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ABSTRACT

This paper proposes a denoising method for hyperspectratl as

physical data, adapted to the specificities of the MUSE (Muitit
Spectroscopic Explorer) instrument, which will providessiae in-
tegral field spectroscopic observations of the far uniyerksaracter-
ized by very low signal-to-noise ratio and strongly non iteadly
distributed noise.

spectra can even show negative values. Figures 1(b) anllow) se-
spectively, the noise-free spectrum of a relatively brigdttt source

and the corresponding simulated noise-contaminated rsipecs
observed through the MUSE instrument. The noisy versiomvsho

a high number of spurious peaks caused by high noise variance
at certain wavelengths, with amplitudes sometimes higten true
spectral lines. Hence, taking into account noise sped#is a very
crucial point to achieve the ambitious scientific goals —artigular,

Data are considered as a collection of spectra. The proposddw SNR source detections — of the MUSE instrument.

restoration procedure operates on each spectrum by mingni
penalized data-fit criterion, which takes into account thise spec-
tral distribution, with additional constraints expressiprior spar-

sity information in a union of bases. Spectra are modelechas t

sum of line and continuous spectra, which are supposed tpdrees
in the canonical and the Discrete Cosine Transform basspece
tively. Dealing with colored noise requires specific metblodical

approaches regarding not only the estimator definitiolifjtset also

hyperparameter tuning and optimization issues. These fhoets
are successively investigated. Promising denoising tesué ob-
tained on realistic simulations of astrophysical obséovat

Index Terms— Denoising, overcomplete sparse representa-

tions, colored noise, astrophysical spectra.

1. INTRODUCTION

The MUSE instrument (Multi-Unit Spectroscopic Exploresain ex-
tremely powerful integral field spectrograph [1], which Mak in-

stalled at ESO (European Southern Observatory) on the Vanye
Telescope in Chile in 2012. It will provide hyperspectraladeubes
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Fig. 1. Noise level as a function of wavelength, and noise-freisyno
and denoised spectra of a galaxy. Intensities represdnitfligkes,
in ergs~t.cm~2.pixel L.

In this paper, we propose a denoising scheme designed for suc
data, based on the hypothesis that data can be approximgted b
sparse representations in redundant transformation $j2c8]. In

with 300 x 300 spatial elements and up to 4000 spectral channel$€ction 2, we define the denoised data as the solution of aafiad

covering the essential part of the visible spectrum. In igeviield
mode configuration, covering a field of view d&rcmir?, the ex-
pected performances of MUSE for a long time exposure (tylpiea
few tens of hours) should allow the detection of much faigedax-
ies than those observed by today’s ground-based speqgttegra

A strong characteristic of MUSE data holds in a very low

signal-to-noise ratio (SNR), where noise@ored that is, the noise
power distribution is highly variable with respect to wamdth.
Figure 1(a) plots the expected noise standard deviatiosufcin data
as a function of wavelength. The powerful parasite emissfathe
atmosphere at specific wavelengths causes high spectiatioas
in the noise level, while the blue part of the spectrum is abar
terized by a very low SNR, due to lower instrumental efficieat
such wavelengths. Moreover, because of pre-processipg steh
as previous subtraction of the background emission, thiéahle
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DAHLIA - Dedicated Algorithms for HyperspectraL Imaging Astronomy.

data-fit criterion taking into account the noise distribati and
penalized by sparsity-inducingf-norm constraints. Sparsity is ex-
pressed spectrally, where spectra are considered as thpesjtion
of emission and absorption line spectra plus a continuunictwh
is supposed to have a sparse representation in the DiscosiaeC
Transform (DCT) domain. Hyperparameter selection is axkireé
in Section 3 for colored noise, where such parameters aveedie
as approximate detection thresholds, which can then bel tant-
matically. An efficient algorithmic strategy based on Itese and
Block-Coordinate Descent methods [4, 5] is proposed iniSeet
Finally, denoising results are presented in Section 5 ofistiea
deep-field simulated data provided by the MUSE consortium.

2. SPARSE DECOMPOSITIONS OF SPECTRA

Sparsity-based denoising relies on the hypothesis that ofdbe
signal energy can be concentrated into a reduced number-of co
efficients with high values in some appropriate transforracsp



whereas the noise distribution, expressed in such spacencen-
trated around zero. Then, such high-valued coefficientslea®
affected by noise than signal samples are in their origipaks.
Consequently, identifying such coefficients allows one itesprve
most part of the useful information and to buildianoisedversion
of the data [2]. In this paper, we consider the restoratioNMSE
spectra at each spatial location by adding prior sparsforimation.
In a first approximation, the considered astrophysical tspezan
be decomposed as a certain number of emission or absoristés) |
superimposed on a continuum. Following previous works @usep

representationse(g., [3]), we consider that each spectrum has a

sparse representation in the union of the canonical basgpgxtral
lines and of the DCT basis for the continuum.

2.1. Sparse estimation witi?!-norm constraints

andz = [z" 717 with ' = o. Our sparsity-based spectral

denoising method lies in the following optimization prafle

& = [@ &) = arg min J(@@',z°), with
c 1 C c
Ja%) = Slly - Wz|, + R + R, ()

For adequately chosen valuesddf and o, the minimization ofJ
yields sparse estimates [3, 6]. Note tatan be written as a more
classical sparse representation problem, under the form:

®3)

with =72 = diaglo;*...05"), z = Z 2y andM =
>~Y2W. In the vocabulary of sparse representations [3, 6],
the minimization of (3) aims at approximating weighted data

c 1 C c
J(z' %) = Sllz = Ma|f7, + R'(z") + R*(z),

Lety = [y1...yn]" represent an observed spectrum discretizedyy the shortest linear combination afomstaken fromdictionary

at wavelengths\q, ..., An.
o= [o1...on]" from:

y=o+te, (1)

. . . A . .
with known covariance matrif = diag(o?...o% ), wheres? is
the noise variance at frequengy, shown in Figure 1. We model
o as the sum of dine spectrumo’ and acontinuousspectrumo®,
where:

e o' is sparse in the standard basisHas only few emission
and absorption lines),

e 0°has a sparse DCT representatiefi & DCT(o°) has only
few non-zero components).

Both o’ ando® have to be estimated. Note that using such two base

with complementary properties is a key point for efficientiypd-
elling the data [3]: a line spectrum is sparse in the candtiasis
but not in the DCT space. Conversely, describing a contiaspec-
trum requires all coefficients of the canonical basis to be-zero,

whereas it can be approximated by few DCT coefficients. Hence

both bases are necessary to efficiently represent the evadids-
trophysical spectra with a small number of coefficients.

A well-known approach for enforcing sparsity properties-co
sists in minimizing a data-fit criterion, penalized by-norm con-
straints [2, 3, 6]. We consider the quadratic data-fit:

(y—o' — 0= (y - o —0°),

N =

1 ¢ cn2
R

which corresponds to the neg-log-likelihood of daga given
model (1) [7], and then statistically takes into account $pe-
cific noise structure shown in Figure 1. The sparsity coigti@an
the line spectrum can be written as the regularization term:

R'(o") = |0, =" Jon], o' > 0.
The sparsity constraint on the continuous spectrum can iewas
the regularization term:
R(a%) = a[|z[l,, a° >0

with ¢ = DCT(0°). We noteW* the orthonormal inverse DCT
matrix, so thaio® = W<z°, Let W = [Iy W*] be theN x 2N
matrix formed by the concatenation of Identity maffix andW¢,

We want to reconstruct spectrum M = [£-/2 M| with M® = £~/2W*. In our case, how-

ever, the equivalent dictionarvI is not composed of orthogonal
blocks sinceM® is not orthogonal, nor are its columns normalized
to 1. Consequently, important differences hold between thblpro

. considered here and classical sparse representation®imsuwf or-
wheree collects noise samples that are supposed centered Gauss%

gonal bases, as for example in [3, 4, 6] that constlet Iy. In
particular, consequences on hyperparameter tuning aidiagtion
will be discussed in Sections 3 and 4, respectively.

2.2. Amplitude bias correction and spectrum restoration

Thet'-norm penalization efficiently induces sparsity by locgfiew

non-zero components i [3, 6]. However, it systematically intro-

duces bias in amplitudes [6], and posterior amplitude tirasion

is necessary to obtain satisfactory estimates for line antiruous
pectra. This can be done simply by least-squares. Let N&ind
e non-zero components i, let Wyz be the matrix formed by

columns ofW with indexes NZ and letsnz collect the non-zero am-

plitudes to be retrieved. Minimization ¢jfy — Wzunz||%, yields:

1
Unz = (WEZE_IWNz) WEZE‘I Y.

Note that Card NZ« N if z is sparse, hence in that case the latter

equation is well-defined. L&l = [T/’T acT]T denote the&N x 1
vector obtained by filling:nz with zeros outside NZ. Then, line and
continuous estimated spectra are obtained, respectine®/, = u*
ando® = W*u“, and the restored spectrumds= o' +0°.

3. HYPERPARAMETER TUNING FOR COLORED NOISE

Obviously, estimatee defined by (2) highly depends on the val-
ues of parameters/ and ¢, that control the trade-offs between
data fidelity and sparsity constraints. It can be shown tbat f
at, ot > max|WTy|, z is identically zero. Conversely, for too
smallaf anda?, the solution may not be sparse at all. We base the
selection ofa* anda® on the following result, that extends a result
in [8] to the case of colored noise and several hyperparamete

Property 1 & = [i‘T,oAc“T]T minimizes (2) if and only if:

i) fornsuchthatty =0: |en| < af

i) for nsuchthatil £ 0: e, = a’signzt)

i) for nsuchthatit =0: |wSTe| < a®

iv) fornsuchthatit #0: wS e = asign(z),
wheree = X7 '(y — Wz) is the N x 1 vector containing the
estimation residuals, weighted by the noise variantgs



The proof follows the same scheme as the proof in [8], althoug
consider here a more general problem than the one in [8].

Properties 1i) and ii) stipulate that, is zero if and only if
len] < af: of can be viewed as a threshold @n,| under which
no line is detected at wavelength,. Suppose that estimate is
such thatWz efficiently approximates data. Ideally, one is left
with y — W2z = ¢, ande,, = o,, %€, is Gaussian with zero mean
and variancer?(n) = o,, 2. To perform a detection test with a given
false alarm rate, one would then choose a thresholf.gnat, say,
koe(n), that yields a false alarm rate gfy = 1—erf(k/+/2), where
erf is the Gaussian error function. For examples 3 yields a false
alarm rate of approximatel§.27%. That is, o’ should depend on
on, With relationa?, = k/o,. In other words, penalization term
a*||z*|), should be replaced by:

Ri(x") = aplanl, with ay, = k/om.

Note, however, that estimation residygl— Wz| may take higher

values tharje|, in particular because of amplitude estimation bias

in & (see§ 2.2). Then, choosingy,
detection rate slightly higher thama.
Similarly, it comes from Properties 1iii) and iv) that’ is a

= k/o, may yield a false

threshold on|W<Te|, under which DCT coefficients are set to

zero. Varlances associated to coefficiefitsc”e},, are;, >
wéT X 1w, which depend om. Hence, a proper way to penalize
DCT coefficients consists in replacing penalization terffjz°||,

by:
R°(z°) = Zaﬂxm, with oy, = k/vn,

wherey, = (wS" S ws) "2,
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Fig. 2. Detection rates (%) for different tunings af . Paramete®
ischosenag ~* = + >, ;.. Circles locate the true lines.

options are possible among the many algorithms that have teee
cently proposed for the minimization of such functional¢?)s

One can show that minimization of in z* yields NV indepen-
dent scalar problems with soft-thresholding solutions:

%, (i /o),

gt = argmign J(@t 2 & Vn, bt = o2 ¢
T

(4)

wherer¢ is th n'" component ofr® = y — Wz and ¢ is the

From the Bayesian point of view [7], such tuning correspondssoft-thresholding function:

to setting Laplace prior distributions on each with different scale
parameters, which may appear unusual. In classical regatian
problems with Laplace priors, however, the scale factofftisnose-
lected with regard to the noise leve.§.,[2]). Hence, for colored
noise, adapting hyperparameters to each noise level i rogitiu-
ral way to proceed. The importance of correctly tuning paatem
o' is illustrated in Figure 2. Denoising is applied 6600 noisy
realizations of a synthetic spectrum with a continuum ardftiur
main spectral lines of the spectrum in Figure 1(b). The ditec
rate (that is, the average number of non-zero occurrenceb)iis
given at each wavelength for different tuningscdt In this exam-

ple, o, = 4/v». As desirable, an almost uniform false detection

rate is achieved by choosing, = k/o,, (left column), with more
false detections (and more true detections) for loie®n the con-
trary, choosingx’ uniformly yields worse detection statistics (right
column): note in particular more false detections aro8@@nm, in
the spectral band where the noise variance is lower (seed-ida)).

4. OPTIMIZATION ALGORITHM

We propose an optimization strategy derived from the Blooki€
dinate Relaxation method (BCR) in [4]. The original BCR was-p
posed for minimizing criteria such as (3) with-norm constraints
in union of orthogonal bases. It iteratively performs bletde opti-
mization steps with respect to each set of orthogonal coemtsn
where each step has an analytical explicit solution. In @sec
as discussed at the end $R.1, orthogonality in the DCT domain
is lost. Hence, we propose an algorithm that alternates BEpss

0if Jul <7
u — sign(u)T if [u| > 7.

{ 2(u)

w(u) =
On the contrary, optimization with respect 4§ cannot be per-
formed jointly: letZ® = arg ming. J(z*, 2°), then:

2
2y, + Y anlanl,
n

with ¢ = 3712(y — &%) andM® = $~/2W*°. Matrix M* is
not orthogonal, so (5) does not have an analytic solutiorweyer,
scalar optimizations in, still do. Letz;, = argmin,c J(x, z°).
One can show that:

T° = arg mianrZ —
zc 2

Q)

T, = ¢§c (m( rt — Zkak

ml
nTm k#n

(6)

Hence, we replace minimization (5) by iterative minimizations
in zy,. Finally, optimization works by performing alternatelyen
step (4) one’ and N steps (6) on each®,. Algorithmic efficiency is
improved by mostly (say 90% of iterations) updating only tios-
zero components of the current iterate. Since a sparse®oligt
searched, the algorithm is initialized by the zero vectan@rgence
proofs of such a strategy towards the minimumJo€an be found
in [5]. Property 1 gives an explicit characterization of amipimizer
of , which we use as a convergence test. In practice, convesgenc
is usually reached after less than 10 outer iterations.

Criterion J is a convex functional irc, although not strictly.

on z‘ and Iterative Coordinate Descent (ICD) steps, that is,ascal Hence, the question of unicity of the minimizeis not trivial. Usual

optimizations, on each;,. ICD was shown to be computationally
efficient to retrieve sparse solutions [9], although otHgo@thmic

criteria such asnutual incoherengepositiveExact Recovery Coeffi-
cientor Restricted Isometry Propeijtyare not directly transposable



to our setting with weighted data-fit criterion and non-onifi hy- =3/ | " =4/m | & =5/
perparameters. One can also show thatUh&ue Representation oy =3/on 4.2 4.8 4.8
Property (that is, anyN columns of the dictionary are linearly in- o, =4/0, 9.8 131 12.7
dependent), which also characterizes unicity, is not feadiere. o, =5/0, 10 135 13.1
The study of the unicity of¢ and of the equivalence betweéh ol =6/on 9.9 13.3 12.6

and/° problems in such a framework is out of the scope of this pa-
per, which is limited to practical considerations: the miizers of Table 1. SNRys after denoising, for several values of hyperparame-
J form a convex set [6], possibly not reduced to one elemerit, buters. The SNR on the noisy data cube is -16.9 dB.

all minimizers are equally acceptable solutions and ounapation

strategy is ensured to converge towards one of them.

two bases, the canonical one and the DCT basis. The stroirg var
ability of the noise level with respect to wavelength wastakito
account by weighting a data-fit measure by correspondirignees.
Noise variability was also shown to affect hyperparameieirtg, for

5. APPLICATION TO SIMULATED DATA

Denoising is applied on each spectrum éflax 51 x 3578 datacube . > ‘ ) o
simulated by the MUSE consortium, containing 25 astroptafsib- ~ Which specific selection rules were derived for automatiirig. An
jects. Figure 3 shows both noise-free and noisy images atlefagth efficient and convergent optimization strategy was usedisdon-
A = 600 nm, jointly with the restored image, and their correspond-{€xt, which alternates block-wise and coefficient-wiseropation
ing SNR. We define the SNR between noise-free data, \) and ~ St€ps- Results on MUSE-like simulated data showed very isingn

noisy dataY’(r, A), indexed by pixels- and wavelengths, as: results in terms of data denoising and line detection.
Direct extensions of this work regard the enrichment of tfee p
ey O(r, V)

posed model with other transforms than DCT that are adajted t
ZT,A (O(T7 /\) - Y(T7 A))Q ‘

SNRss = 101log;,

astrophysical spectral shapes, in order to detect speofficss in
still lower SNR. MUSE deep-field images are mostly compoged o
Although no spatial correlation has been accounted forctree-
sponding image is improved, showing that all spectra haea bat-

isfactorily denoised. Note, however, a strong artifacttie bot-

tom left of the restored image caused by the false detectica o

spectral line. The denoised spectrum obtained from theyrsmec-

galaxies which may exhibit structured spatial featurestedevant
information in images should also concentrate in a few atiefits
in appropriate transformation spaces. Hence, further \ats& re-
gards the coupling of spectral and spatial constraints ihalewdata
cube.
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