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Abstract   The shaking force balancing is mostly obtained via an optimal redistri-

bution of movable masses. Therefore, the full or partial cancellation of the shaking 

force is a complicated task, which leads to a significant increase in mass and as-

sembly complexity. In this paper an innovative solution is developed which is 

based on the optimal control of the robot links centre of masses. Such a solution 

allows the reduction of the acceleration of the total mass centre of moving links 

and, consequently, the considerable reduction in the shaking forces. The efficiency 

of the suggested method is illustrated by the numerical simulations carried out for 

the three links serial manipulator. This approach is also a more appealing alterna-

tive to conventional balancing methods because it allows the reduction of the 

shaking force without counterweights. As a result, the input torques are also de-

creased, which is shown via mentioned numerical simulations. 
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1 Introduction 

Different approaches and solutions devoted to the problem of mechanism balancing 
have been developed and documented for one degree of freedom mechanisms [1, 2]. 
A new field for their applications is the design of mechanical systems for fast ma-
nipulation, which is a typical problem in advanced robotics.  

The balancing of a mechanism is generally carried out by two steps: (i) the can-
cellation (or reduction) of the shaking force and (ii) the cancellation (or reduction) of 
the shaking moment. Traditionally, the cancellation of the shaking force transmitted 
to the manipulator frame can be achieved via adding counterweights in order to keep 
the total centre of mass of moving links stationary [1], via additional structures [2] 
or by elastic components [3].  

With regard to the shaking moment balancing of manipulators, the following ap-
proaches were developed: (i) balancing by counter-rotations [4], (ii) balancing by 
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adding four-bar linkages [5], (iii) balancing by creating redundant mechanism which 
generates optimal trajectories of moving links [6], (vi) balancing by prescribed rota-
tion of the end-effector [7, 8] and (vii) balancing by adding an inertia flywheel rotat-
ing with a prescribed angular velocity [9].  

In the present paper we consider a simple and effective balancing method, 

which allows the considerable reduction of the shaking force of non-redundant 

manipulators without adding counterweights. It is based on the optimal motion 

planning of the acceleration of the total mass centre of moving links. 

2 Minimization of the shaking forces via an optimal motion 

planning of the total mass centre of moving links 

The shaking forces shf of a manipulator can be written in the form: 

                                                            sh
Sm=f xɺɺ                                                      (1) 

where m  is the total mass of the moving links of the manipulator and Sxɺɺ  is the ac-

celeration of  the total mass centre. The classical balancing approach consists in add-
ing counterweights in order to keep the total mass centre of moving links stationary. 
However, it leads to the increase of the total mass of the manipulator. Thus, in order 
to avoid this drawback, in the present study, a new approach is proposed, which 
consists of the optimal motion planning of the total mass centre of moving links.  

Classically, manipulator displacements are defined considering either articular 
coordinates q or Cartesian variables x. Knowing the initial and final manipulator 
configurations at time t0 and tf, denoted as q0 = q(t0) and qf = q(tf), or x0 = x(t0) and 
xf = x(tf), in the case of the control of the Cartesian variables, the classical displace-
ment law may be written in the form: 
 ( )( ) ( )qt s t= − +f 0 0q q q q                                           (2a) 

or 
 ( )( ) ( )xt s t= − +f 0 0x x x x                                            (2b) 

where sq(t) and sx(t) may be polynomial (of orders 3, 5 and higher), sinusoidal, bang-
bang, etc. laws. 

From expression (1), we can see that the shaking force, in terms of norm, is min-
imized if the norm Sxɺɺ  of the masses centre acceleration is minimized along the 

trajectory. This means that if the displacement xS of the manipulator centre of mass-
es is optimally defined, the shaking force will be minimized. As a result, the first 
problem is to define the optimal trajectory for the displacement xS of the manipulator 
centre of masses. 

For this purpose, let us consider the displacement xS of a point S in the Cartesian 
space. First, in order to minimize the masses centre acceleration, the length of the 
path followed by S should be minimized, i.e. point S should move along a straight 
line passing through its initial and final positions, denoted as xS0 and xSf, respec-
tively. 
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Then, the temporal law used on this path should be optimized. It is assumed that, 
at any moment during the displacement, the norm of the maximal admissible accel-

eration the point S can reach is constant and denoted as max
Sxɺɺ . Taking this maximal 

value for the acceleration into consideration, it is known that the displacement law 
that minimize the time interval (t0, tf) for going from position xS0 = xS(t0) to position 
xSf = xS(tf) is the “bang-bang” law: 

                                             

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

S S S S
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                         (4) 

Consequently, if the time interval (t0, tf) for the displacement between positions 
xS0 and xSf is fixed, the “bang-bang” law is the trajectory that minimizes the value of 

the maximal accelerationmax
Sxɺɺ . Thus, in order to minimize Sxɺɺ  for a displacement 

during the fixed time interval (t0, tf), the “bang-bang” law has to be applied on the 
displacement xS on the manipulator total mass centre. 

Once the displacement of the manipulator centre of masses is defined, the second 
problem is to find the articular (or Cartesian) coordinates corresponding to this dis-
placement. For this purpose, let us consider a manipulator composed of n links. The 
mass of the link i is denoted as mi (i = 1, …, n) and the position of its centre of 
masses as xSi. Once the articular coordinates q or Cartesian variables x are known, 
the values of xSi may easily be obtained using the manipulator kinematics relation-
ships. As a result, the position of the manipulator centre of masses, defined as 

 
1

1 n

S i Si
i

m
m =

= ∑x x                                                        (7) 

may be expressed as a function of x or q. But, in order to control the manipulator, 
the inverse problem should be solved, i.e. it is necessary to express variables q or 
x as a function of xS. Here, two cases should be distinguished:  
(i) dim(xS) = dim(q), i.e. the manipulator has got as many actuators as controlled 

variables for the displacements xS of the centre of masses (two variables for 
planar cases, three variables for spatial problems). In such case, the variables 
q or x can be directly expressed as a function of xS using (7), i.e. q = f(xS). 

(ii)  dim(xS) < dim(q), i.e. the manipulator has got more actuators than controlled 
variables. In this case, the some of parameters will be used for ensuring the 
necessity conditions of the optimal displacement of the manipulator centre of 
masses and the other parameters can be used in order to minimize some other 
performance criteria, by example, such as the shaking moment. 
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3 Illustrative example 

The end-effector pose (x,y,φ) of the planar 3R serial manipulator (Fig. 1) is con-
trolled using three input parameters q1, q2 and q3. The manipulator parameters are 
the following: the lengths of links: lOA = 0.5 m, lAB = 0.3 m and lBC = 0.1 m, the dis-
positions of the mass centres:  lOS1 = r1= 0.289 m, lAS2 = r2= 0.098 m, lBS3 = r3= 0.05 
m. The masses and the axial inertia parameters are: m1 = 24.4 kg, m2 = 8.3 kg, m3 = 
2 kg,  I1 = 1.246 kg.m², I2 = 0.057 kg.m² , I3 = 0.025 kg.m². The payload: mp = 5 kg.  

 

 

 
 

Fig. 1. The 3R serial manipulator. 

 
 

Fig. 2. The tested trajectories. 

In the relationship 1 2 3[ , ] ( , , )= =T
S S Sx y f q q qx , there are three unknowns q1, 

q2, q3 for two fixed parameters xS and yS. Therefore, as mentioned above, a way to 
solve this problem is to consider that one parameter, for example φ, is used to mini-
mize some other objective function. In the present study, the angle φ is used for min-
imisation of the shaking moment msh. However, it should be noted that the same pa-
rameter can be used for minimisation, by example, the torques or another chosen 
objective function.  

The angles q1, q2 and q3, which are functions of xS, yS and φ , are determined 
from 1 2 3( , , )=S f q q qx : 

                              
2 2 2

1
1 2 tan

b b c a
q

c a
−
 − ± − +
 =
 −
 

                              (8) 

where 1 32 ( cos )eq S eqa l x l φ= − − , 1 32 ( sin )eq S eqb l y l φ= − − , 2
3( cos )S eqc x l φ= −  

2 2 2
3 1 2( sin )S eq eq eqy l l lφ+ − + − , 1 1 1 2 3( ) /eq p OAl m r m m m l m= + + + ,  

2 2 2 3( ) /eq p ABl m r m m l m= + +  and 3 3 3( ) /eq p BCl m r m l m= + . 

In expression (8), the sign ± stands for the two possible working modes of the 
manipulator (for simulations, the working mode with the “+” sign is used).   

                                3 1 11
2 1

3 1 1
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S eq eq
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q q
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φ
φ

−  − −
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 (9) 

                                       3 1 2q q qφ= − −                                                                  (10) 



5 

Let us now test the proposed approach. The tested trajectories are defined as fol-
lows. First, the maximal inscribed square inside of the workspace, for any end-
effector orientation, is found (Fig. 2). For this manipulator, it is a square of length 
0.375 m, of which centre E is located at x = 0 m and y = 0.487 m. Then, in order to 
avoid problems due to the proximity of singular configuration, the tested zone is re-
stricted to a square centered in E of edge length equal to 0.3 m (in grey on Fig. 2). 
Finally, each edge is discretized into four segments delimited by the points Pi (i = 1 
to 16). The tested trajectories are the segments P1P13, P2P12, P3P11, P4P10, P5P9, 
P15P7, P14P8 and P13P9. For numerical simulations, the independent parameter φ  is 
chosen to begin the tested trajectories with an end-effector orientation φ0 = 0 deg and 
to finish it at φf = 120 deg.  

The simultaneous minimization of the shaking force and the shaking moment 
cannot be done without using an optimization algorithm. Several laws for φ were 
tested. Our observation showed that the polynomial function that makes it possible 
to obtain optimal results is of degree 8. 

For each trajectory three different kinds of law are applied: 1) a fifth order poly-
nomial law is applied on the displacement (translation and rotation) of the manipula-
tor end-effector; 2) a “bang-bang” law is applied on the displacement of the manipu-
lator centre of masses and the angle φ is optimized in order to minimize the shaking 
moment; 3) a trapeze acceleration profile is applied on the displacement of the ma-
nipulator centre of masses, taking into account that, for each actuator, the input ef-
fort variation is limited by 3.104 Nm/s; the trajectory for angle φ optimized in the 
previous case is used in order to compute the actuator displacements. 

 

 

Fig. 3. Variations of the shaking forces: case 

1 (black full line), case 2 (black dashed line) 

and case 3 (grey full line). 

 
 
Fig. 4. Variations of the shaking moment: case 
1 (black full line), case 2 (black dashed line) 
and case 3 (grey full line). 

The obtained results showed that the optimal trajectory planning by bang-bang 
law allows the reduction of the shaking forces from 48 % up to 62.2 %. Moreover, 
with a simultaneous optimal definition of angle φ, the shaking moment can be re-
duced from 37.2 % up to 61 %. The obtained profit depends on the design parame-
ters of the manipulator, as well as the given trajectory. It is clear that it will be vari-
able. However, it is obvious, that the shaking force and shaking moment for any 
manipulator shall be decreased. Figures 3 and 4 show the variations of the shaking 
force and the shaking moment of the manipulator for the trajectory P15P7 (see Fig. 
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2). The software simulations showed that in comparison with mass balanced ma-
nipulator a significant reduction in input torque has been achieved. 

4 Conclusions 

 
In this paper, we have presented a new approach, based on an optimal trajectory 
planning, which allows the considerable reduction of the shaking force. This simple 
and effective balancing method is based on the optimal motion planning of the ac-
celeration of the manipulator centre of masses. For this purpose, the “bang-bang” 
displacement law has been used. The aim of the suggested method consists in the 
fact that the manipulator is controlled not by applying end-effector trajectories but 
by planning the displacements of the total mass centre of moving links. Such an ap-
proach allows the reduction of the maximum value of the centre of mass accelera-
tion and, consequently, the reduction in the shaking force. It should be mentioned 
that such a solution is also very favourable for reduction of input torques because it 
is carried out without adding counterweights. The proposed balancing method has 
been illustrated via a numerical example.  
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