Domain Based Verification for UML Models

Pascal André, Gilles Ardourel

LINA - FRE CNRS 2729
2, rue de la Houssiniére, B.P.92208, F-44322 Nantes Cedex 3, France

gilles.ardourelQuniv-nantes.fr

Abstract. The software development processes with UML generate nu-
merous documents, including UML models. In order to improve the spec-
ification quality and the process quality, it is necessary first to define
specification properties and then to verify them. In this paper we propose
a framework for practical verification of UML models that is consistent
with an iterative and incremental process. We illustrate it on several ex-
amples.

Keywords: UML, Model, Consistency, Verification, Tools

1 Introduction

Modelling object systems with UML [5,7] is a widespread technique in the devel-
opment community, especially in Model Driven Engineering (MDE). However,
the quality of the produced models is usually low: models are hardly communica-
ble, consistent, correct, complete, precise, homogeneous... Many reasons explain
this situation:

1. There are no standard definitions for models. Every one defines which com-
bination of notation elements is a model for a given development process,
which are not standardised. In other words, models are process dependent
and not notation dependent.

2. The UML notation is not fitted to the current practise of modelling. On
one hand, it is too large and complex (e.g. UML2 defines 13 diagrams) and
modellers borrow only a small part of the notation. On the other hand,
there are missing concepts for specific application areas or implementation
techniques (e.g. Real-Time, Web) for which stereotypes are not sufficient.

3. There is no formal agreement on the UML semantics, despite its metamodel.
Every UML user has an underlying semantics, depending on his experience
in the object oriented development field and the computation domain (in-
formation systems, real time...).

In summary, we feel that UML is rather a Babel tower than an Esperanto lan-
guage. So how can we control the quality of UML products ?

The common answer is to define quality factors and criteria and to measure
them on the models. In the following, the criteria are the properties to be checked
on models and the measurement is the verification of the properties. During

require(car, way)
[way=#we] *carallow

[way=tte

require(car, way)

w] “car.allow

‘occupied W/E
require(car, way)
[way=tew] "car.wait

one_vehicle
WiE

getOut(car)
[v_ew]

getOut(car)
[notv_ew]
»_aew

getOut(car)
[v_we]

occupied E/W
require(car, way)
[way=fwe] "car.wait

getOut(car)

getOut(car)
[vv_we]

two_vehicles
WE

getOut(car)
[not w_we] *_awe

“car.wait

require(car, way)
[way=#we] “car.allow

require(car, way)

not v_we] *_awe

require(car, way)
[way=#eo] rcar.allowr

require(car, way)
“car.wait

one_vehicle
EW

getOut(car)
[vv_ew]

two_vehicles
EW

getOut(car)
[not v_ew] *_aew

tunnel state-transition diagram

class diagram

tunnel administration

x——O

tunnel access

Supervisor

Vehicle

use case diagram use cases

Tunnel
{ordered} require_ew
/ wait_ew
0.0 1 01|/ wait_we
Ve c state
LT . i / current_way
ongaged | , Light
0.2 J {xor}
vy U 0] ong cary O] G001 Golr
getout() ! H is free() change_col(
allow() {ordered) require_we 1 is_occupied() —
wait() - o] eetouo
o. | require() Coul = enum{green,
orange, red}

types

vehicle activity diagram

v3: Vehicle ‘

v1: Vehicle ‘

Tunnel

Light v2: Vehicle

I require(self, #ew)

allow()

change_col(#green)

require (self,

i

we)

wait

require(sel, #ew)
ot

allow()

getOut()

getOut()

Verification of properties (consistency)
on the Model M, in workflow w of iteration

allow(

l

Consistency rule hierarchy
consistency

Model Evolution

Domain

N

conformance subdomains

refinement

Diagram integration

Figure 1 : Verification of properties on models

system sequence diagram

traceability

instances

a development process, several models are produced. The models must have
properties which are checked by some verifications. The context of this work
is thus a quadruple process-model-property-verification. In the example
of Figure 1 the goal is to check the consistency of some model A, ; in some
workflow w of an iteration i in the process. The case study is the management,

of vehicle access in a tunnel.

The properties can be classified into three distinct categories: system prop-
erties (dependent on the target application, these include validity, safety, live-
ness, reliability, etc. They are often associated to a specific point of view -static,
dynamic, functional). In the Tunnel case study, a safety (system) property is
that the vehicle can always run. model properties (mainly consistency and
the completeness of the models) process properties (focus on the evolution
of models during the development process, mainly the traceability, consistency

and the completeness of the model evolution). Some properties traverse the cat-
egories. This is the case for the consistency property. A consistency (model)
property is "the message send conforms to the operations definition”. A refine-
ment (process) property is "the class definitions conforms to the Use Case". An
evolution (process) property is "the classes of the second iteration are consistent
with the ones of the first iteration”.

The contribution of this paper is a general framework and a tool support
for handling the verification of properties on UML models. In this paper, the
target property is consistency, but the discourse applies to other properties. Sec-
tion 2 states the four foundation principles of the framework. These principles
are further exploited in the remainder of the paper. In section 3, we propose
a structuring of the models that support a structuring of the consistency. Sec-
tion 4 overviews the main issues of the techniques for verify the consistency of
models. In section5 and 6 we focus on the rule based part of the verification.
The tool support is overview in section 7. Last we conclude and discuss several
perspectives of this work.

2 A framework for verification

Our motivation is to take the problem of verifying the properties of UML mod-
els in the current practice of development, i.e. in a large and practical view.
By large, we mean that we try to cover the main development workflow and
notations. Contrarily to the executable UML languages [12,13] which handle a
reduced (even formal) notation subset, we intend to cover the concepts of the 9
or 13 UML diagrams. By practical, we mean that verification must also include
some aspects of the development process: in MDE approaches, the model cover
orthogonal aspects or point of view (heterogeneity) ; they are transformed along
the workflows, (abstraction levels), they evolve along the increments (iteration).
Such a verification an overwhelming task because the concepts involved at dif-
ferent levels are numerous, the semantics of UML model elements cover a wide
spectrum and the specifications are incomplete by nature. Moreover, the prop-
erties are mutually dependent: what means completeness without consistency ?
what means consistency without correctness ?

We propose a framework based on four principles: divide and conquer, reuse
and adapt, support customised verification, be independent and evolve.

Principle 1 (divide and conquer) The verification should apply to the plain
UML notation.

To be applicable in practice, the verification should work on any UML model.
In order to organise both the models and the verification and manage their
complexity, the notation is partitioned into domains and models. Each domain
is related to some workflow of the development process. This point is further
studied in section 3.

Principle 2 (reuse and adapt) The verification problem does not have to be
started from scratch, thus it must reuse and adapt existing techniques and tools.

This point is further studied in section 4. The idea is to smoothly combine
the formal techniques and the rule based systems, which are the two main and
complementary approaches for verification.

Principle 3 (support customised verification) The verification must be cus-
tomisable depending on the wishes of the designer and the current stage in the
development (iteration, workflow).

The property tester can define a verification process to assert a property
(predefined combinations are stored in libraries). The verification process should
manage incomplete models (there are many ’incomplete’” PIM before a PSM)
produced along the development. Besides completeness-based rules filtering, it
should also be possible to set priorities and weights on the rules according to
different policies. This point is further studied in section 5.

Principle 4 (be independent and evolve) The verification tools should be
independent from a specific case tool and should be able to adapt easily to changes
in versions of UML.

This principle conforms to the MDE philosophy: managing repositories to
accept various metamodels (described in various MOF), defining a verification
service as an additional service of CASE Tools. This point is further studied in
section 7.

3 Manage Models and Consistency

Modelling practice shows that the notation panel is too large when considering
each phase or each workflow. In this section we study how to combine the model
elements during the development process according to principle 1.

The UML notation is structured over consistent element arrangements: the
nine or thirteen diagrams [7,5]. The diagram concept does not exist in the nota-
tion metamodel (the only structuring mechanism is the package) nor in develop-
ment processes e.g. Unified Process (the structuring unit is the model which is a
also a package in the metamodel). The model’s content is not formally defined.
"A model is an abstraction of a system" [15]. Each process workflow accepts one
or several models as input and produces one or several model (e.g. UC model,
analysis model, deployment model...). Note that domain models, business mod-
els, test models and non-functional requirements are omitted here.

Thus, in order to avoid confusions in a seamless use of UML, we propose a
three level structure that facilitates the verification process: element, diagram,
model. First, we think that diagrams are more than visual notations (graphs):
they define (quite) consistent combinations of model elements and should be
used accordingly. This idea is not new and is present in most CASE tools but it
is not formalised. Second, we advise to restrict the number of diagrams available
for each activity. We promote three abstraction levels: external, logical, physical.
Last, we separate the instance-related diagrams from the type-related diagrams.
The notation structure is summarised in figure 2.

— The external (or user) level corresponds to the requirements workflow. It
focuses on a high level notation (use cases, scenarios and flow-activity di-
agrams). While flow-activity diagrams can be used for modelling the main
functions of the system (with swimlanes), we think their semantics is quite
ambiguous, inspired from various formal models (Petri Nets, Data Flow Di-
agrams, Control Flow Diagrams).

— The logical level corresponds to the analysis and design workflows. It focuses
on object modelling (classes, sequences, collaborations/communications, state
machines, do-activities).

— The physical level deals with the low level abstractions (components, deploy-
ment, code) of implementation and tests.

Composite structure diagrams and package diagrams are implicitly parts of many
of the above diagrams. The interaction overview diagram is a mix between se-
quences and activities, which has a rather fuzzy semantics. Timing diagrams are
quite disjoint from the above diagrams, especially for consistency. The crossing
of the diagrams in the levels results in a partition of the diagrams® into domains.

external domain <----> logical domain <-—--> physical domain

State machine
diagrams
AR
Use Cases Class Component diagrams
Type level diagrams Y
oA -\ (do)Activity
ol diagrams
g |
2 | Collaboration/
s | Sequence communication
| dlagrar_ns diagrams
(Scenarios) : Deployment diagrams
instance level .
(flow)Activity v
diagrams Sequence
diagrams

Figure 2 : Domain structuring for an iteration i

Each diagram (if we consider scenarios as simplified sequence diagrams) ap-
pears in one cell only: this is a partition. This improves the readability of the
UML models : it is easy to find the abstraction level it refers, and its relevant
place in the development workflow. But it reduces the expressive power because
the context of use is restricted. For example, activity diagrams are only related
to operations or state activities (inside a state of a state transition diagram).

Each cell is a sub-domain. A model is a view on a domain. Based on this
structuration, the consistency property can be specialised into smaller proper-
ties (e.g. the property hierarchy of figure 1).

! But not a partition of the notation since the same model element may appear on
several diagrams.

. Diagram consistency
. Sub-domain consistency = inter-diagram consistency

. Workflow consistency = Domain consistency -+ refinement (or traceability)
. Process consistency = Workflow consistency + evolution consistency

Ot k= W N =

Our structuration is a bit finer than the ones of [16,10], but domain (resp.
workflow, process) consistency is close to horizontal consistency (resp. vertical,
evolution). Note that refinement is quite hard to define when there is no seamless
models, and therefore traceability is a looser constraint.

4 Integrate Verification Techniques

We consider two main approaches for automated property verification of UML
models: formal methods and rules based systems. There are also specific tech-
niques for managing consistency among models. Details on these approaches can
be found in [10,9,8].

The Formal Methods Approach (FM) is a MDE approach since the model is
transformed into a formal model written in a formal language that is supported
by automated tools for model checking or theorem proving. These can be plain
languages (e.g. Z, B, CASL, LTSA) or OO extensions of them (e.g. Object-Z,
OOZE, Troll, Maude) which have less supporting tools [6,11]. Formal methods
are also an answer to the UML Semantics weakness [14,17] in providing a formal
semantics for (a part of) the UML notation (or metamodel), e.g. in the pUML
group [3,4]. The numerous proposals dealt mainly with the class diagram, the
state machine diagram and the sequence diagram. The (formal) model of evo-
lution is refinement, thus the proof of the evolution consistency depends on the
proof of refinement. Verifying the consistency of multiple viewpoints is still an
active research area in the formal methods community. Other operational se-
mantics, say executable UML [12,13], can be classified as formal. They are very
useful for validating the UML products but not for verifying them.

The Rules-Based Systems Approach (RBS) is a test approach, where verification
rules are applied to models to check target properties. A rule is a statement de-
scribing a property (or a part of it). The rule language can be formal (Description
Logics, OCL, algorithm, Java code...) or informal. This is also the CASE Tool
approach, since CASE Tools implement rules and their checking directly on the
graphical modelling editors. Nevertheless, rules can be defined at the model level
or the metamodel level. Examples are given in [18,10,9]. The main issue of rule
oriented verification is property management, because there is a great number
of rules depending on the element combination, the diagrams, the models, the
syntax, the typing system and the semantics.

Domain consistency = Sub-domain consistency + conformance (instance/types)

Discussion Table 1 compares both approaches including sections on the Model-
Property-Verification triplet. The FM approach is not a direct answer in our
context. It assumes complete models, a premise which is not true in the earlier
steps of the development. The current proposals cover only a part of the notation
with a particular semantics which is not fitted to a large panel of applications.
Nevertheless, the formal approaches are very useful to prove the system and
model properties within these parts (modelling niches). The advantage of the
RBS Approach is that the choice can be customised to the development process
and the verification goal. As a counterpart, the main problem is building specific
rules and ensuring a complete and consistent set of rules.

Formal Approaches |Rule based Approaches”

Model
description a formal model a source model
UML notation partial total
Properties

eTpression
user-defined

formal statements (e.g predicate)
formal statements

semi-formal statement
OCL assertions ?

system prop. according to the target semantics none
model prop. yes yes
process prop. refinement traceability, evolution
Verification
process automatic for model properties select and test
individual for system properties -
checking formal proof algorithm (or review)
User know- UML, formal model UML
ledge, role property definitions and proofs rule selection
erperience proof theory rule database knowledge
Advantages formal semantics customizable according to
(non ambiguous, consistent...) - the development step
(refinement to code) vthe application nature
automation no more than UML
soundness from the formal model| programming and tests
Drawbacks heavy, user proof experience |implementation dependent

partial UML notation

consistent, complete ?

two models (source + formal)

selection require user skill

TABLE I- Synthesis comparison

Table 1 shows that the two approaches are complementary. A verification
framework that smoothly combine both approaches would really be the best
solution. We propose the following coordination for consistency checking:

1. Diagram consistency is achieved by transformations into formal notations,
because diagrams are, by nature, based on consistent theories.

2. Sub-domain consistency corresponds to multi-view integrations, both formal
techniques and rule-based techniques apply here.

3. Domain consistency can be solved using conformance dependencies (see [8])
in a rule-base approach or a formal typing system.

4. Workflow consistency is merely obtained by a rule-based approach on refine-
ment and traceability. A true formal refinement relations is hard to define
here because the domains have quite different notations.

5. Process consistency depends on the four lower level consistency checking
technique. The diagram evolution consistency can be seen as diagram refine-
ment in the same formal framework but it is merely obtained using evolution
maintenance techniques such as description logics in [16].

In summary, the low levels of consistency are achieved with transformations
into formal methods because there are many, often syntactic, rules. The higher
levels of consistency are verified using rule-based approaches. In a previous work,
we experienced the former approach using algebraic specifications, where consis-
tency has a special meaning [2]. In other words, when the number of rules really
grows up (especially when you consider other properties than consistency) we
found it beneficial to use a formal model. Formal models are also more appro-
priate for type subdomains than instance subdomains whereas the opposite is
true of the rule-based techniques.

5 Verification

In this section, we describe verifications as structuring units for a verification
process whom goal is to check properties.

5.1 Defining a Verification

Several verifications can be linked to a property. For instance, the consistency
of a model from the logical domain needs the following verifications:

— conformity of the messages sent to an object in a sequence diagram with the
messages supported by the type of the object and with the messages that
the emitting object is allowed to send.

— conformity of the sequence of messages with the state diagram of the class
of the receiving object

— consistency of the actions from a state diagram with its class.

We define a verification by a name, a goal (informal comment) and a workspace.
It can be realised with rules (algorithms, predicates, code) or proofs in a formal
model. It is good practice to define rules as OCL (Object Constraint Language)
expressions whenever possible.

The workspace is related with the part of the metamodel which concerns the
verification. In UML, this metamodel, which describes UML, is the level M2
defined by the OMG. The workspace is composed of:

— U, the set of elements from the metamodel which are needed for the verifi-
cation. It is partitionned into U,, set of the elements to be verified, and U,
the set of elements that need not to be verified.

— (| the set of the metamodel elements concerned but not used by the verifi-
cation. The instances of the elements of C' in the metamodel will be marked
as invalid if one of their subelements is marked as invalid.

U depends on the verification, while C' and the partition of U into U, and U,
depends on the verification process. For instance, the verification of conformity
between sequence diagrams and a class diagram has class diagrams and sequence
diagrams as U (that is classes, interfaces, methods, objects and messages), mes-
sages as U, and sequence diagram as C'.

A verification of a model M1 is done in four steps:

— selection of the elements of M1 that are instances of U and conversion if
necessary,

— application of the rule or the proof associated with the verification,

— interpretation of the results and marking of the elements of M1,

— propagation of the result on the elements of M1 that are instances of C.

Model M1 Model M1’

Verification V1

e | = =

Selection of interpretation Propagation
instances of U and marking of instances of U on instances of C
with optional conversion

]

Figure 3 : Applying a verification on a model

5.2 Process and Composition of Verifications

In a rule based verifications, the user choose the rules and launch the verification
[18]. Each rule is then applied independently on the model. This requires a deep
knowledge of the rules and of the reasonable sequences of their applications.

We wish to help both the designers of verification and the users, using a veri-
fication process. A verification process is the cumulative application of functions
working on models. These functions can be verifications or filters A very sim-
ple filter can be the removal of every element previously marked as invalid. The
application order of the functions is important when filtering is used. Indeed, a
verification v1 can invalidate an element which is an input of a verification v2 if
U(v2)N (U, (v1) UC(v1)) # 0. In cases of cross dependencies, choosing the order
is a crucial step of the processus design. The following figure shows a simple
verification process.

B M2 mv if V2 M3 M4 u if V3 | M5
M1 Verif V1 erl Verif V
[l] [l

Figure 4 : Applying a verification process on a model

In order to simplify the management of verifications and to automatise pro-
cess creation, we introduce the following composition operator:
comp(name, goal, functions list)— verification(U, C).
The four steps associated with a composed verification are

— selection: no filtering is necessary

— application: contained functions are applied in sequence

interpretation of result: final result is a predicate on the value of the anno-
tations given by the contained verification

— propagation of result is done according to the optional set C'.

Verification VComp

U
[ul k. W
Verif V1 Verif V2 Verif V3
[k [ch

Interpretation Propagation
and marking on the instances of C

<]

Figure 5 : Composing verifications

A precise definition of the sets U, and C helps to transform the binary result
of a formal verification into a result acceptable for the rule-based system.

5.3 Manage Incompleteness in Verifications

The treatment of incompleteness is achieved by two means:

— a parameter in the workspace definition that indicates the level of details
that is required. For example, iin a first iteration, the class name or the
operation names can be sufficient. We currently defined 5 levels: diagram
syntax, nouns resolution (class, package, object, types), nouns resolution
(attributes, relations, operations, state), type consistency, action consistency
(pre/post conditions, guards).

— an adequate selection of the rules in the definition of the process. Since the
verification is customizable, the rule selection requires some skill from the
tester.

6 The Verification Process

We first introduce the basic rule management and then we introduce the verifi-
cation process, since it has an influence on the rule expressing.

6.1 Basic Rule Management

The implementation of the verification process is based on the following triplet:
property, rule, control.

The first step is to find the properties of models or groups of models. This is
a huge work and unfortunately, there is no library of rules available. We did not
find detailed examples of rules to be checked in the plethoric litterature on UML.
Usually, the authors give some tracks like some questions to be asked. A more
informative source is the OMG products, especially the UML Semantics and
UML Notation guide [7]: the allowed element combination, the OCL expressions
of the metamodel. Last, one can find ad-hoc rules in the visual modeling tools
and try to formalize them.

The second step is to define precisely the way the property can be checked,
say a rule. We can simply write the rules as sentences in a structured check-
ing manual, the verification process is to take each rule manually and to check
it. To be reliable, efficient and cheap, the rules are to be written in a formal
language, merely executable. This can be a Java code, an OCL expression (Ob-
ject Constraint Language [19]), algebraic axioms, predicates...). As far as it is
possible, OCL is adequate for UML models, since it belongs to the same stan-
dards. The MOF description of UML is a powerful means for structuring the
rules since they benefit from the object flavor: the rules can be attached to mod-
eling elements, specialized, delegated through associations... For example, the
simple expression not self.allParents->includes(self) in the context of a
GeneralizableElement means that inheritance is not circular. Note that, many
classification problems occur: a rule defined for an element applies to all it spe-
cialized elements until exceptions have been quoted. For example, each classifier
may have attributes and operations, so a use case (which is a classifier) can
have attributes and operations. Structuring the rules, like building the UML
metamodel, is a classification task.

The third step is to control the rules on the model. This is not simply a
boolean function which delivers correct or error. As done for compilers, the error
can be classified from ignored warning to non-recoverable error. The erroneous
model elements can be removed, corrected. The control algorithm is related to
the model management and the verification process. An example is given in
section 6.3.

6.2 Hierarchical Rule Management

Controlling the syntactic and semantics aspects of UML models lead to hundreds
of rules. A flat list of these is thus unmanageable, we need to organize the rules.
We already introduced several classification criteria for the properties:

Package consistencyRule | Verification VProperty
(from Kernel)

Diagram Subdomain Domain Model
viewpoint : String

Element
(from Kernel)

Version
number

Figure 6 : Simplified Meta-model for Verifications

— system / model / process

— external / logical / physical domains
— instance / types

— multi-view consistency

— syntax, typing, semantics

Moreover, the same rule may be defined differently according to the development,
step (principle 3), because informations are missing. Last, as in every a rule
based system, we need a rule selection process that helps the user to check
the properties, according to some criteria. In [18], the user selects the rules
to apply. It requires some skill and knowledge. It can be combined with other
approaches, like precision level (according to the development iteration and the
workflow), coarse/fine grain element description. For example, an operation can
be described by its name in a scenario, by a profile (name and parameters), by a
signature (a name, result and parameter types), by pre/post conditions in OCL,
by a target code.

Our hierarchical verification of consistency is based on the domain structur-
ing of figure 2. The checking holds on each domain and each domain relation.
The simplest way to structure the rules is to associate the verification processes
(section 5.2) with the notation structuring nodes of section 3. This is a quite
common meta-representation of rules. The verification hierarchy is not further
developped here.

6.3 Some Logical Domain Verifications

Here, we just overview the core of verification and show examples. The static
rules are organized in the following way:

1. Combination rules: for example, an interface describes only operations, the
specialization relation is not reflexive.

2. Constraints: typing, multiplicities, constraints on relations (or, xor), OCL
constraints.

3. Exceptions related to some semantics: for example, no multiple inheritance
for the subclasses of a discriminator, a passive object cannot send simultane-
ously two messages. These include the constraints associated to stereotypes.

The logical model is a multi-aspect model. Each aspect is a diagram. The
verification is naturally based on this decomposition: diagram verification and
model verification. While we read many documents, we only refer to the UML
Semantics (metamodel and well-formed rules) and Notation Guide of [7], because
they are the only reliable sources, even if many information and examples are
just informal.

After the individual verification of the diagrams, the correctness, consistency
and completion of the models are examined. The consistency link between the
diagrams is the object paradigm. The domain level is mainly based on the Be-
havioral and Action parts of the UML Semantics, which were not achieved in
the former release of UML.

The verification process handles two abstraction levels: instances and types.
The diagrams related to instances are interaction diagrams (objects, sequences,
collaborations). Instance diagrams are occurences that conforms to their type
definitions. The diagrams related to types are class, statecharts and activity
diagrams. Type diagrams define all what is possible in an object system. The type
level is organized as follow: the class diagrams defines the structuring entities
(structural view) and the operations (functional view), each class defines its
behavior by a state machine (dynamic view), the activities of some states are
defined by an activity diagram. We clearly restrict the usage of state machines
and activity graphs in UML, in order to manage the type level complexity.

Including this reality, the checking process is the following:

1. Type level

(a) Classes/State machines: we ensure the well-foundedness of guards, tran-
sitions and actions.

(b) Classes/Activities: we ensure the well-foundedness of guards, transitions
and actions.

(c) State machines/Activities: we ensure the consistency of activities against
their composite states.

2. Instance level
(a) We ensure the consistency of collaborations and sequences representing

the same reality (space and temporal viewpoints).
(b) We ensure the compatibility of messages and objects...

3. Instance/Type level. This part is mainly based on the semantics of the triplet:
message, action, event. For a long time, the three concepts have been studied
in separate contexts: instance diagrams for the messages and state machines
for action and events. The former issues from OO programming and the
latter from real-time applications. The semantics of the triplet is still an open

problem. Consider a simple consistency rule: a message induces an event by
the receiver, which can receive other events, an action sends messages.

7 Tool Support

Depending on a particular case tool or a particular version of UML, MOF or
OCL is a serious obstacle for a tool development. According to the principle 4,
we want the support tool to be

— evolving with the standards. Indeed, the UML and MOF models are ongoing
standards, thus a verification tool should evolve

— independent from a CASE Tool. Since UML is a standard, the verification
should not depend on a specific implementation.

Thus verification can be seen as a component or a service in a MDA approach.
The model are transformed (or immersed) in a verification context which is quite
different to a transformation into OO code.

The verification framework developped in the Bosco tool [1]. The Bosco tool?
is a generic open source project that focus on the internal representation of
sofware development models. Bosco parameters are XMI files describing meta-
models and meta-metamodels. It currently works for MOF release 1.4 and UML
metamodels releases. Its entries are software development models (e.g. UML
models, ER models, ...) generated from editing tools. Bosco add-ins are model
driven functions: the user implements modeling functions such that model check-
ing, code generation, documentation generation, model transformation (e.g. from
UML 1.5 to UML 2.0) and so on.

The current release includes transformations to algebraic specifications for
the logical type level subdomain. The other domains have been studied, but only
a catalog of informal rules issued. The rule based approach handle the full logical
domain. The rules are currently implemented by algorithm and OCL constraints.

8 Conclusion and future work

In this paper we proposed a framework for the consistency problem in sofware
development with UML and MDA. We assume a large notation, covering the
UML notation (but not the profiles), and a practical use of it for modeling the
artifacts of the development (iterative and incremental process). This implies
to manage the language complexity (numerous concepts, diagrams and mod-
els) and the model incompleteness (due to the development habits). Our answer
is a general verification framework based on four principles: (1) manage the
language complexity by a notation structuration and apply consistency on that
structure, (2) try to reuse various techniques in both formal methods approaches
and rule-based approach, (3) manage incomplete specification by defining veri-
fication levels and customizable verification processes, (4) promote an extended

2 http://bosco.tigris.org

verification tool support, as a service, which is standard evolving and CASE tool
independent.

We currently implemented a FM approach for diagrammatic consistency ver-
ification and a RBS approach where rules are checked by algorithms and the
verification process are customizable.

Since the project is ambitious, there remain many work to do. On one hand,
the transformation approach has to be extended to include other (existing) for-
mal techniques especially for the Message Sequence Charts (MSC) and a com-
plete notation for statemachines. On the other hand, the RBS approach is to
further develop. The rule catalog has to be completed, especially for OCL de-
scriptions. The structuration of a properties and rule is to be improved and
applied to real case studies, generated by current UML CASE Tools. A (the-
oretical) work on the consistency of the rule set is necessary, based on some
logics. Last, the rule definitions should be as independent of the UML standard
as possible.

References

1. Pascal André, Gilles Ardourel, and Gerson Sunye. The Bosco Project, A JMI-
Compliant Template-based Code Generator. In W. Dosch and N. Debnath, edi-
tors, Proceedings of the 13th International Conference on Intelligent and Adaptive
Systems and Software Engineering, pages 157-162, July 2004. ISBN 1-880843-52-X.

2. Pascal André, Annya Romanczuk, Jean-Claude Royer, and Aline Vasconcelos.
Checking the Consistency of UML Class Diagrams Using Larch Prover. In T. Clark,
editor, Proceedings of the third Rigorous Object-Oriented Methods Workshop, BCS
eWics, January 2000.

3. Andy S. Evans, Jean-Michel Bruel, Robert B. France, Kevin C. Lano, and Bernhard
Rumpe. Making uml precise. In OOPSLA’98 Workshop on “Formalizing UML.
Why and How?”, October 1998. Vancouver, Canada.

4. Andy S. Evans, Robert B. France, Kevin C. Lano, and Bernhard Rumpe. The
UML as a formal modelling notation. In UML’98 - Beyond the notation, LNCS.
Springer, 1998.

5. Martin Fowler and Kendall Scott. UML Distilled. Object-Oriented Series. Addison-
Wesley, 3rd edition, 2003. ISBN 0-321-19368-7.

6. S.J. Goldsack and S.J.H. Kent, editors. Formal Methods and Object Technology.
Springer-Verlag, London, 1996.

7. Object Management Group. The OMG Unified Modeling Language Specifica-
tion, version 1.5. Technical report, Object Management Group, available at
http://www.omg.org/cgi-bin/doc?formal /03-03-01, June 2003.

8. Ludwik Kuzniarz, Zbigniew Huzar, Gianna Reggio, and Jean-Louis Sourrouille,
editors. Proceedings of «UML» 2004 Workshop on Consistency Problems
in UML-based Software Development III, Lisbon, Portugal, October 11 2004.
http://uml04.ci.pwr.wroc.pl/Workshop-materials.pdf.

9. Ludwik Kuzniarz, Zbigniew Huzar, Gianna Reggio, Jean-Louis Sourrouille,
and Miroslaw Staron, editors. Proceedings of «UMLy 2003 Workshop on
Consistency Problems in UML-based Software Development II, San Fran-
cisco, California, USA, October 20 - 24 2003. IEEE and Blekinge In-
stitute Of Technology. ISSN 1103-1581 also Research Report 2003:06,
http://www.ipd.bth.se/consistencyUML/Consistency Problems in UML_ILpdf.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Ludwik Kuzniarz, Gianna Reggio, Jean-Louis Sourrouille, and Zbigniew Huzar,
editors. Proceedings of «UML» 2002 Workshop on Consistency Problems
in UML-based Software Development, Dresden, Germany, October 1 2002.
Blekinge Institute Of Technology. ISSN 1103-1581also Research Report 2002:06,
http://www.ipd.bth.se/uml2002/RR-2002-06.pdf.

Kevin Lano and Howard Haughton, editors. Object-Oriented Specification Case
Studies. Object Oriented Series. Prentice Hall, 1993.

Stephen J. Mellor and Marc J. Balcer. Ezecutable UML - A Foundation For Model-
Driven Architecture. Addison Wesley, 2002. ISBN 0-201-74804-5.

Chris Raistrick, Paul Francis, Ian Wilkie, John Wright, and Colin B. Carter. Model
Driven Architecture with Ezecutable UML. Cambridge University Press, 2004.
ISBN 0-521-53771-1.

Gianna Reggio and Roel Wieringa. Thirty one problems in the semantics of uml
1.3 dynamics. In Proceedings of the OOPSLA’99 Workshop on "Rigorous Modelling
and Analysis of the UML: Challenges and Limitations, 1999.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Software Develop-
ment Process. Object-Oriented Series. Addison-Wesley, 1999. ISBN 0-201-57169-2.
Jocelyn Simmonds, Ragnhild Van Der Straeten, Viviane Jonckers, and Tom Mens.
Maintaining consistency between UML models using description logic. L’Objet,
Actes de LMO’04, 10(2-3):231-244, 2004.

Anthony Simons. 37 things that don’t work in object-oriented modelling with
UML. In Haim Kilov and Bernhard Rumpe, editors, Proceedings Second ECOOP
Workshop on Precise Behavioral Semantics (with an Emphasis on OO Business
Specifications), pages 209-232. Technische Universitat Miinchen, TUM-19813, 1998.
Ambrosio Toval, Jose Saez, and Francisco Maestre. Automated Property Veri-
fication in UML Models. In Stefan Gruner Michael Leuschel and Stéphane Lo
Presti, editors, Proceedings of the 3rd Automated Verification of Critical Systems
(AVoCS’03). DSSE Technical Report DSSE-TR-2003-2, April 2003.

Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language, Precise
Modeling with UML. Object-Oriented Series. Addison-Wesley, 1998. ISBN 0-201-
37940-6.

