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ABSTRACT

This paper proposes a denoising method for hyperspectral astro-
physical data, adapted to the specificities of the MUSE (Multi-Unit
Spectroscopic Explorer) instrument, which will provide massive in-
tegral field spectroscopic observations of the far universe, character-
ized by very low signal-to-noise ratio and strongly non identically
distributed noise.

Data are considered as a collection of spectra. The proposed
restoration procedure operates on each spectrum by minimizing a
penalized data-fit criterion, which takes into account the noise spec-
tral distribution, with additional constraints expressing prior spar-
sity information in a union of bases. Spectra are modeled as the
sum of line and continuous spectra, which are supposed to be sparse
in the canonical and the Discrete Cosine Transform bases, respec-
tively. Dealing with colored noise requires specific methodological
approaches regarding not only the estimator definition itself, but also
hyperparameter tuning and optimization issues. These three points
are successively investigated. Promising denoising results are ob-
tained on realistic simulations of astrophysical observations.

Index Terms— Denoising, overcomplete sparse representa-
tions, colored noise, astrophysical spectra.

1. INTRODUCTION

The MUSE instrument (Multi-Unit Spectroscopic Explorer) is an ex-
tremely powerful integral field spectrograph [1], which will be in-
stalled at ESO (European Southern Observatory) on the Very Large
Telescope in Chile in 2012. It will provide hyperspectral data cubes
with 300 × 300 spatial elements and up to 4000 spectral channels
covering the essential part of the visible spectrum. In its wide field
mode configuration, covering a field of view of1arcmin2, the ex-
pected performances of MUSE for a long time exposure (typically a
few tens of hours) should allow the detection of much faintergalax-
ies than those observed by today’s ground-based spectrographs.

A strong characteristic of MUSE data holds in a very low
signal-to-noise ratio (SNR), where noise iscolored, that is, the noise
power distribution is highly variable with respect to wavelength.
Figure 1(a) plots the expected noise standard deviation forsuch data
as a function of wavelength. The powerful parasite emissionof the
atmosphere at specific wavelengths causes high spectral variations
in the noise level, while the blue part of the spectrum is charac-
terized by a very low SNR, due to lower instrumental efficiency at
such wavelengths. Moreover, because of pre-processing steps such
as previous subtraction of the background emission, the available
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spectra can even show negative values. Figures 1(b) and (c) show, re-
spectively, the noise-free spectrum of a relatively brightlight source
and the corresponding simulated noise-contaminated spectrum as
observed through the MUSE instrument. The noisy version shows
a high number of spurious peaks caused by high noise variance
at certain wavelengths, with amplitudes sometimes higher than true
spectral lines. Hence, taking into account noise specificities is a very
crucial point to achieve the ambitious scientific goals – in particular,
low SNR source detections – of the MUSE instrument.
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Fig. 1. Noise level as a function of wavelength, and noise-free, noisy
and denoised spectra of a galaxy. Intensities represent light fluxes,
in erg.s−1.cm−2.pixel−1.

In this paper, we propose a denoising scheme designed for such
data, based on the hypothesis that data can be approximated by
sparse representations in redundant transformation spaces [2, 3]. In
Section 2, we define the denoised data as the solution of a quadratic
data-fit criterion taking into account the noise distribution, and
penalized by sparsity-inducingℓ1-norm constraints. Sparsity is ex-
pressed spectrally, where spectra are considered as the superposition
of emission and absorption line spectra plus a continuum, which
is supposed to have a sparse representation in the Discrete Cosine
Transform (DCT) domain. Hyperparameter selection is addressed
in Section 3 for colored noise, where such parameters are viewed
as approximate detection thresholds, which can then be tuned auto-
matically. An efficient algorithmic strategy based on Iterative- and
Block-Coordinate Descent methods [4, 5] is proposed in Section 4.
Finally, denoising results are presented in Section 5 on realistic
deep-field simulated data provided by the MUSE consortium.

2. SPARSE DECOMPOSITIONS OF SPECTRA

Sparsity-based denoising relies on the hypothesis that most of the
signal energy can be concentrated into a reduced number of co-
efficients with high values in some appropriate transform space,



whereas the noise distribution, expressed in such space, isconcen-
trated around zero. Then, such high-valued coefficients areless
affected by noise than signal samples are in their original space.
Consequently, identifying such coefficients allows one to preserve
most part of the useful information and to build adenoisedversion
of the data [2]. In this paper, we consider the restoration ofMUSE
spectra at each spatial location by adding prior sparsity information.
In a first approximation, the considered astrophysical spectra can
be decomposed as a certain number of emission or absorption lines,
superimposed on a continuum. Following previous works on sparse
representations (e.g., [3]), we consider that each spectrum has a
sparse representation in the union of the canonical basis for spectral
lines and of the DCT basis for the continuum.

2.1. Sparse estimation withℓ1-norm constraints

Let y = [y1 . . . yN ]T represent an observed spectrum discretized
at wavelengthsλ1, . . . , λN . We want to reconstruct spectrum
o = [o1 . . . oN ]T from:

y = o + ǫ, (1)

whereǫ collects noise samples that are supposed centered Gaussian

with known covariance matrixΣ
∆
= diag(σ2

1 . . . σ2

N ), whereσ2
n is

the noise variance at frequencyλn shown in Figure 1. We model
o as the sum of aline spectrumo

ℓ and acontinuousspectrumo
c,

where:

• o
ℓ is sparse in the standard basis (o has only few emission

and absorption lines),

• o
c has a sparse DCT representation (x

c = DCT(oc) has only
few non-zero components).

Botho
ℓ ando

c have to be estimated. Note that using such two bases
with complementary properties is a key point for efficientlymod-
elling the data [3]: a line spectrum is sparse in the canonical basis
but not in the DCT space. Conversely, describing a continuous spec-
trum requires all coefficients of the canonical basis to be non-zero,
whereas it can be approximated by few DCT coefficients. Hence,
both bases are necessary to efficiently represent the considered as-
trophysical spectra with a small number of coefficients.

A well-known approach for enforcing sparsity properties con-
sists in minimizing a data-fit criterion, penalized byℓ1-norm con-
straints [2, 3, 6]. We consider the quadratic data-fit:

1

2
‖y − o

ℓ − o
c‖2

Σ
=

1

2
(y − o

ℓ − o
c)T

Σ
−1(y − o

ℓ − o
c),

which corresponds to the neg-log-likelihood of datay given
model (1) [7], and then statistically takes into account thespe-
cific noise structure shown in Figure 1. The sparsity constraint on
the line spectrum can be written as the regularization term:

Rℓ(oℓ) = αℓ‖oℓ‖
1

= αℓ
X

n

|oℓ
n|, αℓ > 0.

The sparsity constraint on the continuous spectrum can be written as
the regularization term:

Rc(xc) = αc‖xc‖
1
, αc > 0

with x
c = DCT(oc). We noteWc the orthonormal inverse DCT

matrix, so thatoc = W
c
x

c. Let W = [IN W
c] be theN × 2N

matrix formed by the concatenation of Identity matrixIN andW
c,

andx = [xℓT
x

cT ]T with x
ℓ = o

ℓ. Our sparsity-based spectral
denoising method lies in the following optimization problem:

bx = [bxℓT

bxcT

]T = arg min
x

ℓ,xc

J(xℓ, xc), with

J(xℓ, xc) =
1

2
‖y − Wx‖2

Σ
+ Rℓ(xℓ) + Rc(xc). (2)

For adequately chosen values ofαℓ andαc, the minimization ofJ
yields sparse estimates [3, 6]. Note thatJ can be written as a more
classical sparse representation problem, under the form:

J(xℓ, xc) =
1

2
‖z − Mx‖2

IN
+ Rℓ(xℓ) + Rc(xc), (3)

with Σ
−1/2 = diag(σ−1

1
. . . σ−1

N ), z = Σ
−1/2

y and M =

Σ
−1/2

W. In the vocabulary of sparse representations [3, 6],
the minimization of (3) aims at approximating weighted dataz

by the shortest linear combination ofatomstaken fromdictionary
M = [Σ−1/2

M
c] with M

c = Σ
−1/2

W
c. In our case, how-

ever, the equivalent dictionaryM is not composed of orthogonal
blocks sinceMc is not orthogonal, nor are its columns normalized
to 1. Consequently, important differences hold between the problem
considered here and classical sparse representations in unions of or-
thogonal bases, as for example in [3, 4, 6] that considerΣ = IN . In
particular, consequences on hyperparameter tuning and optimization
will be discussed in Sections 3 and 4, respectively.

2.2. Amplitude bias correction and spectrum restoration

Theℓ1-norm penalization efficiently induces sparsity by locating few
non-zero components inbx [3, 6]. However, it systematically intro-
duces bias in amplitudes [6], and posterior amplitude re-estimation
is necessary to obtain satisfactory estimates for line and continuous
spectra. This can be done simply by least-squares. Let NZ index
the non-zero components inbx, let WNZ be the matrix formed by
columns ofW with indexes NZ and letuNZ collect the non-zero am-
plitudes to be retrieved. Minimization of‖y −WNZuNZ‖2

Σ
yields:

buNZ =
“
W

T
NZΣ

−1
WNZ

”−1

W
T
NZΣ

−1
y.

Note that Card NZ≪ N if bx is sparse, hence in that case the latter

equation is well-defined. Letbu = [buℓT bucT

]T denote the2N × 1
vector obtained by fillinguNZ with zeros outside NZ. Then, line and
continuous estimated spectra are obtained, respectively,by boℓ = buℓ

andboc = W
c buc, and the restored spectrum isbo = boℓ + boc.

3. HYPERPARAMETER TUNING FOR COLORED NOISE

Obviously, estimatebx defined by (2) highly depends on the val-
ues of parametersαℓ and αc, that control the trade-offs between
data fidelity and sparsity constraints. It can be shown that for
αℓ, αc > max |WT

y|, bx is identically zero. Conversely, for too
smallαℓ andαc, the solution may not be sparse at all. We base the
selection ofαℓ andαc on the following result, that extends a result
in [8] to the case of colored noise and several hyperparameters:

Property 1 bx = [bxℓT

, bxcT

]T minimizes (2) if and only if:
i) for n such that̂xℓ

n = 0: |en| < αℓ

ii) for n such that̂xℓ
n 6= 0: en = αℓsign(xℓ

n)
iii) for n such that̂xc

n = 0: |wc
n

T
e| < αc

iv) for n such that̂xc
n 6= 0: w

c
n

T
e = αcsign(xc

n),
wheree = Σ

−1(y − Wbx) is the N × 1 vector containing the
estimation residuals, weighted by the noise variancesσ2

n.



The proof follows the same scheme as the proof in [8], although we
consider here a more general problem than the one in [8].

Properties 1 i) and ii) stipulate that̂xℓ
n is zero if and only if

|en| < αℓ: αℓ can be viewed as a threshold on|en| under which
no line is detected at wavelengthλn. Suppose that estimatebx is
such thatWbx efficiently approximates datao. Ideally, one is left
with y − Wbx = ǫ, anden = σ−2

n ǫn is Gaussian with zero mean
and varianceσ2

e(n) = σ−2
n . To perform a detection test with a given

false alarm rate, one would then choose a threshold on|en| at, say,
kσe(n), that yields a false alarm rate ofτFA = 1−erf(k/

√
2), where

erf is the Gaussian error function. For example,k = 3 yields a false
alarm rate of approximately0.27%. That is,αℓ should depend on
σn, with relation αℓ

n = k/σn. In other words, penalization term
αℓ‖xℓ‖

1
should be replaced by:

Rℓ(xℓ) =
X

n

αℓ
n|xℓ

n|, with αℓ
n = k/σn.

Note, however, that estimation residual|y − Wbx| may take higher
values than|ǫ|, in particular because of amplitude estimation bias
in bx (see§ 2.2). Then, choosingαℓ

n = k/σn may yield a false
detection rate slightly higher thanτFA.

Similarly, it comes from Properties 1 iii) and iv) thatαc is a
threshold on|WcT

e|, under which DCT coefficients are set to
zero. Variances associated to coefficients{wc

n
T
e}n are γ−2

n =
w

c
n

T
Σ

−1
w

c
n, which depend onn. Hence, a proper way to penalize

DCT coefficients consists in replacing penalization termαc‖xc‖
1

by:
Rc(xc) =

X

n

αc
n|xc

n|, with αc
n = k/γn,

whereγn = (wc
n

T
Σ

−1
w

c
n)−1/2.

From the Bayesian point of view [7], such tuning corresponds
to setting Laplace prior distributions on eachxn with different scale
parameters, which may appear unusual. In classical regularization
problems with Laplace priors, however, the scale factor is often se-
lected with regard to the noise level (e.g., [2]). Hence, for colored
noise, adapting hyperparameters to each noise level is a quite natu-
ral way to proceed. The importance of correctly tuning parameter
αℓ is illustrated in Figure 2. Denoising is applied on5000 noisy
realizations of a synthetic spectrum with a continuum and the four
main spectral lines of the spectrum in Figure 1(b). The detection
rate (that is, the average number of non-zero occurrences inbxℓ) is
given at each wavelength for different tunings ofαℓ. In this exam-
ple, αc

n = 4/γn. As desirable, an almost uniform false detection
rate is achieved by choosingαℓ

n = k/σn (left column), with more
false detections (and more true detections) for lowerk. On the con-
trary, choosingαℓ uniformly yields worse detection statistics (right
column): note in particular more false detections around860 nm, in
the spectral band where the noise variance is lower (see Figure 1(a)).

4. OPTIMIZATION ALGORITHM

We propose an optimization strategy derived from the Block Coor-
dinate Relaxation method (BCR) in [4]. The original BCR was pro-
posed for minimizing criteria such as (3) withℓ1-norm constraints
in union of orthogonal bases. It iteratively performs blockwise opti-
mization steps with respect to each set of orthogonal components,
where each step has an analytical explicit solution. In our case,
as discussed at the end of§ 2.1, orthogonality in the DCT domain
is lost. Hence, we propose an algorithm that alternates BCR steps
on x

ℓ and Iterative Coordinate Descent (ICD) steps, that is, scalar
optimizations, on eachxc

n. ICD was shown to be computationally
efficient to retrieve sparse solutions [9], although other algorithmic
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Fig. 2. Detection rates (%) for different tunings ofαℓ. Parameterσ
is chosen asσ −2 = 1

N

P
n σ−2

n . Circles locate the true lines.

options are possible among the many algorithms that have been re-
cently proposed for the minimization of such functionals as(2).

One can show that minimization ofJ in x
ℓ yieldsN indepen-

dent scalar problems with soft-thresholding solutions:

x̃
ℓ = arg min

x
ℓ

J(xℓ, xc) ⇔ ∀n, xℓ
n = σ2

nφst
αℓ

n
(rc

n/σ2

n), (4)

whererc
n is th nth component ofrc = y − W

c
x

c andφst
τ is the

soft-thresholding function:


φst
τ (u) = 0 if |u| ≤ τ

φst
τ (u) = u − sign(u)τ if |u| > τ.

On the contrary, optimization with respect toxc cannot be per-
formed jointly: letx̃c = arg minx

c J(xℓ, xc), then:

x̃
c = arg min

x
c

1

2
‖rℓ −M

c
x

c‖2

IN
+

X

n

αc
n|xc

n|, (5)

with r
ℓ = Σ

−1/2(y − x
ℓ) andM

c = Σ
−1/2

W
c. Matrix M

c is
not orthogonal, so (5) does not have an analytic solution. However,
scalar optimizations inxc

n still do. Let exc
n = arg minxc

n
J(xℓ, xc).

One can show that:

exc
n =

1

mT
nmn

φst
αc

n

`
m

T
n (rℓ −

X

k 6=n

xc
kmk)

´
. (6)

Hence, we replace minimization (5) byN iterative minimizations
in xc

n. Finally, optimization works by performing alternately one
step (4) onxℓ andN steps (6) on eachxc

n. Algorithmic efficiency is
improved by mostly (say 90% of iterations) updating only thenon-
zero components of the current iterate. Since a sparse solution is
searched, the algorithm is initialized by the zero vector. Convergence
proofs of such a strategy towards the minimum ofJ can be found
in [5]. Property 1 gives an explicit characterization of anyminimizer
of bx, which we use as a convergence test. In practice, convergence
is usually reached after less than 10 outer iterations.

Criterion J is a convex functional inx, although not strictly.
Hence, the question of unicity of the minimizerbx is not trivial. Usual
criteria such asmutual incoherence, positiveExact Recovery Coeffi-
cient or Restricted Isometry Property) are not directly transposable



to our setting with weighted data-fit criterion and non-uniform hy-
perparameters. One can also show that theUnique Representation
Property (that is, anyN columns of the dictionary are linearly in-
dependent), which also characterizes unicity, is not satisfied here.
The study of the unicity ofbx and of the equivalence betweenℓ1

andℓ0 problems in such a framework is out of the scope of this pa-
per, which is limited to practical considerations: the minimizers of
J form a convex set [6], possibly not reduced to one element, but
all minimizers are equally acceptable solutions and our optimization
strategy is ensured to converge towards one of them.

5. APPLICATION TO SIMULATED DATA

Denoising is applied on each spectrum of a51×51×3578 datacube
simulated by the MUSE consortium, containing 25 astrophysical ob-
jects. Figure 3 shows both noise-free and noisy images at wavelength
λ = 600 nm, jointly with the restored image, and their correspond-
ing SNR. We define the SNR between noise-free dataO(r, λ) and
noisy dataY (r, λ), indexed by pixelsr and wavelengthsλ, as:

SNRdB = 10 log10

P
r,λ O(r, λ)2

P
r,λ (O(r, λ) − Y (r, λ))2

.

Although no spatial correlation has been accounted for, thecorre-
sponding image is improved, showing that all spectra have been sat-
isfactorily denoised. Note, however, a strong artifact in the bot-
tom left of the restored image caused by the false detection of a
spectral line. The denoised spectrum obtained from the noisy spec-
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Fig. 3. Noise-free, noisy and denoised images atλ = 600 nm. The
three images use the same color map.

trum in Figure 1(b) is shown in Figure 1(d), withαℓ
n = 4/σn

andαc
n = 4/γn (see Section 3). The four main spectral lines are

retrieved and the continuous part of the spectrum is globally re-
stored with, in this example,31 non-zero DCT coefficients. The
denoised spectrum has20.5 dB SNR, to be compared to2.8 dB for
the noisy spectrum. Table 1 gives the SNR of noisy and restored
data cubes, for several values of parametersαℓ andαc, showing ap-
proximately 30 dB improvement for well-chosen hyperparameters.
Settingαc

n = 4/γn yields the best results, while SNR results are
less sensitive toαℓ

n above4/σn: asαℓ
n increases, non-detections

of true lines are more frequent, but do not affect so much the SNR,
since the error on the (few) lines in the spectrum is averagedon the
whole wavelength axis.

6. CONCLUSION

We have proposed a denoising method for astrophysical hyperspec-
tral data, based on a sparse representation of spectra in theunion of

αc = 3/γn αc = 4/γn αc = 5/γn

αℓ
n = 3/σn 4.2 4.8 4.8

αℓ
n = 4/σn 9.8 13.1 12.7

αℓ
n = 5/σn 10 13.5 13.1

αℓ
n = 6/σn 9.9 13.3 12.6

Table 1. SNRdB after denoising, for several values of hyperparame-
ters. The SNR on the noisy data cube is -16.9 dB.

two bases, the canonical one and the DCT basis. The strong vari-
ability of the noise level with respect to wavelength was taken into
account by weighting a data-fit measure by corresponding variances.
Noise variability was also shown to affect hyperparameter tuning, for
which specific selection rules were derived for automatic tuning. An
efficient and convergent optimization strategy was used in this con-
text, which alternates block-wise and coefficient-wise optimization
steps. Results on MUSE-like simulated data showed very promising
results in terms of data denoising and line detection.

Direct extensions of this work regard the enrichment of the pro-
posed model with other transforms than DCT that are adapted to
astrophysical spectral shapes, in order to detect specific sources in
still lower SNR. MUSE deep-field images are mostly composed of
galaxies which may exhibit structured spatial features, sorelevant
information in images should also concentrate in a few coefficients
in appropriate transformation spaces. Hence, further workalso re-
gards the coupling of spectral and spatial constraints in a whole data
cube.
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