2v + 1) = 0. Its analytical solution yields k1 = 1 + 2v;
k2,3 = 1 � v. Therefore, the condition number for the Q-axis can be expressed as
condðJ�1ðvÞÞ ¼
1þ 3v=ð1� vÞ if v 2 �0; 1½;
1� 3v=ð1þ 2vÞ if v 2 � � 0:5; 0�

�
ð13Þ
and the desired parameter range [v1,v2] can be obtained from the equations v1 = � (d � 1)/
(2d + 1), v2 = (d � 1)/(d + 2). Hence, qmin = q(v2); qmax = q(v1) and pmin = p(v2); pmax = p(v1),
where functions q(v) and p(v) are defined in Section 3.2. The graphical interpretation of this result
is presented in Fig. 6. The question of defining a reasonable value of d is simpler is this case
because it possesses clearer geometric meaning and is rather understandable for practising engineers.
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4.3. Constraining the velocity transmission factor

The velocity transmission factor assesses the ratio of the manipulator end-point velocity and
velocity of the corresponding point in the joint space. For a given workspace point p and direction
of motion e, it can be computed via the Jacobian as k(p,e) = jjJ�1(p) Æ ejj�1 where eTe = 1. As
known from the matrix theory, the deviation of this factor for the fixed p is bounded by the small-
est and largest singular values of J. Geometrically, this performance index is directly related to the
manipulability ellipsoid, which in the previous section was evaluated by the ratio of its longest and
shortest axes, while here these axes are assessed separately.

As follows from (5), the Orthoglide velocity transmission factor does not depend on the direc-
tion of motion in the zero point and in the remaining points it varies depending on e
min
e

kðp; eÞ < 1; max
e

kðp; eÞ > 1 if p 6¼ p0: ð14Þ
Hence, for this performance measure, the joint limits can be found from the inequality
kmin 6 kðq; eÞ 6 kmax 8q 2 ½qmin; qmax� 8e :jj e jj¼ 1; ð15Þ
where k(q,e) denotes the velocity transmission factor along the Q-axis, and kmin, kmax are the
design specifications (kmin < 1 < kmax).

Since along the Q-axis the Jacobian is symmetrical, the transmission factor range may be
derived from the eigenvalues obtained in the Section 4.2. It has been also proved that the eigen-
value k1 = 1 + 2v corresponds to the eigenvector directed along the Q-axis, and two remaining
coinciding eigenvalues k2,3 = 1 � v correspond to the eigenvectors, which are perpendicular to this
axis. So, the desired parameter range [v1,v2] can be computed from the expressions
v1 ¼ maxf1� kmax; ðkmin � 1Þ=2g; v2 ¼ minf1� kmin; ðkmax � 1Þ=2g: ð16Þ
Graphical interpretation of this result is presented in Fig. 7. The question of defining reasonable
values of kmin, kmax is very clear in this case. For instance k 2 [l, 1/l] with l 2 [0.5,1.0] possesses
sensible meaning and is quite understandable for practising engineers. Impact of the transmission



Fig. 7. Computing the joint limits the velocity transmission factors.

Table 2

Dextrous workspace for different bounds on the velocity transmission factor

Lower bounding Two-sided bounding Upper bounding
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factor bounding on the dextrous workspace shape/size is also illustrated in Table 2, where all cases
are quantified relative to the volume of the singularity-free workspace V0 (see Fig. 3). To generate
these shapes, we executed spanning of all possible directions from the isotropic point and dicho-
tomic search for the line segments satisfying the kinematic constraints.
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5. Workspace-based design

After applying the Q-axis technique, which yields the joint limits ensuring the prescribed dex-
terity for the bisector line, the whole workspace must be verified for kinematic performances. In
this Section, this problem is solved by identifying and evaluating the workspace ‘‘critical points’’
and relevant definition of the joint limits. Then, the largest cube is inscribed in the dextrous work-
space of the unit manipulator, which gives the scaling factor to meet the specifications for the
desired cubic workspace size. It should be noted that here the manipulator dexterity is evaluated
by the velocity transmission factors, which, as stated above, have advantages over the manipula-
bility and condition number indices in practical applications. But the main results are also gener-
alised for the manipulability and condition number criterions.

5.1. Workspace critical points

Let us consider first the unit Orthoglide (L = 1) with given joint limits qmin 2 [0,1],
qmax 2 ½1;

ffiffiffiffiffiffiffiffi
3=2

p
� and estimate the velocity transmission factors lmin, lmax over the corresponding

workspace, which is bounded by six surfaces presented in Fig. 8. Since the manipulator has a sym-
metric geometric structure, the candidate points for extreme values of l are located symmetrically
on the workspace boundary and must be selected from the following sets:

(i) vertex points, for which all three joint coordinates qx, qy, qz are equal to either qmin or qmax;
(ii) edge points, for which 2 of 3 joint coordinates qx, qy, qz are equal to either qmin or qmax;

(iii) face points, for which 1 of 3 joint coordinates qx, qy, qz is equal to either qmin or qmax.

It is also obvious that the inner workspace points possess better dexterity than their boundary
counterparts (since the straight line motion from the zero point to any boundary point causes
monotonous changing of the angles hx, hy, hz and corresponding decreasing of the transmission
factors for each axis). Besides, as follows from a detailed investigation, only three types of points,
Q, R, and S, compete to define the global measure of the workspace performances. Hence, the
problem of this section is reduced to choosing the worst transmission factor from these points.
Fig. 8. The q-bounded workspace and its critical points.
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5.1.1. Vertex points Q+, Q�

For the points Q+ and Q�, which are located at the intersection of the workspace boundary and
the bisector line (i.e. the Q-axis)
Qþ : p ¼ ðp1; p1; p1Þ; q ¼ ðqmax;qmax; qmaxÞ;
Q� : p ¼ ðp2; p2; p2Þ; q ¼ ðqmin; qmin;qminÞ;
the Jacobian is symmetrical, so the transmission factors li are equal to the inverses 1/k1 and 1/k2,3

of the eigenvalues k1 = 1 + 2v and k2,3 = 1 � v (see Section 4.3). The parameter v is related to the

Cartesian coordinates (px,py,pz = p) by the expression v ¼ �p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2p2

p
, where p1, p2 are

expressed as
p1 ¼
1

3
qmax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2q2

max

q� �
; p2 ¼

1

3
qmin �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2q2

min

q� �
ð17Þ
and corresponds to Q+ and Q� respectively.

5.1.2. Edge points Rþx ; . . . ;R�z
For the points Rþx and R�x , which are defined at the intersection of the workspace boundary and

the XY-plane
Rþx : p ¼ ðp1; p1; 0Þ; q ¼ ðqmax;qmax; q1Þ;
R�x : p ¼ ðp2; p2; 0Þ; q ¼ ðqmin; qmin;q2Þ
the inverse Jacobian is
ð18Þ
where v ¼ �p=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
and p is equal to either p1 or p2. Using the Orthoglide kinematic equation

(1), the Cartesian coordinates may be expressed as
p1 ¼ qmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� q2

max

q� �
=2; p2 ¼ qmin �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� q2

min

q� �
=2 ð19Þ
and, subsequently,
q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

maxð2� q2
maxÞ

4

q
2 ð1; qmaxÞ; q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

minð2� q2
minÞ

4

q
2 ðqmin; 1Þ: ð20Þ
Since the matrix (18) is asymmetrical, the velocity transmission factors are to be computed from
the product of the Jacobian by its transpose
ð21Þ
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The corresponding characteristic equation may be presented as (r � (1 � v)2) Æ (r2 � Ar + B) = 0,

where A = (1 + v)2 + (1 + v2)/(1 � v2); B = (1 + v)2. So, the singular values k ¼
ffiffiffi
r
p

are
k1 ¼ 1� v; k2;3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B

p� �r
ð22Þ
and the velocity transmission factors can be computed as 1/k1, 1/k2, and 1/k3. It is clear that,
because of the symmetry, these assessments are also valid for the remaining points Rþy ; R�y
and Rþz ; R�z .

5.1.3. Face points Sþx ; . . . ; S�z
For the points Sþx and S�x , which are defined at the intersection of the workspace boundary and

the X-axis
Sþx : p ¼ ðp1; 0; 0Þ; q ¼ ðqmax;q1; q1Þ;
S�x : p ¼ ðp2; 0; 0Þ; q ¼ ðqmin;q2; q2Þ
the inverse Jacobian is
ð23Þ
where v ¼ �p=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
and p is equal to either p1 or p2. Using the basic kinematic equation (1),

the latter may be expressed as p1 = qmax � 1; p2 = qmin � 1, and, subsequently,
q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmaxð2� qmaxÞ

p
2 ½1;qmax�; q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qminð2� qminÞ

p
2 ½qmin; 1�: ð24Þ
Since the matrix (23) is asymmetrical, the velocity amplification factors must be computed from
the product of the Jacobian and its transpose
ð25Þ
The corresponding characteristic equation may be written as (r � 1) Æ (r2 � 2(1 + v2)r + 1) = 0.
Hence, the singular values k ¼

ffiffiffi
r
p

are
k1 ¼ 1; k2;3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ v2Þ � v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ v2

pq
ð26Þ
and the velocity transmission factors can be computed as 1/k1, 1/k2, and 1/k3. It is clear that
similar results are also valid for the points Sþy , S�y and Sþz , S�z .

5.2. Global performance indices

After evaluation of the transmission factors at the points Q, R, S, these points can be classified
with respect to the influence on the global performance indices lmin, lmax throughout the work-
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space Wq bounded by q 2 [qmin,qmax]. Here, the global performance indices are defined as the
lower and upper bounds of the velocity transmission factors within Wq. Since the prescribed
workspace must be singularity-free, the allowable joint limits should belong to the rectangle
ðqmin; qmaxÞ 2 ½0; 1� � ½1;

ffiffiffiffiffiffiffi
1:5
p

�.

5.2.1. Contour plots of global indices
Detailed investigation of the joint limit rectangle based on both analytical and numerical tools

has yielded results presented in Fig. 9, which contains the contour plots of lmin, lmax on the plane
qmin, qmax. These plots are labelled by the relevant values of the velocity transmission factors and
divided in separate areas, which differ by a type of the critical points. For instance, the contour
plot for the function lmin(qmin,qmax) consists of four areas, S�, R�, Q� and Q+, where the global
transmission factors are defined by the critical points fS�x ; S�y ; S�z g; fR�x ;R�y ;R�z g, Q� and Q+

respectively. For comparison purposes, we also show by the dashed/dotted lines the one-dimen-
sional subset of the joint limit rectangle, which corresponds to the ‘‘symmetrical’’ design con-
strains (i.e. lmin = 1/lmax) imposed either on the full q -bounded workspace or along the Q-axis
only.

As follows from Fig. 9a, the global minimum of the transmission factor can be achieved in
either points S�i , R�i , or Q�, where i 2 {x,y,z} and all these indices are equivalent with respect
to the lmin, lmax because of the symmetry. It has been proved, that particular expressions for com-
puting of lmin are
Fig. 9

corres
lminðqmin; qmaxÞ ¼

k2ðS�i Þ
�1

for qmin2 �0; qSR�;
k2ðR�i Þ

�1
for qmin2 �qSR; qRQ�;

k2ðQ�Þ�1
for qmin2 �qRQ;uQQðqmaxÞ�;

k1ðQþÞ�1
for qmin2 �uQQðqmaxÞ; 1�;

8>>>>><
>>>>>:

ð27Þ
where the subscripts of k define the number of the critical singular value (1 , . . . , 3, in accordance
with the above notation), and the critical points S�i ; R�i and Q� are separated by the vertical lines
(a) (b)

. Contour plots of the global transmission factors lmin, lmax on the plane qmin · qmax (dashed/dotted lines

pond to symmetrical constraints for Wq/Q-axis; l* � 0.54).
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qSR = 0.1093 and qRQ = 0.2240 shown in bold in Fig. 9a (corresponding values of the transmis-
sion factor are lmin(qSR) = 0.3232 and lmin(qRQ) = 0.4210). The critical points Q+, Q� are sepa-
rated by the curve qmin = uQQ(qmax), which can be obtained by equating the eigenvalues
k1 = 1 + 2v and k2 = 1 � v for Q+ and Q�, respectively. Hence, using the relation between the aux-
iliary variable v and the joint coordinate along the Q-axis q ¼ ð1� vÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2v2

p
, the equations

for the function uQQ(qmax) can be presented both in the parametric
qmin ¼ ð1� vÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2v2

p
; qmax ¼ ð1þ 2vÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8v2

p
v 2 �0; 1=4½ ð28aÞ
and explicit form
q2
max ¼ 3ð3� 2q2

minÞ
�
ð9� 2q2

minÞ � 4qmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2q2

min

q� �
; qmin2 �

ffiffiffiffiffiffiffi
0:5
p

; 1:0½: ð28bÞ
It can be also shown that along this curve the corresponding velocity transmission factor lmin =
1/(1 + 2v) varies from 1 to 2/3, and the curve is bounded by the points (1,1) and ð

ffiffiffiffiffiffiffi
0:5
p

;
ffiffiffiffiffiffiffi
1:5
p

Þ.
Similar analysis for the global maximum of lmax (Fig. 9b) shows that it can be achieved in

either point R�i or Q+, i.e.
lmaxðqmin; qmaxÞ ¼
k1ðR�i Þ

�1
for qmax2 �1; uRQðqminÞ�;

k1ðQþÞ�1
for qmax2 �uRQðqminÞ;

ffiffiffiffiffiffiffi
1:5
p

½;

(
ð29Þ
where the subscripts of k and R have similar meaning as in (27), and the critical points R�i and Q+

are separated by the curve qmin = uRQ(qmax). This curve can be obtained by equating the eigen-
values k1 = 1 � v and k1 = 1 + 2v, respectively, for R�i and Q+. Hence, using the relations between
the auxiliary variable v and the joint coordinates of the Q-points qQ ¼ ð1� vÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2v2

p
and R-

point qR ¼ ð1� vÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
, the equations for the function uRQ(qmax) can be presented both in

the parametric
qmax ¼ ð1� vÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2v2

p
; qmin ¼ ð1þ 2vÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4v2

p
; v 2 � � 1=2; 0½ ð30aÞ
and explicit forms
q2
min ¼

9ð3� 2q2
maxÞ

ð15� 2q2
maxÞ � 4qmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2q2

max

p qmax 2 �1;
ffiffiffiffiffiffiffiffi
3=2

p
½: ð30bÞ
It can be also shown that along this curve the corresponding velocity transmission factor lmax =
1/(1 + 2v) varies from 1 to 1, and the curve is bounded by the points (1,1) and ð0;

ffiffiffiffiffiffiffi
1:5
p

Þ.
Neighbourhood of the isotropic point. Since the kinematic design seeks for the quasi-isotropic

workspace, it is useful to obtain analytical expressions for lmin in the neighbourhood of the iso-
tropic point (1,1), which is completely defined by the Q-axis (see Fig. 9a). As proved above, for
both Q+ and Q� the auxiliary parameter v may be expressed via the joint variable as
vQ ¼ ð1� q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2q2

p
Þ=ð2q2 � 1Þ, hence in this case (27) may be reduced up to
lmin ¼
1
3
þ 2qmin

3
ffiffiffiffiffiffiffiffiffiffiffiffi
3�2q2

min

p ifqmax P uQQðqmaxÞ;

2
3
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
3�2q2

max

p
3qmax

otherwise:

8><
>: ð31Þ
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Rewriting these expressions with respect to lmin yields
F

Q� : qmin P
3lmin � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6l2
min � 4lmin þ 2

p ; Qþ : qmax 6
1

3l2
min � 4lmin þ 2

; ð32Þ
which allow to compute the joint limits qmin, qmax for given design specification lmin P l0 (pro-
vided that lmin P l(qSR) � 0.32). For the wider range of lmin, the relevant equation was solved
numerically and corresponding plots are presented in Fig. 10.

Similar expressions for lmax can be derived by substitution of
vR ¼ 1� qmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� q2

min

q� �.
ðq2

min � 1Þ; vQ ¼ 1� qmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2q2

max

q� �.
ð2q2

max � 1Þ
into equations for the roots k1 = 1 � vR and k1 = 1 + 2vQ and relevant simplification:
lmax ¼
1
3
þ 2qmax

3
ffiffiffiffiffiffiffiffiffiffiffiffi
3�2q2

max

p if qmin 6 uRQðqmaxÞ;

1
2
þ

ffiffiffiffiffiffiffiffiffiffi
2�q2

min

p
2qmin

otherwise:

8><
>: ð33Þ
Rewriting these expressions with respect to lmax yields
R� : qmin P
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l2
max � 2lmax þ 1

p ; Qþ : qmax 6
2lmax � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6l2
max � 4lmax þ 2

p ; ð34Þ
which make it possible to compute the joint limits qmin,qmax for given design specification
lmax 6 1/l (see Fig. 10).

5.2.2. Symmetrical design specification
The above results can be also used in the case of the ‘‘symmetrical’’ design specification, which

assumes the inverse relations between the upper and lower bound on the transmission factor
(lmin = 1/lmax), when the feasible workspace is defined by the expression
min
p2W q

flminðpÞ; 1=lmaxðpÞgP l ð35Þ
(a) (b)

ig. 10. Computing joint limits for non-symmetrical constraints (independent upper and lower bounding).
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in which l 2 [0,1] is the value of the prescribed performance measure (for instance, it is natural to
set the transmission factor to be in the range [1/2,2] or [1/3,3], as it was proposed in [8]). As fol-
lows from the related analysis, in this case only two combinations of critical points are possible:
(Q+,Q�) if l P l* and ðQþ;R�i Þ if l < l*, where l* � 0.5387, qmin(l*) � 0.4892, qmax(l*) �
1.1700 (see Fig. 9). So, as follows from (31) and (33), the joint limits for the symmetrical design
specification can be computed as
Fig. 1

symm
Qþ : qmax 6
3� lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l2 � 4lþ 6
p ; 0 < l < 1; ð36aÞ

Q� : qmin P
3l� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6l2 � 4lþ 2
p ; l� 6 l < 1; R� : qmin P

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 2lþ 2

p ; 0 < l < l�:

ð36bÞ

This relation is shown in Fig. 11a on the qmin · qmax plane and also plotted in Fig. 11b against the
velocity transmission factor l. They make it possible to evaluate the global manipulator perfor-
mance for the whole q-bounded workspace Wq (for given joint limits) or to compute the joint
limits that guarantee the desired performances throughout Wq.

5.3. Defining a cubic workspace

Since the prescribed Cartesian workspace has a cubic shape, let us first define the largest cube
that ensures the desired transmission factors [l, 1/l] through it, while temporarily releasing the
joint limits constraints. It is obvious, that due to the Orthoglide symmetrical architecture, the cube
faces must be parallel to the xy, xz and yz planes. So, the constraint (15) may be rewritten as
min
p2W p
flminðpÞ; 1=lmaxðpÞgP l; ð37Þ
where Wp denotes the p-bounded workspace determined by px, py, pz 2 [pmin,pmax]. Applying the
above notation, the cube may be also defined by its two opposite vertices Q+, Q� located on the
(a) (b)

1. Transmission factors (a) and joint limits (b) for symmetrical constraints within Wq (dashed line shows

etrical constraints for Q-axis only).
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bisector line. Detailed investigation of Wp using expressions from previous sub-sections is summa-
rised in the following statement.

Proposition 1. If the prescribed symmetrical bounds l(p) 2 [l,1/l], 0 < l < 1 on the velocity
transmission factors are satisfied at the Q-axis points Q+, Q�, then these bounds are satisfied
throughout the cubic workspace Wp defined by the vertices Q+, Q� (and vice versa).

The proof of the proposition uses convexity of the workspace hull bounded by l(p) 2 [l, 1/l]
and is based on comparing the Jacobian singular values in the critical points of the cubic work-
space and on the expressions for the joint limits
qðQþÞ ¼ 3� lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2 � 4lþ 6

p ; qðQ�Þ ¼ max
3l� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6l2 � 4lþ 2
p ;

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2 � 4lþ 3

p
( )

; ð38Þ
which are derived from (31), (33). It should be noted that the q-bounded workspace defined by the
same vertices Q+, Q� does not satisfy the bounds [l,1/l] if l < l* � 0.54 (see Section 5.2), but the
p-bounds remove the critical points Rþx , Rþy ; . . . R�z . Besides, utilising the cubic workspace with
the vertices Q+, Q� requires a certain enlargement of the upper joint limit. Really, as follows from
the basic Orthoglide equation (1), the p-bounded Cartesian workspace maps into the joint space
portion, which is contained in the parallelepiped
qx; qy ;qz 2 ½qðQ�Þ; pðQþÞ þ 1�; ð39Þ
where qðQ�Þ ¼ pmin þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2p2

min

p
is the joint coordinate at Q�, p(Q+) = pmax is the Cartesian

coordinate at Q+, and pmin, pmax depend on the desired transmission factor bound l and are com-
puted from (31), (33). It can also be easily proved that p(Q+) + 1 > q(Q+), since qðQþÞ ¼
pmax þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2p2

max

p
(see Section 5.1). Hence, this increase in the upper joint limit may lead to

the singularities included in the corresponding q-bounded workspace, which can be avoided only
by adding some ‘‘software joint limits’’ (based on verifying of inequalities more complicated than
qmin 6 qx 6 qmax and similar). Relevant computations showed that the singularity problem arises

for the transmission factors l 6 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:5
p

� 1
p

� 0:53 for which pðQþÞ þ 1
ffiffiffiffiffiffiffi
1:5
p

.

The alternative approach for defining the cubic workspace assumes that the joint limits corre-
sponding to Q+, Q� cannot be violated. Hence, the desired cube W o

p should be completely en-
closed in the q-bounded space Wq. It is obvious that W o

p � W p, so within the cube W o
p the

manipulator possesses the desired kinematic properties. Dimension of the cube W o
p and its spatial

location are defined by the following proposition.

Proposition 2. If the prescribed symmetrical bounds l(p) 2 [l, 1/l], 0 < l < 1 are satisfied in the
Q-axis points Q+, Q�, then the largest cube enclosed in the q-bounded workspace Wq is defined by
the vertices Qþ� and Q�, where Qþ� 2 ½QþQ�� and pðQþ� Þ ¼ qðQþÞ � 1.

The proof of this proposition is based on comparing the Cartesian coordinates for the critical
points Q, R, S (see Fig. 8) and also uses the expression for the upper joint limit from Proposition
1. It is clear, that in this case the q-bounded workspace defined by Q+, Q� is singularity-free, but
its global performances may be out of the design specifications in R2-points and their neighbour-
hood if l < 0.54 (see Section 5.2). So, the designer may choose the third design strategy, which
guarantees satisfaction of the design specification both in the q-bounded and p-bounded
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workspaces Wq and W o
p . The latter is based on the following corollary combining results from

Propositions 1 and 2.

Corollary 1. If the prescribed symmetrical bounds l(p) 2 [l, 1/l], 0 < l < 1 are satisfied within the
q-bounded workspace defined by the vertices Q+, Q�, then they are also satisfied within the p-
bounded workspace defined by the vertices Qþ� and Q�, with pðQþ� Þ ¼ qðQþÞ � 1.

These Propositions and Corollary give the designer three different methods (‘‘design strategies’’)
for computing the joint limits and dextrous Cartesian workspace of the normalised manipulator
(L = 1), which afterwards must be scaled to achieve the prescribed workspace size. The methods
are summarised in Table 3 and yield three Pareto-optimal solutions with respect to the design
goals stated in Section 2. As follows from the propositions, all strategies ensure satisfaction of
the design specification within the prescribed cubic workspace Wp, but differ by the manipulator
performances in the remaining part WqnWp. It should be noted, that the primary version of the
first method, for l P l*, was developed in the previous paper [16], while here it is generalised for
the full range of the transmission factor.

It is obvious that correctness of the above statements for the transmission factor guarantees
their correctness for the manipulability and condition number indices, which may be directly ex-
pressed via the singular values. Also, for real-life problems, the designer can prefer one of the solu-
tions to other ones taking into account a number of additional engineering constraints and
objectives, which cannot be implicitly expressed in the frames of the model used in this paper.
6. Numerical examples and discussions

To compare the proposed design approaches, let us apply them to the design of the Orthoglide
for the unit Cartesian workspace c · c · c, c = 1 with the transmission factors bounds
0.5 6 l 6 2.0. As stated above, the design process includes two main stages: (i) defining the joint
limits qmin, qmax for the normalised manipulator with the link length L = 1, and (ii) scaling the
manipulator parameters (qmin,qmax,pmin,pmax,L) to achieve the prescribed workspace size.

For the normalised manipulator, the Q-axis technique gives the following ranges for the joint/
Cartesian coordinates and corresponding transmission factors within the q- and p-bounded work-
spaces l(Wq), l(Wp), which are called below J-space and C-space, respectively (i.e. ‘‘Joint-coor-
dinate bounded space’’ and ‘‘Cartesian-coordinate bounded space’’):
J-space0 : q 2 ½0:4082; 1:1785�; Dq ¼ 0:7703; lðW qÞ 2 ½0:50; 2:16�;
C-space0 : p 2 ½�0:4082; 0:2357�; Dq ¼ 0:6440; lðW pÞ 2 ½0:50; 2:00�:
Strategy #1 assumes that the cube with the edge Dp is used as the prescribed Cartesian workspace.
It requires increasing the upper joint limit to make all points of the cube attainable. According to
Section 5.3, the enlarged joint space is defined as
J-space1 : q 2 ½0:4082; 1:2357�; Dq ¼ 0:8275; lðW qÞ ¼ ½0:50;1½:

So, since qmax >

ffiffiffiffiffiffiffi
1:5
p

, the obtained q-bounded workspace includes parallel singularities, which
may be eliminated by additional software constrains on the joint coordinates. For instance, the
inequality qx þ qy þ qz 6 3qQþ removes the singularities from Wq and restores the original trans-
mission factors [0.50,2.16].



Table 3

Computing joint limits for the unit Orthoglide (dots on the Q-axis show location of Q+, Q� for different design

strategies)

Design strategies Remarks

Design strategy #1

(i) Compute points Q+, Q� to achieve required

transmission factors along segment Q+Q�

(ii) Locate the cube vertices in points Q+, Q� to

define the cubic workspace Wp

(iii) Adjust the joint limits to include the p-bounded

workspace Wp inside the q-bounded one
Q−

Q+

qmin ¼ qQ� ; qmax ¼ 1þ pQþ

pmin ¼ pQ� ; pmax ¼ pQþ

Inside the cube, design specifications are satisfied, but

outside it, they are violated and even singularities exist if

l 6 0.53

Design strategy #2

(i) Compute points Q+, Q� to achieve required

transmission factor along segment Q+ Q� and

set joint limits according to these points

(ii) Inscribe the cube inside the q-bounded work-

space Wq to define the cubic workspace Wp

Q−

Q+

qmin ¼ qQ� ; qmax ¼ qQþ

pmin ¼ pQ� ; pmax ¼ qQþ � 1

Workspace is singularity-free but, outside the cube,

performances are out of design specifications if l < 0.54

Design strategy #3

(i) Compute points Q+, Q� to achieve required

transmission factor within the q-bounded

workspace Wq and set according joint limits

(ii) Inscribe the cube inside the q-bounded work-

space Wq to define the cubic workspace Wp

Q−

Q+

qmin ¼ qQ� ; qmax ¼ qQþ

pmin ¼ pQ� ; pmax ¼ qQþ � 1

Both q- and p-bounded workspaces are singularity-free

and meet design specifications
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Strategy #2 keeps the original q-bounded workspace, within which is located the prescribed
cube. Computing relevant parameters gives:
C-space2 : p 2 ½�0:4082; 0:1785�; Dp ¼ 0:5868; lðW pÞ ¼ ½0:50; 2:00�:
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In this case, the cube is smaller but the workspace is singularity-free and possesses reasonable
kinematic properties both inside and outside the cube.

Strategy #3 provides the desired transmission factors for the whole q-bounded workspace,
which is computed in accordance with Table 3 and is defined as
Table

Ortho

Desig

#1

#2

#3
J-Space3 : q 2 ½0:4472; 1:1785�; Dq ¼ 0:7313; lðW qÞ ¼ ½0:52; 2:00�:

Then, inscribing the largest cube gives
C-Space3 : p 2 ½�0:3884; 0:1785�; Dp ¼ 0:5669; lðW pÞ ¼ ½0:52; 1:87�

that overtakes the required kinematic performances for the cube but ensures them for the whole
q-bounded workspace.

After defining normalised manipulator parameters, the obtained cubic workspaces must be ad-
justed to the prescribed size c · c · c by scaling the manipulator dimensions and joint/Cartesian
coordinates. Computing the scaling factor g = c/Dq for c = 1 yields 1.553, 1.704 and 1.764 for
the first, second and third design strategies respectively. Design results after scaling are summa-
rised in Table 4, which also contains ratio of the actuated joints range Dq to the cube size c. These
results shows that all obtained solutions are Pareto-optimal with respect to the vector criterion
(L,lmin,lmax) with the goals L! min and lmin, lmax! 1.0. Indeed, Strategy #1 yields the small-
est Orthoglide dimensions (about 12% less than the third one), but the worst kinematic properties
outside the cube (with singularities). In contrast, Strategy #3 guarantees the best kinematic per-
formances for the price of the largest manipulator links, while Strategy #2 gives an intermediate
solution ensuring the compromise between the link length and transmission factors. Hence, none
of the strategies can be given a preference within the frames of the kinematic model and, in real-
life applications, all these solutions should be presented to the designer who may evaluate them by
taking into account a number of additional technical constraints and goals.

Finally, let us demonstrate application of the proposed technique to the design of the Orthog-
lide prototype, which has been built in Institut de Recherche en Communications et Cybernétique
de Nantes (IRCCyN). The prescribed performances of the manipulator are: Cartesian velocity
and acceleration in the isotropic point 1.2 m/s and 14 m/s2; payload 4 kg; cubic Cartesian work-
space size 200 · 200 · 200 mm; transmission factor range 0.5–2.0. Application of the design strat-
egies #1 , . . . , 3 yielded the Orthoglide link lengths 310.6, 340.9, 352.8 mm, respectively. Taking
into account additional technical goals related to the manipulator mass and dynamic perfor-
mances, the preference was given to the solution with the smallest link length. Corresponding joint
limits are qmin = 126.8 mm and qmax = 383.8 mm. To remove singularities, the software constraint
qx þ qy þ qz3qQþ were used where 3qQþ ¼ 1098:1 mm. As follows from simulation and laboratory
experiments, the prototype ensures required transmission factors within the prescribed cubic
4

glide parameters and performances for Wp = 1 · 1 · 1 and 0.5 6 l 6 2.0

n strategy L qmin qmax Dq c/Dq l(Wp) l(Wq)

1.553 0.634 1.919 1.285 0.7782 0.500 . . . 2.000 Singularity

1.704 0.696 2.009 1.313 0.7618 0.500 . . . 2.000 0.500 . . . 2.158

1.764 0.789 2.079 1.290 0.7752 0.518 . . . 1.869 0.518 . . . 2.000
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workspace [0.50,2.00] and also their reasonable values outside the cube [0.50,2.16]. However, dur-
ing tuning of the control system, it was noticed rather high sensitivity of the kinematic perfor-
mances with respect to the joint encoder offset. For instance, the 5 mm offset leads to changing
of the Cartesian cube transmission factors to [0.50,2.42]. The 10 mm offset increases their range
up to [0.50,3.42]. This imposes strict requirements on the assembly accuracy and motivates
dedicated research on the Orthoglide calibration.
7. Conclusions

The paper focuses on the parametrical synthesis of the Orthoglide, a parallel manipulator for 3-
axis rapid machining applications, which combines advantages of both serial mechanisms (regular
workspace and homogeneous performances) and parallel kinematic architectures (good dynamic
performances). Three strategies have been proposed to define the Orthoglide geometric parame-
ters as functions of a cubic workspace size and dextrous properties expressed by bounds on the
velocity transmission factors, manipulability or the Jacobian condition number. Low inertia
and intrinsic stiffness have been set as additional design goals expressed by the minimal link length
requirement.

In contrast to previous works, we proposed several Pareto-optimal solutions of the design prob-
lem, which differ by the manipulator performances outside the prescribed Cartesian cube (but
within the workspace bounded by the actuated joint limits). Taking into account linear relation
between the manipulator parameters and the cubic workspace size, the design process is decom-
posed in two stages: (i) defining the actuated joint limits and the largest cube size/location to sat-
isfy the dexterity goals for the normalised manipulator; (ii) scaling the normalised manipulator to
satisfy a specification on the cubic workspace size.

For each design strategy, we proposed analytical expressions for computing the Orthoglide
parameters, which were based on the ‘‘critical points’’ concept that allows evaluating the global
performance indices through the joint-bounded or cubic workspaces without their exhaustive
exploration. We also proved two propositions describing relations between these workspace sizes
and kinematic performances within them. It was shown, that independently of the applied strat-
egy, the workspace includes the fully-isotropic point where any linear joint displacement yields
similar manipulator tool displacement, like in a serial XYZ-machine. So, the synthesis is aimed
at specifying the cubic volume around this point, which meets the dexterity goals. The related
design parameters are the actuated joint limits and manipulator link lengths.

The proposed design strategies have been illustrated by numerical examples with the dexterity
specification expressed by the velocity transmission factor. We obtained three Pareto-optimal
solutions ensuring the required kinematic properties within the cubic workspace but providing
wider range of the transmission factor outside the cube (this range is decreased monotonously
while the manipulator link length is increased). Hence, no one of the strategies can be given a pref-
erence within the frames of the kinematic model and, in real-life applications, all the solutions
should be presented to the designer who should evaluate them taking into account additional
technical constraints and goals.

The developed technique has been also applied to the design of the Orthoglide prototype, which
has been successfully built and tested in IRCCyN (Nantes, France). However, experiments with
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this manipulator showed rather high sensitivity of the kinematic performances with respect to the
joint encoder offsets, which motivates further research on the Orthoglide calibration.
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Abstract

This paper presents a parametric stiffness analysis of the Orthoglide. A compliant modeling and a symbolic expression
of the stiffness matrix are conducted. This allows a simple systematic analysis of the influence of the geometric design
parameters and to quickly identify the critical link parameters. Our symbolic model is used to display the stiffest areas
of the workspace for a specific machining task. Our approach can be applied to any parallel manipulator for which stiffness
is a critical issue.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Parametric analysis; Stiffness; PKM design; Orthoglide
1. Introduction

Usually, parallel manipulators are claimed to offer good stiffness and accuracy properties, as well as good
dynamic performances. This makes them attractive for innovative machine-tool structures for high speed
machining [1–3]. When a parallel manipulator is intended to become a parallel kinematic machine (PKM),
stiffness becomes a very important issue in its design [4–6]. This paper presents a parametric stiffness analysis
of the Orthoglide, a 3-axis translational PKM prototype developed at IRCCyN [7].

Finite element methods (FEM) are mandatory to carry out the final design of a PKM [8]. However, a com-
prehensive three-dimensional FEM analysis may prove difficult, since one must repeatedly re-mesh the PKM
structure to determine stiffness performances in the whole workspace, which is time consuming. Simpler and
faster methods are needed at a pre-design stage. One of the first efficient stiffness analysis methods for parallel
mechanisms was based on a kinetostatic modeling [9]. According to this approach, the stiffness of parallel
mechanisms is mapped onto their workspace by taking into account the compliance of the actuated joints
only. It is used and complemented in [10] to show the influence of the compliance of the prismatic joints as
well as the torsional compliance of the links on the stiffness of the 3-UPU mechanism assembled for transla-
tion [11]. It is shown that the compliance of the links reduces the kinetostatic performances in a large part of
0094-114X/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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the workspace, compared to the stiffness model based on rigid links. Furthermore, the mobile platform can
undergo small rotational motions because of the links’ compliance, which departs from the expected transla-
tional kinematic behavior.

The analysis presented in [9] is not appropriate for PKM whose legs, unlike hexapods, are subject to
bending [12]. This problem is solved in [13], where a stiffness estimation of a tripod-based overconstrained
PKM is proposed. According to this approach, the PKM structure is decomposed into two substructures,
one for the mechanism and another for the frame. One stiffness model is derived for each substructure. The
superposition principle allows one to join the two models in order to derive the stiffness model of the whole
structure. The influence of the geometrical parameters on the stiffness is also briefly studied. An interesting
aspect of this method is that it can deal with overconstrained structures. However this stiffness model is not
general enough. A more general model was proposed in [14]. The method is based on a flexible-link lumped
parameter model that replaces the compliance of the links by localized virtual joints and rigid links. The
latter approach differs from that presented in [13] on two main points, namely: (i) the modeling of the link
compliances and (ii) the more general nature of the equations allowing the computation of the stiffness
model.

In this paper, the method proposed in [14] is applied to the Orthoglide for a parametric stiffness analysis. A
symbolic expression of the stiffness matrix is obtained which allows a global analysis of the influence of the
Orthoglide’s critical design parameters. No numerical computations are conducted until graphical results
are generated. This paper is organized as follows: first the Orthoglide is presented. Then, the compliant model
is introduced and the stiffness model is computed. Analytical expressions of the components of the stiffness
matrix are obtained at the isotropic configuration, clearly showing the influence of each geometrical para-
meter. Finally, given a specific simulated machining task, it is shown how the general stiffness expressions
allow one to easily display the stiffest subvolume of the Orthoglide’s workspace.
2. Compliant modeling of the Orthoglide

2.1. Kinematic architecture of the Orthoglide

The Orthoglide is a translational 3-axis PKM prototype designed for machining applications. The mobile
platform is connected to three orthogonal linear drives through three identical RPaR serial chains (Fig. 1).
Here, R stands for a revolute joint and Pa for a parallelogram-based joint. The Orthoglide moves in the Carte-
sian workspace while maintaining a fixed orientation. The Orthoglide was optimized for a prescribed work-
space with prescribed kinetostatic performances [15]. Its kinematic analysis, design and optimization are
fully described in [15].
Fig. 1. The Orthoglide (a) kinematic architecture and (b) prototype.
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2.2. Parameters for compliant modeling

The parameters used for the compliant modeling of the Orthoglide are presented in Fig. 2 and in Table 1.
They correspond to a ‘‘beam-like’’ modeling of the Orthoglide legs’ links. The foot has been designed to pre-
vent each parallelogram from colliding with the corresponding linear motion guide. Three revolute joints are
added, one on each leg (see Fig. 2), because the stiffness method used does not work with an overconstrained
Orthoglide. This does not change the kinematics.

2.3. Compliant modeling with flexible links

In the lumped model described in [14], the leg links are considered as flexible beams and are replaced by
rigid beams mounted on revolute joints plus torsional springs located at the joints (Fig. 3). Deriving the rela-
tionship between the force F and the deformation y(x), the local torsional stiffness k can be computed:
Table
Geom

Param

Lf

hf

bf

I f1
¼ b

I f2
¼ h

I f0
¼ h

k
d

LB

SB

b
e

EIy 00ðxÞ ¼ F ðL� xÞ
..
.

EIyðLÞ ¼ FL3=3

! h ’ yðLÞ=L ¼ FL2=3EI
k ¼ FL=h
! k ¼ 3EI=L
If the Orthoglide leg actuator is locked, then one leg can withstand one force F and one torque T (Fig. 4),
which are transmitted along the parallelogram bars and the foot. For a compliant modeling that uses virtual
joints, it is important to understand how external forces are transmitted, and what their effect on the leg links
is. Eight virtual joints are modeled along the Orthoglide leg. They are described in Table 2. The determination
of all the virtual joint stiffnesses is not detailed here for brevity. However, they are derived based on the same
principles used to calculate the torsional stiffness above.
β

Parallelogram bars

Foot

Pe

λ

dLf

LB

Fig. 2. Geometric parameters of the leg.

1
etric parameters of the Orthoglide and dimensions of the prototype

eter Description Values

Foot length, see Fig. 2 150 mm
Foot section sides 26 mm
Foot section sides 16 mm

f :h3
f

12 Foot section moment of inertia 1
f :b3

f

12 Foot section moment of inertia 2

f :bf ðh2
f þ b2

f Þ=12 Foot section polar quadratic moment
Angle between foot axis and actuated joint axis, see Fig. 2 45�
Distance between parallelogram bars, see Fig. 2 80 mm
Parallelogram bar length, see Fig. 2 310 mm
Parallelogram bar cross-section area 144 mm2

Rotation angle of the parallelogram
See Fig. 2
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Fig. 4. Forces transmitted in a leg.
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Fig. 3. General model for a flexible link: (a) flexible beam and (b) virtual rigid beam.

Table 2
Virtual joints modeling

Virtual joints i Figure

k1 = kact: translational stiffness of the prismatic actuator

F

k2 ¼
3EI f1

Lf
: Foot bending due to force F

Lf

F

k3 ¼
2EI f2

Lf
: Foot bending due to torque T

T

Lf

k4 ¼
GI f0

Lf
: Foot tension due to torque T

T

Lf

k5 ¼
EI f2

Lf
: Foot section rotation due to torque T Lf

T

(continued on next page)

F. Majou et al. / Mechanism and Machine Theory 42 (2007) 296–311 299



Table 2 (continued)

Virtual joints i Figure

k8 ¼ 2ESB

LB
: Parallelogram bars tension/compression due to force F

Lb

F

k10 ¼ ESBd2 cosðbÞ
2LB

: Differential tension of parallelogram bars due to Torque T Lb

T
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The actuated joint is assumed to be much stiffer than the virtual joints. The leg links compliances modeled
in Table 2 were selected beforehand as the most significant ones. Indeed, selecting only the most significant
compliances plays an important role in reducing the computing time required to derive the stiffness matrix
symbolically (Par. 3). The kinematic joints’ compliances are not taken into account because our purpose is
to determine the links compliance influence only. Angle b is a parameter that depends on the Cartesian
coordinates.
3. Symbolic derivation of the stiffness matrix

In this section, the derivation of the Orthoglide stiffness matrix—based on the virtual joints described in the
previous section—is conducted with a stiffness model that was fully described in [14]. Therefore, the descrip-
tion of the model will only be summarized here. Fig. 5 represents the lumped model of a leg with flexible links.
The Jacobian matrix Ji of the ith leg of the Orthoglide is obtained from the Denavit–Hartenberg parameters of
the ith leg with flexible links. This matrix maps all leg joint rates (including the virtual joints) into the general-
ized velocity of the platform, i.e.,
Ji
_hi ¼ t where _hT

i ¼ ½ _hi1
_hi2

_hi3
_hi4

_hi5
_hi6

_hi7
_hi8

_hi9
_hi10

_hi11
�

is the vector containing the 11 actuated, passive and virtual joint rates of leg i and t is the twist of the platform.
The Pa joint parameterization imposes _hi7 ¼ � _hi7bis ; which makes _hi7 and _hi7bis; is dependent. _hi7 is chosen to
model the circular translational motion, and finally Ji is written as
Ji¼
0; ei2 ; ei3 ; ei4 ; ei5 ; ei6 ; 0; 0; ei9 ; ei10

; ei11

ei1 ; ei2 � ri2 ; ei3 � ri3 ; ei4 � ri4 ; ei5 � ri5 ; ei6 � ri6 ; ei7 � ri7 ;�ei7bis � ri7bis ; ei8 � ri8 ; ei9 � ri9 ; ei10
� ri10

; ei11
� ri11

;

" #
Fig. 5. Flexible leg.
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in which eij is the unit vector along joint j of leg i and rij is the vector connecting joint j of leg i to the platform
reference point. Therefore the Jacobian matrix of the Orthoglide can be written as
J ¼
J1 0 0

0 J2 0

0 0 J3

2
64

3
75
One then has
J _h ¼ Rt with R ¼ I6 I6 I6½ �T and t ¼
x

v

� �
ð1Þ
_h being the vector of the 33 joint rates, that is _h ¼ ½ _hT
1

_hT
2

_hT
3 �

T. I6 stands for the 6 · 6 identity matrix. Unactuated
joints are then eliminated by writing the geometric conditions that constrain the two independent closed-loop
kinematic chains of the Orthoglide kinematic structure:
J1
_h1 ¼ J2

_h2 and J1
_h1 ¼ J3

_h3 ð2Þ
From (2), one can obtain A _h0 ¼ B _h00 (see [14] for details), where _h0 is the vector of joint rates without passive
joints and _h00 is the vector of joint rates with only passive joints. Hence:
_h00 ¼ B�1A _h0
Then a matrix V is obtained (see [14] for details) such that:
_h ¼ V _h0 ð3Þ

From (1) and (3) one can obtain:
JV _h0 ¼ Rt ð4Þ

As matrix R represents a system of 18 compatible linear equations in 6 unknowns, one can use the least-square
solution to obtain an exact solution from (4):
t ¼ ðRTRÞ�1
RTJV _h0
Now let J 0 be represented as J 0 = (RTR)�1RTJV. Then one has
t ¼ J0 _h0 ð5Þ

According to the principle of virtual work, one has
sT _h0 ¼ wTt ð6Þ

where s is the vector of forces and torques applied at each actuated or virtual joint and w is the external
wrench applied at the end effector, point P. Gravitational forces are neglected. By substituting (5) in (6),
one can obtain:
s ¼ J0Tw ð7Þ

The forces and displacements of each actuated or virtual joint can be related by Hooke’s law, that is for the

whole structure one has
s ¼ KJDh0 ð8Þ

with
KJ ¼
A 0 0

0 A 0

0 0 A

2
64

3
75
and A ¼ diag kact;
3EI f1

Lf
;

2EI f2

Lf
;

GI fO
Lf
; Ehf bf

Lf
;

EI f2

Lf
; 2ESB

LB
; ESBd2 cosðbÞ

LB

� �
.
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Dh 0 only includes the actuated and virtual joints, that is by equating (7) with (8):
KJDh0 ¼ J0Tw
Hence Dh0 ¼ K�1
J J0Tw. Pre-multiplying both sides by J 0 one obtains:
J0Dh0 ¼ J0K�1
J J0Tw ð9Þ
Substituting (5) into (9), one obtains:
d ¼ J0K�1
J J0Tw
with d = tDt. Finally the compliance matrix j is obtained as follows:
j ¼ J0K�1
J J0T
In the Orthoglide case we obtain:
j ¼

j11 0 0 j14 j15 j16

0 j11 0 j24 j25 j26

0 0 j11 j34 j35 j36

j14 j24 j34 j44 j45 j46

j15 j25 j35 j45 j55 j56

j16 j26 j36 j46 j56 j66

0
BBBBBBBB@

1
CCCCCCCCA

ð10Þ
And the Cartesian stiffness matrix is
K ¼ j�1 ¼ ðJ0K�1
J J0TÞ�1
4. Parametric stiffness analysis at the isotropic configuration

In this section, we study the influence of the geometric parameters on the stiffness of the Orthoglide at the
isotropic configuration, since this configuration provides a good evaluation of the overall performances [15].
Another interest is that the stiffness matrix is then diagonal which makes it easier to analyze.

4.1. Simple symbolic expressions

At the isotropic configuration, j is diagonal and the symbolic expressions of the components jij are simple.
This is convenient because it is then possible to invert j within a Maple worksheet and then analyze the sym-
bolic expressions of the components of matrix K. We have:
K ¼ diagðKa;Ka;Ka;Kb;Kb;KbÞ

where Ka is the torsional stiffness and Kb is the translational stiffness.
Ka ¼
E

2LB

SBd2
þ 2Lpð78b2

f þ cos2 kð45h2
f � 33b2

f ÞÞ
5hf b

3
f ðb2

f þ h2
f Þ

Kb ¼
1

1

kact

þ LB

2SBE
þ 4L3

f sin2 k

Eh3
f bf

ð11Þ
Analyzing the Orthoglide’s stiffness at the isotropic configuration allows us to manipulate simple and mean-
ingful symbolic expressions that are easy to interpret: this is the purpose of the following subsections.

4.2. Qualitative analysis of Ka and Kb

By inspection of the symbolic expression of Ka a few observations can be made:

• Young’s modulus E appears at the numerator, which makes its influence easy to understand: when E

increases, Ka increases, which is in accordance with intuition;
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• The term 2LB

SBd2 shows the influence of virtual joint 10 (differential tension of parallelogram bars). When the

bar length LB increases or when SB decreases, Ka decreases which is also in accordance with intuition. Ka

decreases when d increases, which is a less intuitive result;1

• The expression
2Lpð78b2

f
þcos2 kð45h2

f
�33b2

f
ÞÞ

5hf b3
f
ðb2

f
þh2

f
Þ shows the influence of virtual joints 3, 4 and 5 (foot bending and tor-

sion). Ka decreases when Lf increases, which is not surprising. The degrees of hf and bf in the numerator and
denominator of Ka tend to prove that the rotational stiffness increases with hf or bf, which is in accordance
with intuition. The influence of k depends on the sign of ð45h2

f � 33b2
f Þ.

Similarly, by inspection of the symbolic expression of Kb one notes:

• The term 1
kact

shows the influence of the prismatic actuator; it is not surprising that the translational stiffness

increases when kact increases. The term LB

2SBE snows the influence of virtual joint 8 (parallelogram bars ten-
sion/compression): Kb increases when SB or E increase, and decreases when LB increases, which is in accor-
dance with intuition;

• The term
4L3

f
sin2 k

Eh3
f
bf

shows the influence of the foot related virtual joints (tension/compression and bending):

when k increases, with k 2 [0 p/2],2 then sin2k increases and consequently Kb decreases. According to intu-

ition, increasing Lf decreases Kb, while increasing hf or bf increases Kb.

4.3. Quantitative analysis of Ka and Kb

As we have seen, the qualitative analysis of Ka and Kb provides interesting information on the influence of
the geometrical parameters on the rotational and translational stiffness. Quantitative information about the
parameters’ influence on the Orthoglide’s stiffness can also be obtained from the symbolic expressions by
studying the consequences of a �100/+200% variation of the parameters on Ka and Kb. A variation of
�100% corresponds to a zero parameter, while +200% corresponds to an extreme increase. Such a wide range
of variation gives a global picture of the parameter’s influence. The initial values of the parameters used for the
computation are given in Table 1 and correspond to the dimensions of the prototype of the Orthoglide devel-
oped at IRCCyN. Parameters kact and E are considered constant because our analysis is restricted to geomet-
rical parameters only. We choose E = 7 · 104 N mm�2 (aluminum) and kact = 105 N mm�1. The stiffness of
the actuated prismatic joint depends on many parameters (mechanical components, electrical motor power,
control). The chosen value is a commonly used one, however it is still much stiffer than the virtual joints, which
is in accordance with our assumptions.

In order to clearly show the relative influence of each parameter, we are going to superimpose several curves
on a same chart. Each curve represents a ratio KaðtÞ

Kainitial
(resp. KbðtÞ

Kbinitial

), in which t is the percentage of variation of

one of the parameters (Lf, bf, hf, k, LB, SB or d), while the other parameters remain at their initial value, and
Kainitial

(resp. Kbinitial
) is the initial value of the torsional (resp. translational) stiffness when the parameters are at

their initial value. Obviously, all KaðtÞ
Kainitial

(resp. KbðtÞ
Kbinitial

) curves cross when t = 0%.

For example let us replace each parameter in the symbolic expression of Ka by its initial value except Lf. A
one variable analytical expression Ka(Lf) is then obtained:
1 No
taken

2 If k
functio
betwee
KaðLfÞ ¼
0:56� 109

Lf
te that should d increase above a certain limit, other links compliances previously ruled out as less significant may then need to be
into account.
P p/2 the foot does not anymore ‘‘move away’’ the parallelogram from the prismatic actuated joint, which is one of its main

ns (i.e. avoiding collisions between the actuator and the parallelogram); furthermore we must have k P 0 to avoid interference
n the foot and the actuated prismatic joint.
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In this expression, let us replace Lf by Lf initial
ð1þ tÞ. A new expression Ka(t) is obtained:
Fig.
KaðtÞ ¼
0:56� 109

150ð1þ tÞ

where t represents the percentage of variation of Lf. Ka(t = 0) gives the value for Kainitial

. We assume that t var-
ies from �100% to +200% as explained above. All KaðtÞ=Kainitial

curves obtained for all parameters are super-
imposed on a same chart so as to compare the parameters relative influence.

4.3.1. Quantitative analysis of Ka

Fig. 6 shows the influence of the parameters on Ka. LB, d and SB have little influence compared to Lf, hf, bf

and k.
Ka(k) is a maximum (52% increase) when k increases by 100%, i.e. when k = p/2. This result can also be

obtained through observation of the symbolic expression of Ka: indeed, the initial values of hf and bf

(hf = 26, bf = 16) make ð45h2
f � 33b2

f Þ positive. Therefore, the denominator of Ka will be a minimum when
k = p/2. Moreover, when k = p/2, the torque T that is transmitted by the leg no longer has a component along
the axis of virtual joints 3 and 5 of the foot (Fig. 7). This is a physical explanation for Ka(k) being maximum
when k = p/2.

Furthermore, Ka increases more with bf than with hf for a same variation. Consequently, for a given foot
weight increase, the torsional stiffness benefits more from an increase of bf than from an increase of hf. From a
designer’s point of view, this is valuable information. If the foot length Lf increases, Ka decreases since in this
case the foot and torque related stiffness k3, k4, k6 decrease. Conversely if Lf decreases then Ka increases
tremendously.

Finally, we observe that when d, SB, hf or bf tend towards zero, then so does Ka. This can be deduced from
the symbolic expression of Ka, but also tends to a physical interpretation: if the foot or the parallelogram bars
tend to have a very small cross section, or if the parallelogram tends not to be able to support any torque
(when d tends towards zero), then the whole mechanism loses its torsional stiffness. Though hf and k play
important roles in Ka, the two most important parameters are Lf and bf.
6. Influence of the parameters on Ka. (a) KaðtÞ=Kainitial
: most influent parameters and (b) KaðtÞ=Kainitial

: least influent parameters.

Fig. 7. Only virtual joints 4 of the foot is affected by T when k = p/2.
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4.3.2. Quantitative analysis of Kb

Fig. 8 shows the influence of the geometrical parameters on Kb. We can observe that LB and SB have little
influence compared to Lf, hf, bf and k. Kb(k) is a minimum (48% decrease) for a 100% increase of k, i.e. when
k = p/2. This conclusion can be reached through the observation of the symbolic expression of Kb: indeed, we
can see that the denominator of Kb will be a maximum when k = p/2.

From the symbolic expression of Kb, one can also infer that if k decreases, then the denominator will
decrease and consequently Kb will increase. This was the opposite case for Ka. For a 100% decrease of k,
Kb will be a maximum: 14.4 times its initial value. This has a physical interpretation: when k = 0, the virtual
joint 2 is no longer affected by the force F that is transmitted by the leg (Fig. 9).

Kb is also a maximum (14.4 times its initial value) when Lf = 0. However, the physical interpretation is not
the same. When Lf = 0, the stiffness of the virtual joints 2, 3, 4 and 5 tends toward +1 which makes them
behave like infinitely stiff virtual joints, making the mechanism as a whole much more stiffer. One can also
observe that Kb increases more with hf than with bf. This can be concluded from the symbolic expression
of Kb. Indeed, from Eq. (11), we have:
Fig. 8.
Kbðhf ; bfÞ ¼
1

0:00002537698413þ 96:42857143
h3

f
bf
Consequently, a 10% increase of hf will make the denominator of Kb decrease faster than a 10% increase of
bf. Finally, if SB, hf or bf tend towards zero, then Kb also tends towards zero. This can be concluded from
the symbolic expression of Kb, but it also corresponds to the physical phenomenon that was explained for
Ka.

The most important parameters for Kb are k, Lf and hf. Parameters k and Lf have a similar influence: when
they decrease, Kb increases, and conversely. Parameter hf has the opposite influence: when hf increases, Kb

increases, and conversely. The symbolic expressions of Kb as univariate functions of these three parameters
are of great help at a pre-design stage to analyze the translational stiffness.
Influence of the parameters on Kb: (a) KbðtÞ=Kbinitial
: most influent parameters and (b) KbðtÞ=Kbinitial

: least influent parameters.

F

λ=0

z3

z4
z5

z2

Fig. 9. Only virtual joint 3, 4 and 5 of the foot is affected by F when k = 0.
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4.4. Conclusions

The analysis of the symbolic expressions of Ka and Kb at the isotropic configuration allows us to plot the
most influent parameters in this configuration, and the way their variation influences the mechanism’s stiff-
ness. A global analysis must be conducted in the whole workspace to determine the global influence of the
parameters. This was achieved in [17], with the determination of a line along which the stiffness analysis results
hold for the whole workspace. Such a procedure is required to simplify the global stiffness analysis. However,
as mentioned above in the case of the Orthoglide, analyzing the stiffness at the isotropic configuration can give
a good overview of the performances.

The use of simple symbolic expressions allows us to deduce helpful results in order to improve the Orthog-
lide’s stiffness. However these modifications must be made while taking into account the technological con-
straints (collisions, interferences) of the prototype initial architecture. For example, if one sets k to zero in
order to increase Kb, then the offset between kinematic joints L6 and L1 disappears. However, this offset aims
at preventing the parallelogram from colliding with the prismatic actuated joint. Therefore it is not possible to
set Lf or k to zero. It is better, either to only lower them and check how much the reachable workspace is then
reduced, or to increase hf, or both. Conversely, if one wants to increase the collision-free workspace by increas-
ing Lf while keeping Kb constant, studying the simultaneous influence on the stiffness of Lf and hf or Lf and bf

can then prove useful. One problem will be the foot weight increase that will require more powerful actuators
to keep the dynamic performances at a similar level. We consider the issue of simultaneous variation of two
parameters in the following section.

5. Influence of the simultaneous variation of two parameters

In this section, we study the influence on Ka and Kb of the simultaneous variation of two parameters Lf and
hf, or Lf and bf, at the isotropic configuration. Analytical expressions of Ka and Kb as functions of two
Fig. 11. Kb=Kbinitial
as a function of hf, bf and Lf.

Fig. 10. Ka=Kainitial
as a function of hf, bf and Lf.
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variables are deduced from Eq. (11). Figs. 10 and 11 show plots of Ka=Kainitial
and Kb=Kbinitial

when thf
(resp. tbf

)—
which is the relative variation of hf (resp. bf)—and tLf

—which is the relative variation of Lf—increase from 0%
to 100% or 200% when relevant.

Fig. 10 shows that increasing hf or bf allows us to compensate for the decrease of Ka occurring when Lf

increases. For example if Lf increases by 50%, hf must increase by 34% or bf must increase by 16% for Ka

to remain at its initial value Kainitial
. Regarding the dynamic performances (i.e. the foot weight increase), it will

be more interesting to increase bf by 16%.
In Fig. 11, one can also observe that increasing hf or bf allows us to easily compensate for the decrease of

Kb occurring when Lf increases. If Lf increases by 50%, hf must increase by 48% or bf must increase by
245% for Kb to remain at its initial value Kbinitial

. Therefore, it seems more judicious to increase hf rather
than bf in order to compensate for the stiffness loss due to the increase of Lf, because the foot weight
increase is lower. This is a multi-criteria multi-parameters (Lf, hf, bf) optimization problem: increasing
the collision-free workspace while keeping the same stiffness, with a minimum foot weight increase. Inte-
grating the symbolic expressions of the stiffness in multicriteria optimization loops could be an interesting
extension of our work.

6. Analysis of the tool displacements induced by external forces

Another interesting use of the symbolic expressions of jij is to observe the tool compliant displacements
when simulated cutting forces are applied on the tool. By multiplying these forces with the compliance matrix
and analyzing the evolution of the compliant displacements obtained, as a function of the Cartesian coordi-
nates, the stiffest zones of the mechanism’s workspace can be determined. Thus, the global stiffness behavior is
taken into account. As the simulated cutting forces correspond to a particular manufacturing operation, the
stiffest zone will be specific to the application. The equations with which the stiffness matrix is computed are
built using the principle of virtual work. Simulated cutting forces will then correspond to quasi-static condi-
tions, which may not be realistic in some cases. In this section, a simple groove milling operation is simulated,
which can be considered as a quasi-static operation.

The symbolic derivation of the stiffness matrix K using the method described above was achieved with
Maple software on a 1 GHz, 256 MB RAM PC. The computation of K did not end within one day, which
means that the components of matrix K, i.e. the Kij, are too large to be manipulated within a Maple worksheet.
However, computing the components of the compliance matrix j, i.e. the jij, took 12 h only. This resulted in
symbolic expressions that remained relatively easy to manipulate within a Maple worksheet. Therefore we
choose to analyze the Orthoglide’s stiffness through the analysis of the symbolic expressions of the jij: the
main idea is that when the jij increase, then the Orthoglide’s stiffness decreases.
6.1. Compliant displacements

Vector w is the static wrench of the cutting forces applied on the tool during the groove milling operation
along the y-axis. We have
w ¼
T

F

� �
with F ¼ F x F y F z½ �T and T ¼ �F yhz F xhz 0½ �T ð12Þ
The compliant displacements of the mobile platform are computed as follows:
d ¼ jw with d ¼
X

V

� �
; X ¼ xx xy xz½ �T and V ¼ vx vy vz½ �T
The compliant displacements at the tool tip are then:
dtool ¼
X

VþX� hzz

� �
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6.2. Determination of the stiffest working zones for a given task

With the symbolic expressions of the tool displacement, one can evaluate the tracking error along the
groove path. Using the symbolic expression of the tracking error, a stiffness favorable working zone, i.e. a
working zone in which the tracking error is low, can be determined. To simulate cutting forces during the
groove milling operation, a High Speed Machining (HSM) simulation software is used [18]. Depending on
the manufacturing conditions, this software provides the average cutting forces. The manufacturing condi-
tions chosen for the groove milling are:

• Spindle rate is N = 20,000 tr min�1;
• Feed rate Vf = 40 m min�1;
• Cutting thickness is 5 · 10�3 mm;
• The tool is a ball head of U = 10 mm diameter with 2 steel blocks;
• Manufactured material is a common steel alloy with chromium and molybdenum.

The simulated cutting forces correspond to a HSM context, which is what PKM are Fx = 215 N,
Fy = �10 N, Fz = �25 N. The above data allows us to simulate the tool compliant displacement along a
groove path along the y-axis (see Fig. 12). hz = 100 mm corresponds to the tool mounted on the prototype
of the Orthoglide. The tracking error is the projection of the tool compliant displacement in the plane that
is perpendicular to the path. We specify one groove path with its coordinates (xt, zt), and one point P with
(xt, yP, zt) coordinates located along this trajectory. The tracking error at point P is defined as dP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
z

p
.

The paths are defined in a cube centered at the intersection of the prismatic joints, xt and zt vary within the
interval [�73.65;126.35]. We noticed that the maximum tracking errors were always located at one of the path
ends. Fig. 13 shows the tracking error along a groove defined with the coordinates (xt,zt) = (0,0). We can see
that the maximum error occurs when y = �73.65, i.e. at one of the path ends. Depending on the coordinates
(xt, zt), the maximal tracking error is located at y = �73.65 or at y = 126.35. Fig. 14 shows the maximum
zy
x

P

Fz
Fy Fx

hz

Fig. 12. Component forces of groove milling operation.

Fig. 13. Tracking error along the groove path defined by x = z = 0.



Fig. 14. Maximum tracking error along y-axis groove paths.
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tracking error for each groove path defined by its coordinates (xt, zt). The results clearly show a zone in which
the maximum tracking error is low. In this working zone, x varies within the interval [�73.65;0] and z varies
within [50; 126.35]. It is difficult to find a physical explanation for this result. It depends on the cutting forces
applied, their magnitude and direction, and on each virtual joint reaction to the wrench transmitted by the leg,
which depends on the Cartesian coordinates. The information obtained, i.e., the lowest tracking error working
zone, is, however, of great interest for the end-user in order to place manufacturing paths in the workspace
achieving the lowest tracking error due to structural compliance.

Another use of the symbolic expressions of the compliant displacements would be the optimization of the
geometric parameters to minimize the tracking error for specific cutting forces. This would mean optimizing a
PKM design for a specific task. Our opinion is that it is better to look for global stiffness improvement as we
did in the previous section. This way, optimization brings stiffness improvement to all potential manufacturing
tasks. However, given a PKM design, it is very interesting to determine the stiffest working zones for specific
tasks, as we did in this section.

7. Comparison with a finite element stiffness model

By comparing our stiffness model with a finite element model (FEM) of the Orthoglide prototype, we will
now show that our rigid link model is reasonably realistic [17]. A FEM was implemented in LARAMA (LAb-
oratoire de Recherches en Automatique et Mécanique Avancée, Clermont-Ferrand, France) as part of a col-
laboration within project ROBEA, a research program sponsored by CNRS (Centre National de la Recherche
Scientifique). Due to space limitations, the modeling assumptions of the FEM are not detailed here. The FEM
allows to calculate the variation range of diagonal elements Kt1,1, Kt2,2, Kt3,3 of translational stiffness matrix
Kt, based on a CAD model of the Orthoglide implemented in the finite element software ANSYS [19]. The
results obtained are presented in Table 3 (deterministic approximations and variation ranges) at the isotropic
configuration. Our objective is to compare these results to those obtained with our Rigid Link Compliant
Model (RLCM). Stiffnesses are expressed in N mm�1. The numbers obtained from the FEM are comparable
to those obtained from the RLCM. Even if deterministic values are not equal, this comparison shows that the
RLCM of the Orthoglide is reliable enough for the purposes of pre-design. However, a more detailed FEM
analysis and experimental results based on the Orthoglide prototype would be necessary to validate our
RLCM. The main advantage of the RLCM is that it allows to spot critical links within the whole workspace
Table 3
Comparison of the RLCM and the FEM

Kt1,1 Kt2,2 Kt3,3

FEM RLCM FEM RLCM FEM RLCM

Isotropic configuration 3500 2715 3500/4000 2715 3500/4000 2715
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much more easily and quickly than the FEM, because of the symbolic expressions of stiffness matrix elements.
The RLCM is easier to use than a FEM at a pre-design stage. Once the RLCM is proved reliable enough, one
can use it either to test alternative designs or choose manufacturing paths reducing the tool compliant dis-
placement (tracking error or tracking rotational and translational compliant displacements) caused by struc-
tural compliance. Unfortunately, the FEM did not provide any results for the rotational compliance. This
would be an interesting comparison since it would allow a verification of whether or not the torsional stiffness
of the mobile platform obtained with the RLCM is lower compared to that of the overconstrained Orthoglide
prototype described in [15,16] and modeled in the FEM.
8. Conclusions

In this paper, a parametric stiffness analysis of a 3-axis PKM prototype, the Orthoglide, was conducted.
First, a compliant model of the Orthoglide was obtained, then a method for parallel manipulators stiffness
analysis was applied, and the stiffness matrix elements were computed symbolically in the isotropic configu-
ration. In this configuration, the influence of the geometric design parameters on the rotational and transla-
tional stiffness was studied through qualitative and quantitative analysis. The analysis provided relevant and
precise information for stiffness-oriented optimization of the Orthoglide. Then, the analysis of the simulta-
neous influence on the stiffness of two variable parameters was conducted. Such an analysis is very useful
to take into account both stiffness and another performance criterion such as workspace volume or the max-
imal acceleration of the mobile platform. Finally, we used the symbolic expressions of the components of the
compliance matrix to determine the stiffest working zone for a specific manufacturing task. The stiffest zone
depends on the task and applied cutting forces. The parametric stiffness analysis shows that simple symbolic
expressions carefully built and interpreted provide much information on the stiffness features of parallel
manipulators, which can be relevantly used for their design and optimization.
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