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Abstract The shaking force balancing is mostly obtained via an optimal redistri-
bution of movable masses. Therefore, the full or partial cancellation of the shaking
force is a complicated task, which leads to a significant increase in mass and as-
sembly complexity. In this paper an innovative solution is developed which is
based on the optimal control of the robot links centre of masses. Such a solution
allows the reduction of the acceleration of the total mass centre of moving links
and, consequently, the considerable reduction in the shaking forces. The efficiency
of the suggested method is illustrated by the numerical simulations carried out for
the three links serial manipulator. This approach is also a more appealing alterna-
tive to conventional balancing methods because it allows the reduction of the
shaking force without counterweights. As a result, the input torques are also de-
creased, which is shown via mentioned numerical simulations.
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1 Introduction

Different approaches and solutions devoted to thblpm of mechanism balancing
have been developed and documented for one debireedom mechanisms [1, 2].
A new field for their applications is the designméchanical systems for fast ma-
nipulation, which is a typical problem in advancedotics.

The balancing of a mechanism is generally carrigidog two steps: (i) the can-
cellation (or reduction) of the shaking force aiildtite cancellation (or reduction) of
the shaking moment. Traditionally, the cancellattbthe shaking force transmitted
to the manipulator frame can be achieved via addinmterweights in order to keep
the total centre of mass of moving links stationdfy via additional structures [2]
or by elastic components [3].

With regard to the shaking moment balancing of malators, the following ap-
proaches were developed: (i) balancing by coumtiations [4], (ii) balancing by
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adding four-bar linkages [5], (iii) balancing byeating redundant mechanism which
generates optimal trajectories of moving links [6]) balancing by prescribed rota-
tion of the end-effector [7, 8] and (vii) balancibg adding an inertia flywheel rotat-
ing with a prescribed angular velocity [9].

In the present paper we consider a simple and effective balancing method,
which allows the considerable reduction of the shaking force of non-redundant
manipulators without adding counterweights. It is based on the optimal motion
planning of the acceleration of the total mass centre of moving links.

2 Minimization of the shaking forces via an optimal motion
planning of the total mass centre of moving links

The shaking force$*" of a manipulator can be written in the form:
Foh = mg (1)
where m is the total mass of the moving links of the matdfor andXg is the ac-

celeration of the total mass centre. The clasb@i@ncing approach consists in add-
ing counterweights in order to keep the total ntasgre of moving links stationary.
However, it leads to the increase of the total nediése manipulator. Thus, in order
to avoid this drawback, in the present study, a approach is proposed, which
consists of the optimal motion planning of the ltatass centre of moving links.
Classically, manipulator displacements are defioedsidering either articular
coordinatesy or Cartesian variables. Knowing the initial and final manipulator
configurations at timé, andt;, denoted ag = q(tp) andgs = q(t), or xg = X(to) and
X; = X(t7), in the case of the control of the Cartesian vaesbthe classical displace-
ment law may be written in the form:

q(t) = s5(t) (ar —9o) +do (2a)
or

X(1) = 5(8) (% ~X0)+Xo (2b)
wheres(t) ands(t) may be polynomial (of orders 3, 5 and higherjusbidal, bang-

bang, etc. laws.
From expression (1), we can see that the shakneg,fon terms of norm, is min-

imized if the norm|%g|| of the masses centre acceleration is minimizedgatbe

trajectory. This means that if the displacemeyitf the manipulator centre of mass-
es is optimally defined, the shaking force will imnimized. As a result, the first
problem is to define the optimal trajectory for thisplacements of the manipulator
centre of masses.

For this purpose, let us consider the displacemeot a pointSin the Cartesian
space. First, in order to minimize the masses eemtceleration, the length of the
path followed byS should be minimized, i.e. poifshould move along a straight
line passing through its initial and final positordenoted agg, and xg, respec-
tively.
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Then, the temporal law used on this path shouldgbieized. It is assumed that,
at any moment during the displacement, the northefnaximal admissible accel-

eration the poin§ can reach is constant and denotedkd3' . Taking this maximal

value for the acceleration into considerationsikinown that the displacement law
that minimize the time intervaly(t;) for going from positiorxg, = Xg(to) to position
Xst = Xg(ty) is the “bang-bang” law:
Xs(t) = s(t) (Xg —Xg0) +Xsp
Xs(t) = 8(t) (Xg —Xs0) 3)
Xs(t) = 5(t) (Xg —Xs0)
with
0 1 Xa for t < (t; —ty)/2 @
§(t) =
Ixst =Xsol| |[-%22¢ for t = (t; ~t,)/2
Consequently, if the time intervah,(t;) for the displacement between positions
Xg andXg is fixed, the “bang-bang” law is the trajectorgttiminimizes the value of

the maximal acceleratidkf " . Thus, in order to minimizg%g| for a displacement

during the fixed time intervaly t;), the “bang-bang” law has to be applied on the
displacemenxs on the manipulator total mass centre.

Once the displacement of the manipulator centraasfses is defined, the second
problem is to find the articular (or Cartesian) hoates corresponding to this dis-
placement. For this purpose, let us consider aputator composed of links. The
mass of the link is denoted am (i = 1, ...,n) and the position of its centre of
masses agg. Once the articular coordinatgsor Cartesian variablesare known,
the values okg may easily be obtained using the manipulator katers relation-
ships. As a result, the position of the manipulatmtre of masses, defined as

1 n
Xs =) MXg )
mi=

may be expressed as a functiorxair g. But, in order to control the manipulator,

the inverse problem should be solved, i.e. it isessary to express variablgor

x as a function o%s. Here, two cases should be distinguished:

(i) dim(xg) = dim(), i.e. the manipulator has got as many actua®ratrolled
variables for the displacements of the centre of masses (two variables for
planar cases, three variables for spatial problemsyuch case, the variables
g or x can be directly expressed as a functiorgafsing (7), i.eq =f(xg).

(i) dim(xg) < dim(g), i.e. the manipulator has got more actuators twartrolled
variables. In this case, the some of parameteisb@iused for ensuring the
necessity conditions of the optimal displacemerthefmanipulator centre of
masses and the other parameters can be used m@maimize some other
performance criteria, by example, such as the shakioment.



3 Illustrative example

The end-effector pose.y,@) of the planar 3R serial manipulator (Fig. 1) <
trolled using three input parameters g, andgs. The manipulator parameters are
the following: the lengths of link$sa = 0.5 m,l5g = 0.3 m andge = 0.1 m, the dis-
positions of the mass centrelgg = r1= 0.289 mJae =r,= 0.098 mJgs; = r;= 0.05
m. The masses and the axial inertia parametersrare24.4 kg,m, = 8.3 kg,ns =
2Kkg, 1, =1.246 kg.m3, = 0.057 kg.m? |3 = 0.025 kg.m?2. The payload, = 5 kg.
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Fig. 1. The 3R serial manipulator. Fig. 2. The tested trajectories.

In the relationshipxg =[Xs, yS]T = f(q, 05, 03) , there are three unknownsg
02, g for two fixed parameterss andys Therefore, as mentioned above, a way to
solve this problem is to consider that one paramé&ieexampleg is used to mini-
mize some other objective function. In the prestudy, the anglepis used for min-
imisation of the shaking momemt". However, it should be noted that the same pa-
rameter can be used for minimisation, by examle,tbrques or another chosen
objective function.

The anglesy;, g, andgs, which are functions ofs, ys and ¢, are determined

from xg = f(,0,,93) :

_ 2_ 2.2
q1:2tan"1[ bt yb"-c"+a ] (8)

c-a
where a = -2lg (X5 ~leq3 COSP), b =2l (Y5 ~legz SiN@), €= (Xs ~lega cospy
+(Ys ~legs singy +|equ_|e%42' legr = (Myry+my+mg+mp)los /m,
quz =(myry+my+ mp)IAB/m andleqs = (n13r3+mp)IBC /m.

In expression (8), the sign + stands for the twesjiile working modes of the
manipulator (for simulations, the working mode vittle “+” sign is used).

o =t e Tl SIN)~ ey SinG | _ o
2 (Xs ~leqz COSP)~ Iy COSY

G=¢-0—0; (10)
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Let us now test the proposed approach. The testiedtories are defined as fol-
lows. First, the maximal inscribed square insidethef workspace, for any end-
effector orientation, is found (Fig. 2). For thiamnipulator, it is a square of length
0.375 m, of which centrE is located ak = 0 m andy = 0.487 m. Then, in order to
avoid problems due to the proximity of singular foaguration, the tested zone is re-
stricted to a square centeredbrof edge length equal to 0.3 m (in grey on Fig. 2).
Finally, each edge is discretized into four segseetimited by the pointg, (i = 1
to 16). The tested trajectories are the segmeRsgs P,Pis PsPi1, PsPio, PsPg,
P1sP7, P14Pg and P3Py, For numerical simulations, the independent patamgeis
chosen to begin the tested trajectories with areiettor orientatiorg = 0 deg and
to finish it atg = 120 deg.

The simultaneous minimization of the shaking foatel the shaking moment
cannot be done without using an optimization atpari Several laws fop were
tested. Our observation showed that the polynofuiation that makes it possible
to obtain optimal results is of degree 8.

For each trajectory three different kinds of law applied: 1) a fifth order poly-
nomial law is applied on the displacement (tramsfadnd rotation) of the manipula-
tor end-effector; 2) a “bang-bang” law is appliedtbe displacement of the manipu-
lator centre of masses and the angis optimized in order to minimize the shaking
moment; 3) a trapeze acceleration profile is agpdie the displacement of the ma-
nipulator centre of masses, taking into accourt foa each actuator, the input ef-
fort variation is limited by 3.10Nm/s; the trajectory for angle optimized in the
previous case is used in order to compute the tactdisplacements.
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The obtained results showed that the optimal tr@jgplanning by bang-bang
law allows the reduction of the shaking forces fré8n% up to 62.2 %. Moreover,
with a simultaneous optimal definition of angiethe shaking moment can be re-
duced from 37.2 % up to 61 %. The obtained praffiehds on the design parame-
ters of the manipulator, as well as the given ttajg. It is clear that it will be vari-
able. However, it is obvious, that the shaking doamd shaking moment for any
manipulator shall be decreased. Figures 3 and W e variations of the shaking
force and the shaking moment of the manipulatortiertrajectoryP;sP; (see Fig.



2). The software simulations showed that in congpariwith mass balanced ma-
nipulator a significant reduction in input torqueshbeen achieved.

4 Conclusions

In this paper, we have presented a new approasedban an optimal trajectory
planning, which allows the considerable reductibthe shaking force. This simple
and effective balancing method is based on therapbtmotion planning of the ac-
celeration of the manipulator centre of masses.thisrpurpose, the “bang-bang”
displacement law has been used. The aim of theesteg) method consists in the
fact that the manipulator is controlled not by gpm end-effector trajectories but
by planning the displacements of the total mastre€ai moving links. Such an ap-
proach allows the reduction of the maximum valughef centre of mass accelera-
tion and, consequently, the reduction in the shpkamce. It should be mentioned
that such a solution is also very favourable folurtion of input torques because it
is carried out without adding counterweights. Theppsed balancing method has
been illustrated via a numerical example.
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