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Abstract— Off-line robot dynamic identification methods are
generally based on the use of the Inverse Dynamic Identifica-
tion Model (IDIM), which calculates the joint forces/torques
(estimated as the product of the known control signal - the
input reference of the motor current loop - by the joint drive
gains) that are linear in relation to the dynamic parameters,
and on the use of linear least squares technique to calculate
the parameters (IDIM-LS technique). However, as actuation
redundant parallel robot are overconstrained, their IDIM has
infinity of solutions for the force/torque prediction, depending of
the value of the desired overconstraint that is a priori unknown
in the identification process. As a result, the IDIM cannot be
used for the identification procedure.

On the contrary the Power Identification Model (PIM) of
any types of robot manipulator has a unique formulation
and contains the same dynamic parameters as the IDIM.
This paper proposes to use the PIM of actuation redundant
robots for identification purpose. The identification of the
inertial parameters of a planar parallel robot with actuation
redundancy, the DualV, is then carried out using its PIM.
Experimental results show the validity of the method.

I. INTRODUCTION

Parallel robots are increasingly being used since a few
decades. This is due to their main advantages compared
to their serial counterparts that are: (i) a higher intrinsic
rigidity, (ii) a larger payload-to-weight ratio and (iii) higher
velocity and acceleration capacities [1]. However, there main
drawback is probably the presence of singularities in the
workspace. In order to overcome this difficulty, actuation re-
dundancy can be used [2], [3]. Actuation redundancy means
that the robot has more actuators that degrees of freedom
(dof ) to control and is thus overconstrained. Overconstraints
can be smartly used to improve the robot properties, such as
increasing the acceleration or payload capacities [4] or even
decreasing the backlash [5]. However, this involves the use
of more complicated controllers.

Several control approaches could be envisaged [6], [7], but
it appears that, for high-speed robots or when varying loads
have to be compensated (e.g. in pick-and-place operations or
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machining), computed torque control is generally used [5],
[8]. This approach requires an accurate identification of the
dynamic model of the robot with the load [9], which can be
obtained if two main conditions are satisfied:

1) a well-tuned derivative band-pass filtering of actuated
joints position is used to calculate the actuated joints
velocities and accelerations, and

2) the values of actuator drive gains gτ are accurately
known to calculate the actuator force/torque as the
product of the known control signal computed by the
numerical controller of the robot (the current refer-
ences) by the drive gains

The usual identification procedure of the robot dynamic
parameters requires the computation of the inverse dynamic
identification model (IDIM) of the studied robot that gives
the values of the input forces/torques as a function of the
robot configuration, velocity and acceleration [10]. However,
for actuation redundant parallel robots, the inverse dynamic
model is not unique and depends on the overconstraint
in the mechanism that cannot be a priori known in the
identification process. Thus, identification using the usual
IDIM for redundant robots parallel cannot be carried out.

There exist anothers type of model that contains exactly
the same dynamic parameters as the IDIM but that has
a unique formulation for any kind of robot manipulators:
the power identification model (PIM). The PIM has been
formely used by two of the authors of the present paper for
the identification of the dynamic parameters of 2 degrees
of freedom (dof ) [11] and of a 6 dof serial industrial robots
[12]. In [12], it is demonstrated that the identification of 6 dof
serial robots with the PIM requires the definition of special
trajectories that make it possible to decouple the observation
matrix. This decoupled matrix is necessary for identifying the
dynamic parameters of the wrist that have less significant
contribution to the robot consumpted power than those of
the three first joints. In general, for serial robots, the PIM
offers the advantage, with respect to the IDIM, of simplifying
the identification procedure as it considerably reduces the
complexity of computation for the identification model. This
paper focuses on another newly discovered advantage of
the PIM: for parallel robots with actuation redundancy, for
which the usual IDIM cannot be computed, the unique
formulation of the PIM makes it possible to achieve the
identification of the dynamic parameters. To the best of our
knowledge, the identification of the inertial parameters of



actuation redundant parallel robots had never been presented
until now.

This paper is divided as follows. Section II presents some
recalls on the computation of the PIM of robots. Section III
briefly recalls the identification procedure and experimental
results on the DualV are presented in Section IV. Finally, in
Section V, conclusions are drawn.

II. COMPUTATION OF THE POWER IDENTIFICATION
MODEL

A. Computation of the Usual PIM

The PIM of a rigid robot composed of m moving bodies,
na active joints and np passive joints calculates the motors
consumpted power as a function of the generalized coor-
dinates and their derivatives. It can be computed from the
following relation:

Ppm =
d

dt
(H (qtot, q̇tot,x,v)) + q̇T

totτf (1)

where H (qtot, q̇tot) is the total energy of the system cal-
culted using the recursive equations proposed in [10], qtot

and q̇tot are respectively the (na + np) × 1 vectors of the
active and passive joint positions and velocities, x and v are
the end-effector position and velocity vectors, and τf is the
(na + np) × 1 vector of the friction torques in active and
passive joints, i.e.

τf =
[
τf1 · · · τfna+np

]T
τfj = fvj q̇j + fsjsign(q̇j) + τoffj

(2)

where fvj , fsj are the viscous and Coulomb friction coef-
ficients in the joint j, respectively, and τoffj = τofffsj +
τoffτj is an offset parameter which regroups the current am-
plifier offset τoffτj and the asymmetrical Coulomb friction
coefficient τofffsj .

It should be mentionned here that, for closed-loop robots,
the passive joint coordinates and velocities (denoted as qp

and q̇p, resp.) and the end-effector position and velocity x
and v can be computed from the values of the active joint
coordinates and velocities (denoted as qa and q̇a, resp.)
via the use of the loop-closure equations [1]. For parallel
robots with actuation redundancy, this computation is not
straigthforward and will be detailed in the Section II-C.

It is known that the power model (1) of any manipulator
can be expressed as a linear form with respect to the standard
dynamic parameters χst of the robot:

Ppm =
d

dt
(h (qtot, q̇tot,x,v))χst = dhstχst (3)

where dhst is the (1× nst) Jacobian matrix of Ppm with
respect to the (nst × 1) vector χst of the standard parameters
given by χT

st = [χ1T
st , χ

2T
st , . . . χ

mT
st ]. For rigid robots, the

vector χj
st of link j is composed of 14 standard parameters

described as:
• xxj , xyj , xzj , yyj , yzj , zzj are the 6 components of the

inertia matrix of link j at the origin of frame j,
• mxj ,myj ,mzj are the 3 components of the first mo-

ment of link j,

• mj is its mass,
• iaj is the total inertia moment for rotor and gears,
• fvj , fsj , τoffj are the friction parameters detailed

above.
The model (3) can be simplified through the use of the

identifiable parameters. The identifiable parameters are the
base parameters which are the minimum number of dynamic
parameters from which the dynamic model can be calculated
[10]. The minimal dynamic model can be written using the
nb base dynamic parameters χ as follows:

Ppm = dhχ (4)

where dh is a subset of independant columns in dhst which
defines the identifiable parameters.

Finally, because of perturbations due to noise measurement
and modeling errors, the actual power P differs from Ppm

by an error e, such that:

P = Ppm + e = dhχ+ e (5)

where P is calculated from

P = q̇T
a τ (6)

with τ the actual motor torques/forces computed with the
drive chain relation:

τ = vτgτ = diag(vjτ )
[
g1τ . . . gna

τ

]T
(7)

vτ is the (na × na) matrix of the actual motor current
references of the current amplifiers (vτj corresponds to
actuator j) and gτ is the (na × 1) vector of the joint drive
gains (gτj corresponds to actuator j) that is given by a priori
manufacturer’s data or using some special procedures [13],
[14]. Equation (5) represents the Power Identification Model
(PIM).

B. PIM Including the Payload

The payload is considered as an additional link (denoted
as link l) fixed to the robot platform [9]. The model (5)
becomes:

P =
[
dh dhl

] [χ
χl

]
+ e = dhtotχtot + e (8)

where:
• χl is the (10× 1) vector of the inertial parameters of

the payload;
• dhl is the (r × 10) Jacobian matrix of P , with respect

to the vector χl.

C. Computation of the Passive Joint and Platform Coordi-
nates and Velocities

As mentionned above, for closed-loop robots, the passive
joint coordinates and velocities qp and q̇p and the end-
effector position and velocity x and v can be computed
from the values of the active joint coordinates and velocities
(denoted as qa and q̇a, resp.) via the use of the loop-closure
equations [1],

ft(qa,qp) = 0, fp(qa,x) = 0 (9)
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Fig. 1. A general parallel robot.

Differentiating (9) with respect to time, all joint and
platform velocities can be computed using the following
expressions:

Atq̇p +Btq̇a = 0 ⇒ q̇p = −A−1
t Btq̇a = Jtq̇a, (10)

Apv +Bpq̇a = 0 ⇒ q̇a = −B−1
p Apv = Jinv

p v, (11)

or also, as for parallel robots with actuation redundancy, the
matrix Ap is rectangular with more rows than columns,

q̇a = Jinv +
p v, Jinv +

p =
(
Jinv T
p Jinv

p

)−1
Jinv T
p (12)

where matrices At, Ap (Bt, Bp, resp.) can be obtained
through the differentiation of the loop-closure equations (9)
with respect to all passive joint coordinates qp and the
platform coordinates (actuated joints positions, resp.), i.e.

At =

[
∂ft
∂qp

]
, Bt =

[
∂ft
∂qa

]
Ap =

[
∂fp
∂x

]
, Bp =

[
∂fp
∂qa

] (13)

It should be mentioned that in the case of parallel robots,
the computation of matrices At and Bt is generally not
straightforward. Therefore, it is preferable to:

1) express the kinematic relation between the independent
coordinates vtk of the twists for all leg extremities
Cmk,k (Fig. 1) and the velocities of all joints q̇tot,
vtk = Jkq̇tot (the matrix Jk stackles all Jacobian
matrices corresponding to the displacements of the last
joint for each serial legs,

2) express the kinematic relation between the platform
velocities v and the velocities vtk of all leg extremities
Cmk,k, vtk = Jtkv (Jtk is a matrix that can be
obtained by considering the rigid body displacement
of any point of the robot platform),

3) combine these two relations with (12) in order to obtain

Jkq̇p = JtkJ
inv +
p q̇ ⇒ q̇t = Jtq̇, Jt = J−1

k JtkJ
inv +
p

(14)
All the previous expressions are valuable as long as the robot
does not meet any singularity and as long as there are the
same number of actuators as the number of platform dof to
control. The singularity avoidance or crossing is not the main
topic of this paper, and the reader should refer to [15], [16]
for further developments.

III. USUAL IDENTIFICATION PROCEDURE

This part presents some necessary recalls on the identifi-
cation procedure.

A. Recalls on Least Squares Identification of the Dynamic
Parameters

The off-line identification of the base dynamic parameters
χ is considered, given measured or estimated off-line data
for τ and (qa, q̇a), collected while the robot is tracking some
planned trajectories. The model (5) is sampled at frequency
fm in order to get an over-determined linear system of rfm
equations and nb unknowns:

Yfm(τ) = Wfm(q̂a, ˆ̇qa, d̂h)χ+ ρfm (15)

where (q̂a, ˆ̇qa, d̂h) is an estimation of (qa, q̇a,dh), re-
spectively, obtained by sampling and band-pass filtering the
measure of qa and values of h [11], ρfm is the (rfm × 1)
vector of errors, Yfm is the (rfm × 1) vector of the inputs
(computed using the relation q̇T

a τ from (6) and (7)), sam-
pled at frequency fm and Wfm(q̂a, ˆ̇qa) is the (rfm × nb)
observation matrix.

The force/torque τ is perturbed by high frequency unmod-
elled friction and flexibility force/torque of the joint drive
chain which is rejected by the closed loop control. These
force/torque ripples are eliminated with a parallel decimation
procedure which low pass filters in parallel Yfm and each
column of Wfm and resamples them at a lower rate, keeping
one sample over nd. This parallel decimation can be carried
out with the MATLAB decimate function, where the low pass
filter cutoff frequency, ωfp = 2π0.8fm/ (2nd), is chosen in
order to keep Yfm and Wfm in the same frequency range
of the model dynamics. After the data acquisition procedure
and the parallel decimation of (15), we obtain the over-
determined linear system

Y(τ) = W(q̂a, ˆ̇qa)χ+ ρ (16)

where ρ is the (r × 1) vector of errors, Y is the (r × 1)
vector of the input torques/force and W(q̂a, ˆ̇qa) is the
(r × nb) observation matrix.

It is to be noted that no error is introduced by the parallel
filtering process in the linear relation (16) compared with
(15). In [11], practical rules for tuning this filter are given.

Using the base parameters and tracking ’exciting’ ref-
erence trajectories, i.e. optimized trajectories that can be
computed by nonlinear minimization of a criterion function
of the condition number of the W matrix [17], a well-
conditioned matrix W can be obtained. The LS solution χ̂
of (16) is given by:

χ̂ = W+Y, where W+ = (WTW)−1WT (17)

It is computed using the QR factorization of W.
Standard deviations σχ̂i can be estimated assuming that

W is a deterministic matrix and ρ is a zero mean additive
independent noise [11], with a covariance matrix Cρρ such
that

Cρρ = E
(
ρρT

)
= σ2

ρIr (18)



E is the expectation operator and Ir, the r×r identity matrix.
An unbiased estimation of the standard deviation σρ is:

σ2
ρ = ∥Y −Wχ̂∥2 / (r − nb) (19)

The covariance matrix of the estimation error is given by:

Cχ̂χ̂ = E
[
(χ− χ̂) (χ− χ̂)

T
]
= σ2

ρ

(
WTW

)−1
(20)

σ2
χ̂i

= Cχ̂χ̂(i, i) is the i-th diagonal coefficient of Cχ̂χ̂.
The ordinary LS can be improved by taking into account

different standard deviations on actuated joint j equations
errors [11]. Data in Y and W of (16) are weighted with the
inverse of the standard deviation of the error calculated from
ordinary LS solution of the equations of joint j [11]

Yj = Wjχ+ ρj (21)

This weighting operation normalizes the errors in (16) and
gives the weighted LS estimation of the parameters (PIM-
WLS).

B. Payload Identification

In order to identify both the robot and the payload dynamic
parameters, using the model (8), it is necessary that the robot
carried out two types of trajectories [18]:

1) trajectories without the payload, and
2) trajectories with the payload fixed to the end-effector.

The sampling and filtering of the model IDIM (8) can be
then written as:

Y =

[
Wa 0
Wb Wl

] [
χ
χl

]
+ ρ (22)

where
• Wa is the observation matrix of the robot in the

unloaded case,
• Wb is the observation matrix of the robot in the loaded

case,
• Wl is the observation matrix of the robot corresponding

to the payload inertial parameters.
Thus, these two types of trajectories avoid the regrouping

of the payload parameters with those of the platform and
allow their independent identification. Next section presents
experimental results on a prototype of actuation redundant
parallel robot.

IV. CASE STUDY

A. Description of the DualV

The DualV (Fig. 2) is a prototype of planar parallel robot
with actuation redundancy developped at the LIRMM [19].
This robot has 3 controlled dof (two translations in the
plane (xOy) and one rotation around the z axis) but 4 legs,
with one actuator by leg. Thus, its degree of redundancy
is equal to 1. Each leg is composed of one proximal and
one distal link. The proximal link is attached to the base
by one actuated revolute joint and to the distal link by one
passive revolute joint. The distal link is also attached to the
moving platform by one passive revolute joint. It should be
mentionned here that all proximal links are identical.

(a) The prototype
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Fig. 2. The DualV.

The geometric parameters of the virtual open-loop tree
structure are described in Table I using the modified De-
navit and Hartenberg notation (MDH) [10] (in this table,
γ1 = 15.52deg, γ2 = 164.48deg, γ3 = −164.48deg and
γ4 = −15.52deg). The platform and payload are considered
as supplementary bodies, the payload being fixed on the
platform. They are respectively numbered as bodies 4 and
5.

The MDH notation being well known, the parameters
of Table I will not be defined here. For more information
concerning the MDH parameters, the reader should refer to
[10].

TABLE I
MDH PARAMETERS FOR THE FRAMES CORRESPONDING TO i-TH ROBOT

LEG (i = 1, ..., 4).

ji aji µji σji γji dji θji rji
1i 0 1 0 γi d1 = 0.41m q1i − γi 0
2i 1i 0 0 0 d2 = 0.28m q2i 0
3i 2i 0 0 0 d3 = 0.28m q3i 0

The DualV is actuated by four ETEL RTMB0140-100
direct drive actuators, which can deliver maximal torques of
127Nm. The robot is able to achieve accelerations of 25g in
its workspace. The current amplifier can provide directly the
measure of the input torque produced by the actuator. The
controller of the DualV was developed within the framework
of an industrial PhD thesis which is still confidential for now
[20], therefore we are not able to give further explanations
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Fig. 3. Robot consumpted power, estimated from input torques using
(6) (red lines) and rebuilt using identified parameters (blue lines) with the
payload of 5.37 kg.

on this point.

B. Identification Results

In this part, experimentations are performed and the dy-
namic parameter identification is carried out on the DualV
using the modeling approach presented in Section II and the
identification procedure proposed in Section III. To estimate
the quality of the identification procedure, a payload mass
of 5.37kg which has been accurately weighed is mounted of
the platform and will be identified in the same time as the
robot parameters.

Even paying attention to the choice of the exciting tra-
jectories, some small parameters remain poorly identifiable
because they have no significant contribution in the joint
torques. These parameters have no significant estimations
and can be canceled in order to simplify the dynamic model.
Thus parameters such that the relative standard deviation
%σχ̂ri is too high are canceled to keep a set of essential
parameters of a simplified dynamic model with a good
accuracy [18]. The essential parameters are calculated using
an iterative procedure starting from the base parameters
estimation. At each step the base parameter which has the
largest relative standard deviation is canceled. A new IDIM-
WLS parameter estimation of the simplified model is carried
out with new relative error standard deviations %σχ̂ri

. The
procedure ends when max (%σχ̂ri) /min (%σχ̂ri) < rσ ,
where rσ is a ratio ideally chosen between 10 and 30
depending on the level of perturbation in Y and W. In the
following of the paper, this ratio is fixed to 10.

Table II presents the identification results for two cases of
identification:

• Case 1: in the PIM of the DualV, it is not a priori

TABLE II
ESSENTIAL PARAMETERS OF THE DUALV.

Case 1 Case 2
Param. A priori Id. Val. %σχ̂ri

Id. Val. %σχ̂ri

zz11R 4.9e− 2 5.2e− 2 4.26 3.9e− 2 2.28
zz12R 4.9e− 2 4.1e− 2 4.49 3.9e− 2 2.28
zz13R 4.9e− 2 2.6e− 2 8.35 3.9e− 2 2.28
zz14R 4.9e− 2 4.0e− 2 5.58 3.9e− 2 2.28

zz4 2.2e− 2 1.9e− 2 3.30 2.0e− 2 3.23
m4 2.0e+ 0 2.1e+ 0 1.22 2.1e+ 0 1.17
zz5 N/A 1.8e− 2 5.13 1.8e− 2 5.11

mx5 N/A −1.9e− 1 23.39 −2.0e− 1 22.07
m5 5.37 5.4e+ 0 0.20 5.4e+ 0 0.20

considered that the proximal links are identical for the
four robot legs, i.e. that they don’t have exactly the same
dynamic parameters;

• Case 2: it is now considered that the proximal links
are identical for the four robot legs, i.e. that they have
exactly the same dynamic parameters.

Subscript “R” stands for the parameters that have been
regrouped using the procedure presented in Section II. It can
be observed that, in Case 2, the identified values are closer
from the a priori values. Moreover, the payload of 5.37kg
has been very accurately identified in both cases.

The robot consumpted power is shown in Fig. 3 for a
trajectory different from the one used for the identifica-
tion process (i.e. the results are cross-validated). It can be
observed that it is well rebuilt in both cases. Finally, the
value the measured input torques, the estimated input torques
and the value of the overconstraint c computed using the
methodology presented in [5] are shown at Figs. 4 and 5 for
Case 2 (the results are very similar for Case 1). It can be
seen that the estimated torques are very close to the measured
ones and that the average overconstraint in the robot legs is
about 10N.

V. CONCLUSION

This paper has presented a method for the identification of
the inertial parameters of parallel robots with actuation re-
dundancy. Contrary to serial robots or parallel robots without
actuation redundancy for which the dynamic identification
methods are based on the use of the IDIM which calculates
the joint forces/torques that are linear in relation to the
dynamic parameters, for actuation redundant parallel robot
that are overconstrained, the IDIM has infinity of solutions
for the force/torque prediction, depending of the value of the
desired overconstraint that is a priori unknown. As a result,
the IDIM cannot be used.

This paper proposed to use the PIM of actuation redun-
dant robots for identification purpose as it has a unique
formulation and contains the same dynamic parameters as
the IDIM. This is a newly discovered advantage of the PIM:
for parallel robots with actuation redundancy, for which the
usual IDIM cannot be computed, the unique formulation
of the PIM makes it possible to achieve the identification
of the dynamic parameters. The identification of the in-
ertial parameters of a planar parallel robot with actuation
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Fig. 4. Measured (red lines) and estimated (blue lines) input torques rebuilt
using identified parameters with the payload of 5.37 kg in Case 2.

redundancy, the DualV, was then performed using its PIM.
Experimental results show that the inertial parameters of
the robot were correctly identified. Moreover, for validation
purpose, a known payload mass has been added on the robot
to be sure that the identification process was correct. This
mass has been very accurately identified. Finally, it has been
shown that the torque prediction with the newly identified
parameters was correct.
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