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Abstract—Previous works on the Gough-Stewart (GS) plat-
form have shown that its visual servoing using the observation
of its leg directions was possible by observing only three of its
six legs but that the convergence to the desired pose was not
guarantied. This can be explained by considering that the visual
servoing of the leg direction of the GS platform was equivalent
to controlling another robot, the 3-UPS that has assembly
modes and singular configurations different from those of the
GS platform. Considering this hidden robot model allowed the
simplification of the singularity analysis of the mapping between
the leg direction space and the Cartesian space.
In this paper, the work on the definition of the hidden robot

models involved in the visual servoing using the observation
of the robot leg directions is extended to another robot,
the Adept Quattro. It will be shown that the hidden robot
model is completely different from the model involved in the
control of the GS platform. Therefore, the results obtained
for the GS platform are not valuable for this robot. The
hidden robot has assembly modes and singular configurations
different from those of the Quattro. An accuracy analysis is
performed to show the importance of the leg selection. All
these results are validated on a Quattro simulator created using
ADAMS/Controls and interfaced with Matlab/Simulink.

I. INTRODUCTION

Compared to serial robots, parallel robots are stiffer and
can reach higher speeds and accelerations [1]. However,
their control is more complex because of the highly coupled
mechanical structure and many other factors (e.g. clearances,
assembly errors, etc.) which degrade stability and accuracy.
Many research papers focus on the control of parallel

mechanisms (see [2] for a long list of references). Cartesian
control is naturally achieved through the use of the inverse
differential kinematic model which transforms Cartesian ve-
locities into joint velocities. It is noticeable that, in a general
manner, the inverse differential kinematic model of parallel
mechanisms does not only depend on the joint configuration
(as for serial mechanisms) but also on the end-effector pose.
Consequently, one needs to be able to estimate or measure
the latter.
Past research works have proved that the robot end-

effector pose can be effectively estimated by vision. The most
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common approach consists of the direct observation of the
end-effector pose [3], [4], [5]. However, some applications
prevent the observation of the end-effector of a parallel
mechanism by vision. For instance, it is not wise to imagine
observing the end-effector of a machine-tool while it is
generally not a problem to observe its legs that are most
often designed with slim and rectilinear rods [2].
A first step in this direction was made in [6] where vision

was used to derive a visual servoing scheme based on the
observation of a Gough-Stewart (GS) parallel robot [7]. In
that method, the leg directions were chosen as visual prim-
itives and control was derived based on their reconstruction
from the image. In this work, it has also been observed that:
1) the GS platform can be controlled using the obser-
vation of only three leg directions (arbitrarily chosen
among its six legs), and that

2) in some cases, the GS platform does not converge to
the desired end-effector pose (even if the observed leg
directions did)

without finding some concrete explanations to these points.
Recently, two of the authors of the present paper have

demonstrated in [8] that these two points could be explained
by considering that the visual servoing of the leg direction
of the GS platform was equivalent to controlling another
robot, the 3-UPS (where U stands for an actuated universal
joint, P and S for passive prismatic and spherical joints,
respectively) that has assembly modes and singular configu-
rations different from those of the GS platform. Considering
this hidden robot model allowed the simplification of the
singularity analysis of the mapping between the leg direction
space and the Cartesian space by reducing the problem to the
singularity analysis of a new robot and it was possible to find
simple geometric conditions for the singular configurations.
In this paper, the visual servoing of the Adept Quattro

using leg observation is considered. It will be shown that
another hidden robot model (with a kinematic chain com-
pletely different from the 3-UPS, i.e. the hidden model for
the vision based control of the GS platform) is involved
in this kind of control. Consequently, the assembly modes
and singularity conditions of this hidden robot are totally
different from those of the 3-UPS and the results obtained
in [8] are not valuable for the Quattro.

II. CONTROL OF THE ADEPT QUATTRO WITH
RIGID PLATFORM USING LEG OBSERVATION

This part aims at presenting the servoing of the Adept
Quattro robot with rigid platform using leg observation.



A. Kinematics of the Quattro with rigid platform
The Quattro (Fig. 1) is composed of four identical kine-

matic chains (legs), that carry the articulated moving plat-
form. Each of the 4 kinematic chains is actuated from the
base by a rotary motor, located at point Ai. This motor rotates
a proximal link that is linked to an articulated parallelogram,
itself attached to the moving platform. The parallelogram
consists of two slim and cylindrical shaped rods fitted with
ball-joints at points Bi1, Bi2, Ci1 and Ci2. As a result, each
kinematic chain is a R(2–SS) leg (where R stands for an
actuated revolute joint).
There exist two versions of the Quattro: one with a rigid

(non-articulated) moving platform, thus leading to a redun-
dant parallel robot with 3 translational degrees of freedom
(dof ) of the end-effector, and the other with an articulated
platform that allows a supplementary rotation of the end-
effector around the vertical axis z. This paper focuses only on
the Quattro with the rigid platform, i.e. with 3 translational
dof.
In the following of the paper, the notations detailed below

are used:
• point Bi (Ci, resp.) is at the middle of segment Bi1Bi2

(Ci1Ci2, resp.) (Fig 1(b)),
• point P , the controlled point of the platform, is the
barycentre of points Ci; its coordinates are denoted as
P and its velocity as τp,

• Ai (Bi, Ci, resp.) is the vector of coordinates of point
Ai (Bi, Ci, resp.),

• qi is the angular coordinate of the actuator i, and is
defined as the angle between the axis xi (the projection
of vector

−−−→
AiBi in the horizontal plane (Oxy)) and

−−−→
AiBi around yi (Fig. 1(b)),

• l1 is the length of the proximal link, and l2 the length
of one rod of the parallelogram,

Moreover, the superscript ’i’ will be used before the vectors
to indicate that the vector coordinates are expressed in the leg
local frame (Oxiyizi). If no superscript is used, the vector
is expressed in the base frame.
The usual inverse kinematics of the Quattro can be com-

puted using the following loop-closure equations (Fig. 1):
iCi −

iBi = l2
iui (1)

where
iBi =

iAi + l1
[
cos qi 0 sin qi

]T
= iAi + l1

ivi (2)

Squaring both sides of (1) and introducing (2) leads to

(xAiCi
− l1 cos qi)

2
+ y2AiCi

+ (zAiCi
− l1 sin qi)

2
− l22 = 0

(3)
where iCi−

iAi = [xAiCi
, yAiCi

, zAiCi
]
T . (3) can be finally

solved as a second order polynomial in tan(qi/2) by replac-
ing cos qi by

(
1− t2i

)
/
(
1 + t2i

)
and sin qi by 2ti/

(
1 + t2i

)
,

where ti = tan(qi/2). Skipping all mathematical derivations,
it comes that:

qi = 2 tan−1

(
−βi ±

√
α2
i + β2

i − γ2
i

γi − αi

)
(4)
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Fig. 1. The Adept Quattro (courtesy of Adept).

where
αi = −2l1xAiCi

, βi = −2l1zAiCi

γi = x2
AiCi

+ y2AiCi
+ z2AiCi

+ l21 − l22
(5)

The first-order kinematics that relates the platform trans-
lational velocity τp to the actuator velocities can be obtained
through the differentiation of (3) with respect to time and
can be expressed as:

Aτp +Bq̇ = 0 (6)

where the i-th line of A can be written as

ai = l2u
T
i (7)

and B is a diagonal matrix whose i-th diagonal term is

bi = l1l2
iuT

i
iv⊥

i ,
iv⊥

i =
[
− sin qi 0 cos qi

]T (8)

It should be mentioned that A is a 4× 3 rectangular matrix.
As a result,

q̇ = −B−1Aτp = Jinvτp, or also τp = J+
invq̇ (9)

where J+
inv is the pseudo-inverse of Jinv .

B. Kinematics of the the Quattro using leg observation
The servoing of the Adept Quattro robot with rigid plat-

form using leg observation proposes to observe the paral-
lelogram direction ui to control the robot displacements. ui

can be obtained directly from (1)

ui = (Ci −Bi) /l2 (10)

Introducing (2) into (10) and differentiating (10) with
respect to time leads to:

u̇i =
(
τp − l1v

⊥

i q̇i
)
/l2 (11)

Finally, from (9), it comes that:

u̇i =
(
I3 + l1v

⊥

i ai/bi
)
/l2 τp = MT

i τp (12)

where I3 is the 3×3 identity matrix and matrixMT
i is called

the interaction matrix.
It can be proved that matrix MT

i is of rank 2 [6]. As
a result, a minimum of two independent legs is necessary
to control the end-effector pose. An interaction matrix MT

can then be obtained by stacking the matricesMT
i of k legs

(k = 2...4).
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Fig. 2. A Π(2–UU) leg.

C. Control scheme and interaction matrix
Visual servoing is based on the so-called interaction matrix

MT [9] which relates the instantaneous relative motion Tc =
cτc − cτs between the camera and the scene, to the time
derivative of the vector s of all the visual primitives that are
used through:

ṡ = MT
(s)Tc (13)

where cτc and cτs are respectively the twists of the camera
and the scene, both expressed in Rc, i.e. the camera frame.
Then, one achieves exponential decay of an error e(s, sd)

between the current primitive vector s and the desired one
sd using a proportional linearizing and decoupling control
scheme of the form:

Tc = λM̂T+
(s) e(s, sd) (14)

where Tc is used as a pseudo-control variable and the
upperscript + corresponds to the matrix pseudo-inverse.
The visual primitives being unit vectors, it is theoretically

more elegant to use the geodesic error rather than the
standard vector difference. Consequently, the error grounding
the proposed control law will be:

ei = ui × udi (15)

where udi is the desired value of ui.
Finally, a control is chosen such that E, the vector stacking

the errors ei associated to k legs (k = 2...4), decreases
exponentially, i.e. such that

Ė = −λE (16)

Then, introducing NT
i = − [udi]× MT

i (where [...]
×
is

the antisymetric matrix associated to a 3D vector [5]), the
combination of (12), (15) and (16) gives

τp = −λNT+E (17)

where NT can be obtained by stacking the matrices NT
i of

k legs (k = 2...4).
This expression can be transformed into the control joint

velocities using (9):

q̇ = −λJinvN
T+E (18)

In the next section, it is shown that observing the dis-
placement of the leg directions ui is intrinsically equivalent
to controlling another robot, different from the Quattro.
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Fig. 3. A 2–Π(2–UU) robot.

III. DESCRIPTION OF THE HIDDEN ROBOT
MODEL

A. Description of the hidden robot architecture

In [8], it has been demonstrated that the visual servoing
of the leg directions of the GS platform was equivalent to
controlling another virtual robot composed of UPS legs, for
which the measure of the vectors ui was an image of the
displacements of the actuated U joints. So, in a reciprocal
manner, one could wonder what kind of virtual equivalent
leg is involved in the visual servoing of the Quattro using
leg directions.
The virtual equivalent leg for the Quattro must:
• guaranty that the kinematic relations (4), (9), (10) and
(12) are still valid,

• ensure that, when only two legs are observed, the
equivalent robot made of the two virtual legs is able
to keep the platform orientation constant,

• contain active U joints that can be related to the measure
of ui, i.e. these joints should move if and only if the
value of ui is changing.

Considering these three points, it could be proved by a
simple kinematic analysis that the equivalent leg has a Π(2–
UU) architecture, (where Π stands for a planar parallelogram
linkage joint – Fig. 2(a)). The Π joint keeps constant the
orientation of the rod Bi3Bi4 (Fig. 2(b)) and garanties that,
as long as the vector ui is set at a constant value, the first U
joints (that link the planar and spatial parallelograms) are not
moving. The passive U joints linked to the platform prevent
its rotation when only two legs are used. Thus, observing
the direction of the Quattro leg remains not to control the
displacement of a R(2–SS) leg but of a virtual Π(2–UU) leg
with the same geometric properties as the real leg (

∥∥∥−−−→AiBi

∥∥∥ =

l1,
∥∥∥−−−→BiCi

∥∥∥ = l2 in Fig. 2).
It can be demonstrated that a 2–Π(2–UU) robot (Fig. 3(a))

is fully-actuated. Therefore, this is the reason why it is pos-
sible to control the Quattro by observing the displacements
of two of its four legs. This is equivalent to actuate a virtual
2–Π(2–UU) robot with the same geometric properties as the
Quattro (same attachment points, leg length, etc.), but with
assembly modes and singular configurations that differ from
those of the Quattro. They should be studied in order to avoid
control problems.



B. Forward kinematic analysis
Using the developped form of (1) and (2), it comes that:⎡

⎣xAiCi
− l2u

x
i

yAiCi
− l2u

y
i

zAiCi
− l2u

z
i

⎤
⎦ = l1

⎡
⎣cos qi0
sin qi

⎤
⎦ (19)

where uT
i = [ux

i uy
i uz

i ]. Rearranging the terms of (19)
and developping the expressions, a set of equations can be
obtained (for i = 1 · · · 4)

l21 =
(
ix− xSi

)2
+

(
iz − zSi

)2
0 = iy − ySi

(20)

where iSi = [xSi
ySi

zSi
]
T

= iAi + l2
iui +

i−−→CiP and
iP =

[
ix iy iz

]T . Equations (20) are equations of circles,
denoted as Li, of radius l1, located in planes y = ySi

and
centred in point Si of coordinates iSi. These circles represent
the vertex space of the tip of the leg i, when the vector
ui is fixed and the planar parallelogram passively moving
(Fig. 2(b)) [1]. As a result, the forward kinematic problem
(fkp) is equivalent to finding the intersection between the
circles Li of the observed legs. In conclusion, it may exist 0,
1 unique solution, 1 double solution (singularity condition),
2 distinct solutions or infinite number of solutions (if the
circles are superposed, which is also a singularity condition)
to the fkp.
Thus, the 2–Π(2–UU) robot can have up to two distinct

assembly modes that are different from those of the Quattro.
The existence of these assembly modes explains the second
point presented in the introduction, i.e. the non systematic
convergence of the end-effector of the observed robots to
the desired pose, even if the observed leg directions do. A
numerical example of this phenomenon will be presented in
the section V.

C. Singularity analysis
Three types of singular configurations, related to the

degeneracy of the first-order kinematics, may appear for
robots [10]:
1) the Type 1 singularities where the robot loses at least
one degree of freedom;

2) the Type 2 singularities where there is the apparition
of some uncontrollable motions. In their neighborhood,
the platform accuracy considerably decreases;

3) the Type 3 singularities, where both Type 1 and Type
2 singularities encounter.

There exist other types of singularities, such as the constraint
singularities [11], but they are due to passive constraint de-
generacy only, and are not involved in the mapping between
the leg directions and the Quattro end-effector space.
For the 2–Π(2–UU) robot, Type 1 singularities appear

when
−−−→
AiBi and

−−−→
BiCi are colinear. In such cases, the robot

reaches its workspace boundary. Type 2 singularities appear
when the planes Pi and Pj (whose normal vectors are equal
to v⊥

i and v⊥

j , resp.) are parallel. In such cases, the circles
Li and Lj have a common tangent at their intersection point

and the robot gains one uncontrollable dof along this tangent
(Fig. 3(b)).
Obviously, the singularity loci vary depending on the leg

chosen for the Quattro control. Therefore, it is extremely
important, for having the best performances of the controller,
to make an optimal selection of the legs to observe. This is
the topic of the next section.
Finally, it should be mentioned that the singularities of the

2–Π(2–UU) robot are not physical singularities, in the sense
that they do not lead to uncontrollable free motions of the
platform. However, they are representation singularities due
to the mapping from the Cartesian space to the leg direction
space [12].

IV. SELECTION OF THE CONTROLLED LEGS
Several indices can be used for characterizing the neigh-

borhood of singularities (e.g. the condition number, the
dexterity [13], etc.). Here, as generally, the visual servoing is
used for improving the robot accuracy, it is proposed to use it
as an index for the characterization of singularity proximity.

A. Accuracy analysis
From (12), and using the first order approximation of the

forward geometric model [13], it is possible to write

δp = MT+δu (21)

where δp is the platform positioning error, δu is the error
on the observation of the leg direction, and MT+ is the
pseudo-inverse of the matrix MT that can be obtained
by stacking the matrices MT

i of the observed legs. Obvi-
ously, this matrix is the Jacobian matrix of the equivalent
2–Π(2–UU) robot and, as a result, will degenerate near
the singularity configurations presented in section III-C. It
should be mentioned here that it is decided to use a simple
model for computing the robot accuracy, but any other more
complicated models can be used (e.g. models that take into
account flexibilities [14], clearances [15], etc.). However, this
simple model is enough for our demonstration.
The Adept Quattro has the following characteristics:
• l1 = 0.380m, l2 = 0.825m,
• Ai = 0.296 [cos θi sin θi 0]

T (in meters)
•

−−→
PCi = 0.102 [cos θi sin θi 0]

T (in meters)
• θi = {−3π/4,−π/4, π/4, 3π/4} (in radians)
For this mechanism, and for an error δui defined such

that the vector ui is contained in a cone of axis ui0 and of
half angle φi (ui0 is the nominal value of ui and, in what
follows, φi is taken equal to 0.01 deg. for each leg direction),
let us compute the maximal positioning error when only two
of its four legs are observed. Six different combinations are
possible. However, the value of the error for only two of
them (when legs {1, 2} and {1, 3} are observed) is plotted
at Fig. 4.
On Fig. 4(a), it is possible to note that the maximal error

varies very quickly, especially near singularity. On Fig. 4(b),
things are different. The variation of the accuracy is very
smooth. Thus, it can be concluded that the selection of the
legs to observe is crucial for the final pose accuracy.
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Fig. 4. Maximal pose error (in mm) for z = −0.85 m.

B. Discussion
The previous section showed the importance of the legs

chosen for the control scheme. Several questions naturally
arise here. The first one concerns the number of legs to
observe. In terms of accuracy, it is obvious that observing
three or four legs, i.e. adding measurement redundancy, will
improve the pose accuracy of the robot. However, increasing
the number of legs to observe leads to an increase of the
computational time and may be applied with difficulty when
low sampling periods are required. Thus, a compromise must
be found between the sampling period and the computational
time for any given application.
The second question is about the selection of the legs

to observe. With only two legs among four to observe, as
mentioned above, six different 2–Π(2–UU) robots can be
defined. What is thus the best virtual robot model to use?
If the control law proposed in section II-C is applied, it is

first necessary to guaranty that, for the used set of legs:
• obviously, the legs must be observable during the whole
robot displacement.

• the initial and final robot configurations must be in-
cluded in the same assembly mode of the virtual 2–
Π(2–UU) robot. If not, the controller will not be able
to converge to the desired end-effector pose, even if the
observed leg directions do. In this last case, the problem
can be solved by applying special trajectories that cross
Type 2 singularities [16] or encircle a cusp point [17].

Then, if accuracy is needed, the leg selection must guaranty
the best final accuracy. To achieve this goal, the following
procedure can be used:
1) knowing the four leg orientations at the initial and final
Quattro configurations, compute the solutions of the
fkp of the six 2–Π(2–UU) robots,

2) find, using a procedure similar to the one proposed
in [18] for all virtual 2–Π(2–UU) robots, the solutions
of the fkp that belong to the same assembly mode; if,
for one given virtual robot, initial and final platform
configurations do not belong to the same assembly
mode, discard it; if it does not exist any 2–Π(2–UU)
robot for which initial and final configurations belong
to the same assembly mode, the displacement is not
feasible, except if special trajectories are planned as
mentioned previously,

3) for all remaining virtual 2–Π(2–UU) robots, knowing
the observation error δu, compute the positionning
error using (21); retain the set of legs that guaranty
the best accuracy;

4) test the controller (in simulation) with the retained set
of legs; if there is no problem of convergence and that
the legs are observable during the whole displacement,
the problem is solved; if not, discard this set of leg and
redo point 3; if it does not exist any 2–Π(2–UU) robot
for which initial and final configurations belong to the
same assembly mode, the displacement is not feasible,
except with special trajectories.

Obviously, this methodology can be extended when three
or four legs are observed. One should also be aware that
instead of given the initial and final robot configurations
to the controller, it is better to define a trajectory between
these two points in order to avoid crossing singularities
inadvertently.
Finally, it is considered in this paper that the sensor

measurement space is the same as the leg direction space.
However, for example using a camera, the leg directions
are not directly measured but rebuilt from the observation
of the legs limbs projection in the 2D camera space [6].
Thus, for the leg reconstruction, the mapping between the
camera space and the real 3D space is involved, and it is
not free of singularities (see [19] for an example of mapping
singularities). In the neighboorhood of mapping singularities,
the robot accuracy will also tend to decrease. As a result, this
mapping should be considered in the accuracy computation
and in the selection of the legs to observe.

V. SIMULATION RESULTS
In this section, simulations are performed on an ADAMS

mockup of the Adept Quattro. This virtual mockup is con-
nected to Matlab/Simulink via the module ADAMS/Controls.
The controller presented in section II-C is applied (with
λ = 5).
In the first simulations, the initial platform pose is equal

to {x = 0.1m, y = 0.04m, z = −0.93m} and the final
platform pose is set to {x = 0m, y = −0.25m, z = −0.7m}.
For going from the initial point to the final ones, two sets
of observed leg directions are tested: {1, 2} and {1, 3}.
The results for the convergence of the leg directions are
presented in Fig. 5. It can be shown that when the legs
{1, 3} are observed, all leg directions converge to 0. This
is not true for the second case. Looking at the platform
pose computed by ADAMS, the robot reach the configuration
{x = 0m, y = −0.25m, z = −0.958m} (Fig 6). Solving the
forward geometric problem using (20) at the final desired
robot configuration for legs {1, 2}, it can be demonstrated
that two real assembly modes exist that are {x = 0m, y =
−0.25m, z = −0.7m} and {x = 0m, y = −0.25m, z =
−0.958m}. This validates the theory presented in section III.
In the second simulation, the final point is changed to

{x = 0m, y = −0.3m, z = −0.85m} and a random noise
of 0.01 deg. is added on the simulated measure of the leg
directions. To show the importance of the leg selection on the
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Fig. 7. Simulated platform pose error (in mm).

robot accuracy, it is decided to control the robot displacement
using three different sets of legs: (i) legs {1, 2}, (ii) legs
{1, 3} and (iii) all legs. The results (Fig. 7(a)) show that, as
presented in Fig. 4, the final platform pose accuracy is better
when legs {1, 3} are observed (around 0.22mm) than with
legs {1, 2} (around 1.6mm). When all legs are observed, the
final pose error is a bit lower lower than when only two legs
are observed (0.15mm). This seems normal. However, it can
be proved that observing the four legs does not lead to a
mapping without any singularities. A singular configuration
still exists when all the planes Pi for the four legs are
horizontal, which can be difficult to detect without studying
the equivalent robot model. Finally, for testing the robustness
of the controller, the noise is multiplied by 10, but we can
still observe a convergence of the platform to the desired
pose (Fig. 7(b)).

VI. CONCLUSIONS
This paper presented new insights about the sensor-based

control of the Adept Quattro. It has been shown that observ-
ing the leg directions of the Quattro involves controlling the
displacement of a hidden robot which is based on Π(2–UU)

legs instead of R(2–SS) legs. If only two legs are observed,
the new equivalent robot becomes a 2–Π(2–UU) robot that
has up to two distinct assembly modes that are different from
those of the Quattro. Its conditions of singularities have been
presented. It has been shown that the legs to observe should
be chosen carefully in order to avoid inaccuracy problems.
All the presented results have been validated on a Quattro

simulator created using ADAMS/Controls and interfaced
with Matlab/Simulink. Future works will concern the gener-
alization of the concept of hidden robot model for different
classes of parallel robots and the experimental validations.
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