
Domain Based Veri�ation for UML Models

Pasal André, Gilles Ardourel

LINA - FRE CNRS 2729

2, rue de la Houssinière, B.P.92208, F-44322 Nantes Cedex 3, Frane

gilles.ardourel�univ-nantes.fr

Abstrat. The software development proesses with UML generate nu-

merous douments, inluding UML models. In order to improve the spe-

i�ation quality and the proess quality, it is neessary �rst to de�ne

spei�ation properties and then to verify them. In this paper we propose

a framework for pratial veri�ation of UML models that is onsistent

with an iterative and inremental proess. We illustrate it on several ex-

amples.

Keywords: UML, Model, Consisteny, Veri�ation, Tools

1 Introdution

Modelling objet systems with UML [5,7℄ is a widespread tehnique in the devel-

opment ommunity, espeially in Model Driven Engineering (MDE). However,

the quality of the produed models is usually low: models are hardly ommunia-

ble, onsistent, orret, omplete, preise, homogeneous... Many reasons explain

this situation:

1. There are no standard de�nitions for models. Every one de�nes whih om-

bination of notation elements is a model for a given development proess,

whih are not standardised. In other words, models are proess dependent

and not notation dependent.

2. The UML notation is not �tted to the urrent pratise of modelling. On

one hand, it is too large and omplex (e.g. UML2 de�nes 13 diagrams) and

modellers borrow only a small part of the notation. On the other hand,

there are missing onepts for spei� appliation areas or implementation

tehniques (e.g. Real-Time, Web) for whih stereotypes are not su�ient.

3. There is no formal agreement on the UML semantis, despite its metamodel.

Every UML user has an underlying semantis, depending on his experiene

in the objet oriented development �eld and the omputation domain (in-

formation systems, real time...).

In summary, we feel that UML is rather a Babel tower than an Esperanto lan-

guage. So how an we ontrol the quality of UML produts ?

The ommon answer is to de�ne quality fators and riteria and to measure

them on the models. In the following, the riteria are the properties to be heked

on models and the measurement is the veri�ation of the properties. During



v1 : Vehicle  : Tunnel  : Light v2 : Vehiclev3 : Vehicle

require(self, #ew)

allow( ) change_col(#green)

require (self, #we)

wait ()

require(self, #ew)

allow( )

getOut( )

getOut( )
allow( )

{ordered}

{ordered}

Light

color : Color

change_col()

Vehicule

drive()

getOut()

Tunnel

0..10..*

require_ew

0..*

0..1

engaged

allow()

0..2
1

Coul = enum{green,

orange, red}

{xor}

0..1

2

{C1}

require_we
{C2}

{C1} {C3}

{ordered}

wait()

/ wait_ew

/ wait_we

state

/ current_way

nb_eng_car()

is_free()

is_occupied()

getOut()

require()

Present

waiting

wait

allow

drivinggetOut

require(self,

way)

idle

free

require(car, way)

[way=#ew] ^car.allow

require(car, way)

[way=#we] ^car.allow

occupied W/E

one_vehicle

W/E

two_vehicles

W/E

require(car, way)

[way=#we] ^car.allow

getOut(car)

[v_ew]

getOut(car)

[vv_we]

require(car, way)

[way=#ew] ^car.wait

require(car, way)

^car.wait

getOut(car)

[not v_ew]

^_aew

getOut(car)

[not vv_we] ^_awe

occupied E/W

one_vehicle

E/W

two_vehicles

E/W

require(car, way)

[way=#eo] ^car.allowr

getOut(car)

[v_we]

getOut(car)

[vv_ew]

require(car, way)

[way=#we] ^car.wait

require(car, way)

^car.wait

getOut(car)

[not v_we] ^_awe

getOut(car)

[not vv_ew] ^_aew

Vehicle
tunnel access

Supervisor
tunnel administration

Verification of properties ( consistency)

on the Model M
w,i

 in workflow w of iteration i

tunnel state-transition diagram

system sequence diagram

vehicle activity diagram

use case diagram

class diagram

types

instances
use cases

consistency

EvolutionModel

Domain

conformance subdomains

refinement

traceability

Consistency rule hierarchy

Diagram integration

Figure 1 : Veri�ation of properties on models

a development proess, several models are produed. The models must have

properties whih are heked by some veri�ations. The ontext of this work

is thus a quadruple proess-model-property-veri�ation. In the example

of Figure 1 the goal is to hek the onsisteny of some model M

w;i

in some

work�ow w of an iteration i in the proess. The ase study is the management

of vehile aess in a tunnel.

The properties an be lassi�ed into three distint ategories: system prop-

erties (dependent on the target appliation, these inlude validity, safety, live-

ness, reliability, et. They are often assoiated to a spei� point of view -stati,

dynami, funtional). In the Tunnel ase study, a safety (system) property is

that the vehile an always run. model properties (mainly onsisteny and

the ompleteness of the models) proess properties (fous on the evolution

of models during the development proess, mainly the traeability, onsisteny



and the ompleteness of the model evolution). Some properties traverse the at-

egories. This is the ase for the onsisteny property. A onsisteny (model)

property is "the message send onforms to the operations de�nition". A re�ne-

ment (proess) property is "the lass de�nitions onforms to the Use Case". An

evolution (proess) property is "the lasses of the seond iteration are onsistent

with the ones of the �rst iteration".

The ontribution of this paper is a general framework and a tool support

for handling the veri�ation of properties on UML models. In this paper, the

target property is onsisteny, but the disourse applies to other properties. Se-

tion 2 states the four foundation priniples of the framework. These priniples

are further exploited in the remainder of the paper. In setion 3, we propose

a struturing of the models that support a struturing of the onsisteny. Se-

tion 4 overviews the main issues of the tehniques for verify the onsisteny of

models. In setion5 and 6 we fous on the rule based part of the veri�ation.

The tool support is overview in setion 7. Last we onlude and disuss several

perspetives of this work.

2 A framework for veri�ation

Our motivation is to take the problem of verifying the properties of UML mod-

els in the urrent pratie of development, i.e. in a large and pratial view.

By large, we mean that we try to over the main development work�ow and

notations. Contrarily to the exeutable UML languages [12,13℄ whih handle a

redued (even formal) notation subset, we intend to over the onepts of the 9

or 13 UML diagrams. By pratial, we mean that veri�ation must also inlude

some aspets of the development proess: in MDE approahes, the model over

orthogonal aspets or point of view (heterogeneity) ; they are transformed along

the work�ows, (abstration levels), they evolve along the inrements (iteration).

Suh a veri�ation an overwhelming task beause the onepts involved at dif-

ferent levels are numerous, the semantis of UML model elements over a wide

spetrum and the spei�ations are inomplete by nature. Moreover, the prop-

erties are mutually dependent: what means ompleteness without onsisteny ?

what means onsisteny without orretness ?

We propose a framework based on four priniples: divide and onquer, reuse

and adapt, support ustomised veri�ation, be independent and evolve.

Priniple 1 (divide and onquer) The veri�ation should apply to the plain

UML notation.

To be appliable in pratie, the veri�ation should work on any UML model.

In order to organise both the models and the veri�ation and manage their

omplexity, the notation is partitioned into domains and models. Eah domain

is related to some work�ow of the development proess. This point is further

studied in setion 3.

Priniple 2 (reuse and adapt) The veri�ation problem does not have to be

started from srath, thus it must reuse and adapt existing tehniques and tools.



This point is further studied in setion 4. The idea is to smoothly ombine

the formal tehniques and the rule based systems, whih are the two main and

omplementary approahes for veri�ation.

Priniple 3 (support ustomised veri�ation) The veri�ation must be us-

tomisable depending on the wishes of the designer and the urrent stage in the

development (iteration, work�ow).

The property tester an de�ne a veri�ation proess to assert a property

(prede�ned ombinations are stored in libraries). The veri�ation proess should

manage inomplete models (there are many 'inomplete' PIM before a PSM)

produed along the development. Besides ompleteness-based rules �ltering, it

should also be possible to set priorities and weights on the rules aording to

di�erent poliies. This point is further studied in setion 5.

Priniple 4 (be independent and evolve) The veri�ation tools should be

independent from a spei� ase tool and should be able to adapt easily to hanges

in versions of UML.

This priniple onforms to the MDE philosophy: managing repositories to

aept various metamodels (desribed in various MOF), de�ning a veri�ation

servie as an additional servie of CASE Tools. This point is further studied in

setion 7.

3 Manage Models and Consisteny

Modelling pratie shows that the notation panel is too large when onsidering

eah phase or eah work�ow. In this setion we study how to ombine the model

elements during the development proess aording to priniple 1.

The UML notation is strutured over onsistent element arrangements: the

nine or thirteen diagrams [7,5℄. The diagram onept does not exist in the nota-

tion metamodel (the only struturing mehanism is the pakage) nor in develop-

ment proesses e.g. Uni�ed Proess (the struturing unit is the model whih is a

also a pakage in the metamodel). The model's ontent is not formally de�ned.

"A model is an abstration of a system" [15℄. Eah proess work�ow aepts one

or several models as input and produes one or several model (e.g. UC model,

analysis model, deployment model...). Note that domain models, business mod-

els, test models and non-funtional requirements are omitted here.

Thus, in order to avoid onfusions in a seamless use of UML, we propose a

three level struture that failitates the veri�ation proess: element, diagram,

model. First, we think that diagrams are more than visual notations (graphs):

they de�ne (quite) onsistent ombinations of model elements and should be

used aordingly. This idea is not new and is present in most CASE tools but it

is not formalised. Seond, we advise to restrit the number of diagrams available

for eah ativity. We promote three abstration levels: external, logial, physial.

Last, we separate the instane-related diagrams from the type-related diagrams.

The notation struture is summarised in �gure 2.



� The external (or user) level orresponds to the requirements work�ow. It

fouses on a high level notation (use ases, senarios and �ow-ativity di-

agrams). While �ow-ativity diagrams an be used for modelling the main

funtions of the system (with swimlanes), we think their semantis is quite

ambiguous, inspired from various formal models (Petri Nets, Data Flow Di-

agrams, Control Flow Diagrams).

� The logial level orresponds to the analysis and design work�ows. It fouses

on objet modelling (lasses, sequenes, ollaborations/ommuniations, state

mahines, do-ativities).

� The physial level deals with the low level abstrations (omponents, deploy-

ment, ode) of implementation and tests.

Composite struture diagrams and pakage diagrams are impliitly parts of many

of the above diagrams. The interation overview diagram is a mix between se-

quenes and ativities, whih has a rather fuzzy semantis. Timing diagrams are

quite disjoint from the above diagrams, espeially for onsisteny. The rossing

of the diagrams in the levels results in a partition of the diagrams

1

into domains.

Use Cases Component diagrams

Deployment diagrams

external domain physical domainlogical domain

Type level

instance level

Sequence

diagrams

Collaboration/

communication

diagrams

Class

diagrams

(do)Activity

diagrams

State machine

diagrams

c
o

n
fo

rm
s
 t

o


(flow)Activity

diagrams

Sequence

diagrams

(Scenarios)

Figure 2 : Domain struturing for an iteration i

Eah diagram (if we onsider senarios as simpli�ed sequene diagrams) ap-

pears in one ell only: this is a partition. This improves the readability of the

UML models : it is easy to �nd the abstration level it refers, and its relevant

plae in the development work�ow. But it redues the expressive power beause

the ontext of use is restrited. For example, ativity diagrams are only related

to operations or state ativities (inside a state of a state transition diagram).

Eah ell is a sub-domain. A model is a view on a domain. Based on this

struturation, the onsisteny property an be speialised into smaller proper-

ties (e.g. the property hierarhy of �gure 1).

1

But not a partition of the notation sine the same model element may appear on

several diagrams.



1. Diagram onsisteny

2. Sub-domain onsisteny = inter-diagram onsisteny

3. Domain onsisteny = Sub-domain onsisteny + onformane (instane/types)

4. Work�ow onsisteny = Domain onsisteny + re�nement (or traeability)

5. Proess onsisteny = Work�ow onsisteny + evolution onsisteny

Our struturation is a bit �ner than the ones of [16,10℄, but domain (resp.

work�ow, proess) onsisteny is lose to horizontal onsisteny (resp. vertial,

evolution). Note that re�nement is quite hard to de�ne when there is no seamless

models, and therefore traeability is a looser onstraint.

4 Integrate Veri�ation Tehniques

We onsider two main approahes for automated property veri�ation of UML

models: formal methods and rules based systems. There are also spei� teh-

niques for managing onsisteny among models. Details on these approahes an

be found in [10,9,8℄.

The Formal Methods Approah (FM) is a MDE approah sine the model is

transformed into a formal model written in a formal language that is supported

by automated tools for model heking or theorem proving. These an be plain

languages (e.g. Z, B, CASL, LTSA) or OO extensions of them (e.g. Objet-Z,

OOZE, Troll, Maude) whih have less supporting tools [6,11℄. Formal methods

are also an answer to the UML Semantis weakness [14,17℄ in providing a formal

semantis for (a part of) the UML notation (or metamodel), e.g. in the pUML

group [3,4℄. The numerous proposals dealt mainly with the lass diagram, the

state mahine diagram and the sequene diagram. The (formal) model of evo-

lution is re�nement, thus the proof of the evolution onsisteny depends on the

proof of re�nement. Verifying the onsisteny of multiple viewpoints is still an

ative researh area in the formal methods ommunity. Other operational se-

mantis, say exeutable UML [12,13℄, an be lassi�ed as formal. They are very

useful for validating the UML produts but not for verifying them.

The Rules-Based Systems Approah (RBS) is a test approah, where veri�ation

rules are applied to models to hek target properties. A rule is a statement de-

sribing a property (or a part of it). The rule language an be formal (Desription

Logis, OCL, algorithm, Java ode...) or informal. This is also the CASE Tool

approah, sine CASE Tools implement rules and their heking diretly on the

graphial modelling editors. Nevertheless, rules an be de�ned at the model level

or the metamodel level. Examples are given in [18,10,9℄. The main issue of rule

oriented veri�ation is property management, beause there is a great number

of rules depending on the element ombination, the diagrams, the models, the

syntax, the typing system and the semantis.



Disussion Table 1 ompares both approahes inluding setions on the Model-

Property-Veri�ation triplet. The FM approah is not a diret answer in our

ontext. It assumes omplete models, a premise whih is not true in the earlier

steps of the development. The urrent proposals over only a part of the notation

with a partiular semantis whih is not �tted to a large panel of appliations.

Nevertheless, the formal approahes are very useful to prove the system and

model properties within these parts (modelling nihes). The advantage of the

RBS Approah is that the hoie an be ustomised to the development proess

and the veri�ation goal. As a ounterpart, the main problem is building spei�

rules and ensuring a omplete and onsistent set of rules.

Formal Approahes Rule based Approahes

Model

desription a formal model a soure model

UML notation partial total

Properties

expression formal statements (e.g prediate) semi-formal statement

user-de�ned formal statements OCL assertions ?

system prop. aording to the target semantis none

model prop. yes yes

proess prop. re�nement traeability, evolution

Veri�ation

proess automati for model properties selet and test

individual for system properties -

heking formal proof algorithm (or review)

User know- UML, formal model UML

ledge, role property de�nitions and proofs rule seletion

experiene proof theory rule database knowledge

Advantages formal semantis ustomizable aording to

(non ambiguous, onsistent...) - the development step

(re�nement to ode) vthe appliation nature

automation no more than UML

soundness from the formal model programming and tests

Drawbaks heavy, user proof experiene implementation dependent

partial UML notation onsistent, omplete ?

two models (soure + formal) seletion require user skill

Table I� Synthesis omparison

Table 1 shows that the two approahes are omplementary. A veri�ation

framework that smoothly ombine both approahes would really be the best

solution. We propose the following oordination for onsisteny heking:

1. Diagram onsisteny is ahieved by transformations into formal notations,

beause diagrams are, by nature, based on onsistent theories.

2. Sub-domain onsisteny orresponds to multi-view integrations, both formal

tehniques and rule-based tehniques apply here.

3. Domain onsisteny an be solved using onformane dependenies (see [8℄)

in a rule-base approah or a formal typing system.



4. Work�ow onsisteny is merely obtained by a rule-based approah on re�ne-

ment and traeability. A true formal re�nement relations is hard to de�ne

here beause the domains have quite di�erent notations.

5. Proess onsisteny depends on the four lower level onsisteny heking

tehnique. The diagram evolution onsisteny an be seen as diagram re�ne-

ment in the same formal framework but it is merely obtained using evolution

maintenane tehniques suh as desription logis in [16℄.

In summary, the low levels of onsisteny are ahieved with transformations

into formal methods beause there are many, often syntati, rules. The higher

levels of onsisteny are veri�ed using rule-based approahes. In a previous work,

we experiened the former approah using algebrai spei�ations, where onsis-

teny has a speial meaning [2℄. In other words, when the number of rules really

grows up (espeially when you onsider other properties than onsisteny) we

found it bene�ial to use a formal model. Formal models are also more appro-

priate for type subdomains than instane subdomains whereas the opposite is

true of the rule-based tehniques.

5 Veri�ation

In this setion, we desribe veri�ations as struturing units for a veri�ation

proess whom goal is to hek properties.

5.1 De�ning a Veri�ation

Several veri�ations an be linked to a property. For instane, the onsisteny

of a model from the logial domain needs the following veri�ations:

� onformity of the messages sent to an objet in a sequene diagram with the

messages supported by the type of the objet and with the messages that

the emitting objet is allowed to send.

� onformity of the sequene of messages with the state diagram of the lass

of the reeiving objet

� onsisteny of the ations from a state diagram with its lass.

We de�ne a veri�ation by a name, a goal (informal omment) and a workspae.

It an be realised with rules (algorithms, prediates, ode) or proofs in a formal

model. It is good pratie to de�ne rules as OCL (Objet Constraint Language)

expressions whenever possible.

The workspae is related with the part of the metamodel whih onerns the

veri�ation. In UML, this metamodel, whih desribes UML, is the level M2

de�ned by the OMG. The workspae is omposed of:

� U , the set of elements from the metamodel whih are needed for the veri�-

ation. It is partitionned into U

v

, set of the elements to be veri�ed, and U

n

the set of elements that need not to be veri�ed.



� C, the set of the metamodel elements onerned but not used by the veri�-

ation. The instanes of the elements of C in the metamodel will be marked

as invalid if one of their subelements is marked as invalid.

U depends on the veri�ation, while C and the partition of U into U

v

and U

n

depends on the veri�ation proess. For instane, the veri�ation of onformity

between sequene diagrams and a lass diagram has lass diagrams and sequene

diagrams as U (that is lasses, interfaes, methods, objets and messages), mes-

sages as U

v

and sequene diagram as C.

A veri�ation of a model M1 is done in four steps:

� seletion of the elements of M1 that are instanes of U and onversion if

neessary,

� appliation of the rule or the proof assoiated with the veri�ation,

� interpretation of the results and marking of the elements of M1,

� propagation of the result on the elements of M1 that are instanes of C.

Selection of

instances of U

with optional conversion

application 

interpretation
and marking of instances of U

Verification V1
U

C

Propagation

on instances of C

Model M1’Model M1

Figure 3 : Applying a veri�ation on a model

5.2 Proess and Composition of Veri�ations

In a rule based veri�ations, the user hoose the rules and launh the veri�ation

[18℄. Eah rule is then applied independently on the model. This requires a deep

knowledge of the rules and of the reasonable sequenes of their appliations.

We wish to help both the designers of veri�ation and the users, using a veri-

�ation proess. A veri�ation proess is the umulative appliation of funtions

working on models. These funtions an be veri�ations or �lters A very sim-

ple �lter an be the removal of every element previously marked as invalid. The

appliation order of the funtions is important when �ltering is used. Indeed, a

veri�ation v1 an invalidate an element whih is an input of a veri�ation v2 if

U(v2)\ (U

v

(v1)[C(v1)) 6= ;. In ases of ross dependenies, hoosing the order

is a ruial step of the proessus design. The following �gure shows a simple

veri�ation proess.



C

U

C

U

C

U

M1 M2 M3

Fi
lte

r 
F1

M4Verif V1 Verif V2 Verif V3 M5

Figure 4 : Applying a veri�ation proess on a model

In order to simplify the management of veri�ations and to automatise pro-

ess reation, we introdue the following omposition operator:

omp(name, goal, funtions list)! veri�ation(U, C).

The four steps assoiated with a omposed veri�ation are

� seletion: no �ltering is neessary

� appliation: ontained funtions are applied in sequene

� interpretation of result: �nal result is a prediate on the value of the anno-

tations given by the ontained veri�ation

� propagation of result is done aording to the optional set C.

Verification VComp

C

Propagation

on the instances of C

Interpretation

and marking

U

Fi
lte

r 
F1

Verif V3
C3

U3

C2

U2

Verif V1
C1

U1
Verif V2

Figure 5 : Composing veri�ations

A preise de�nition of the sets U

v

and C helps to transform the binary result

of a formal veri�ation into a result aeptable for the rule-based system.

5.3 Manage Inompleteness in Veri�ations

The treatment of inompleteness is ahieved by two means:

� a parameter in the workspae de�nition that indiates the level of details

that is required. For example, iin a �rst iteration, the lass name or the

operation names an be su�ient. We urrently de�ned 5 levels: diagram

syntax, nouns resolution (lass, pakage, objet, types), nouns resolution

(attributes, relations, operations, state), type onsisteny, ation onsisteny

(pre/post onditions, guards).

� an adequate seletion of the rules in the de�nition of the proess. Sine the

veri�ation is ustomizable, the rule seletion requires some skill from the

tester.



6 The Veri�ation Proess

We �rst introdue the basi rule management and then we introdue the veri�-

ation proess, sine it has an in�uene on the rule expressing.

6.1 Basi Rule Management

The implementation of the veri�ation proess is based on the following triplet:

property, rule, ontrol.

The �rst step is to �nd the properties of models or groups of models. This is

a huge work and unfortunately, there is no library of rules available. We did not

�nd detailed examples of rules to be heked in the plethori litterature on UML.

Usually, the authors give some traks like some questions to be asked. A more

informative soure is the OMG produts, espeially the UML Semantis and

UML Notation guide [7℄: the allowed element ombination, the OCL expressions

of the metamodel. Last, one an �nd ad-ho rules in the visual modeling tools

and try to formalize them.

The seond step is to de�ne preisely the way the property an be heked,

say a rule. We an simply write the rules as sentenes in a strutured hek-

ing manual, the veri�ation proess is to take eah rule manually and to hek

it. To be reliable, e�ient and heap, the rules are to be written in a formal

language, merely exeutable. This an be a Java ode, an OCL expression (Ob-

jet Constraint Language [19℄), algebrai axioms, prediates...). As far as it is

possible, OCL is adequate for UML models, sine it belongs to the same stan-

dards. The MOF desription of UML is a powerful means for struturing the

rules sine they bene�t from the objet �avor: the rules an be attahed to mod-

eling elements, speialized, delegated through assoiations... For example, the

simple expression not self.allParents->inludes(self) in the ontext of a

GeneralizableElement means that inheritane is not irular. Note that, many

lassi�ation problems our: a rule de�ned for an element applies to all it spe-

ialized elements until exeptions have been quoted. For example, eah lassi�er

may have attributes and operations, so a use ase (whih is a lassi�er) an

have attributes and operations. Struturing the rules, like building the UML

metamodel, is a lassi�ation task.

The third step is to ontrol the rules on the model. This is not simply a

boolean funtion whih delivers orret or error. As done for ompilers, the error

an be lassi�ed from ignored warning to non-reoverable error. The erroneous

model elements an be removed, orreted. The ontrol algorithm is related to

the model management and the veri�ation proess. An example is given in

setion 6.3.

6.2 Hierarhial Rule Management

Controlling the syntati and semantis aspets of UML models lead to hundreds

of rules. A �at list of these is thus unmanageable, we need to organize the rules.

We already introdued several lassi�ation riteria for the properties:



Element

(from Kernel)

Diagram Subdomain Domain Model

viewpoint : String

Version

number

Package

(from Kernel)

VPropertyVerificationconsistencyRule

Figure 6 : Simpli�ed Meta-model for Veri�ations

� system / model / proess

� external / logial / physial domains

� instane / types

� multi-view onsisteny

� syntax, typing, semantis

Moreover, the same rule may be de�ned di�erently aording to the development

step (priniple 3), beause informations are missing. Last, as in every a rule

based system, we need a rule seletion proess that helps the user to hek

the properties, aording to some riteria. In [18℄, the user selets the rules

to apply. It requires some skill and knowledge. It an be ombined with other

approahes, like preision level (aording to the development iteration and the

work�ow), oarse/�ne grain element desription. For example, an operation an

be desribed by its name in a senario, by a pro�le (name and parameters), by a

signature (a name, result and parameter types), by pre/post onditions in OCL,

by a target ode.

Our hierarhial veri�ation of onsisteny is based on the domain strutur-

ing of �gure 2. The heking holds on eah domain and eah domain relation.

The simplest way to struture the rules is to assoiate the veri�ation proesses

(setion 5.2) with the notation struturing nodes of setion 3. This is a quite

ommon meta-representation of rules. The veri�ation hierarhy is not further

developped here.

6.3 Some Logial Domain Veri�ations

Here, we just overview the ore of veri�ation and show examples. The stati

rules are organized in the following way:



1. Combination rules: for example, an interfae desribes only operations, the

speialization relation is not re�exive.

2. Constraints: typing, multipliities, onstraints on relations (or, xor), OCL

onstraints.

3. Exeptions related to some semantis: for example, no multiple inheritane

for the sublasses of a disriminator, a passive objet annot send simultane-

ously two messages. These inlude the onstraints assoiated to stereotypes.

The logial model is a multi-aspet model. Eah aspet is a diagram. The

veri�ation is naturally based on this deomposition: diagram veri�ation and

model veri�ation. While we read many douments, we only refer to the UML

Semantis (metamodel and well-formed rules) and Notation Guide of [7℄, beause

they are the only reliable soures, even if many information and examples are

just informal.

After the individual veri�ation of the diagrams, the orretness, onsisteny

and ompletion of the models are examined. The onsisteny link between the

diagrams is the objet paradigm. The domain level is mainly based on the Be-

havioral and Ation parts of the UML Semantis, whih were not ahieved in

the former release of UML.

The veri�ation proess handles two abstration levels: instanes and types.

The diagrams related to instanes are interation diagrams (objets, sequenes,

ollaborations). Instane diagrams are ourenes that onforms to their type

de�nitions. The diagrams related to types are lass, stateharts and ativity

diagrams. Type diagrams de�ne all what is possible in an objet system. The type

level is organized as follow: the lass diagrams de�nes the struturing entities

(strutural view) and the operations (funtional view), eah lass de�nes its

behavior by a state mahine (dynami view), the ativities of some states are

de�ned by an ativity diagram. We learly restrit the usage of state mahines

and ativity graphs in UML, in order to manage the type level omplexity.

Inluding this reality, the heking proess is the following:

1. Type level

(a) Classes/State mahines: we ensure the well-foundedness of guards, tran-

sitions and ations.

(b) Classes/Ativities: we ensure the well-foundedness of guards, transitions

and ations.

() State mahines/Ativities: we ensure the onsisteny of ativities against

their omposite states.

2. Instane level

(a) We ensure the onsisteny of ollaborations and sequenes representing

the same reality (spae and temporal viewpoints).

(b) We ensure the ompatibility of messages and objets...

3. Instane/Type level. This part is mainly based on the semantis of the triplet:

message, ation, event. For a long time, the three onepts have been studied

in separate ontexts: instane diagrams for the messages and state mahines

for ation and events. The former issues from OO programming and the

latter from real-time appliations. The semantis of the triplet is still an open



problem. Consider a simple onsisteny rule: a message indues an event by

the reeiver, whih an reeive other events, an ation sends messages.

7 Tool Support

Depending on a partiular ase tool or a partiular version of UML, MOF or

OCL is a serious obstale for a tool development. Aording to the priniple 4,

we want the support tool to be

� evolving with the standards. Indeed, the UML and MOF models are ongoing

standards, thus a veri�ation tool should evolve

� independent from a CASE Tool. Sine UML is a standard, the veri�ation

should not depend on a spei� implementation.

Thus veri�ation an be seen as a omponent or a servie in a MDA approah.

The model are transformed (or immersed) in a veri�ation ontext whih is quite

di�erent to a transformation into OO ode.

The veri�ation framework developped in the Boso tool [1℄. The Boso tool

2

is a generi open soure projet that fous on the internal representation of

sofware development models. Boso parameters are XMI �les desribing meta-

models and meta-metamodels. It urrently works for MOF release 1.4 and UML

metamodels releases. Its entries are software development models (e.g. UML

models, ER models, ...) generated from editing tools. Boso add-ins are model

driven funtions: the user implements modeling funtions suh that model hek-

ing, ode generation, doumentation generation, model transformation (e.g. from

UML 1.5 to UML 2.0) and so on.

The urrent release inludes transformations to algebrai spei�ations for

the logial type level subdomain. The other domains have been studied, but only

a atalog of informal rules issued. The rule based approah handle the full logial

domain. The rules are urrently implemented by algorithm and OCL onstraints.

8 Conlusion and future work

In this paper we proposed a framework for the onsisteny problem in sofware

development with UML and MDA. We assume a large notation, overing the

UML notation (but not the pro�les), and a pratial use of it for modeling the

artifats of the development (iterative and inremental proess). This implies

to manage the language omplexity (numerous onepts, diagrams and mod-

els) and the model inompleteness (due to the development habits). Our answer

is a general veri�ation framework based on four priniples: (1) manage the

language omplexity by a notation struturation and apply onsisteny on that

struture, (2) try to reuse various tehniques in both formal methods approahes

and rule-based approah, (3) manage inomplete spei�ation by de�ning veri-

�ation levels and ustomizable veri�ation proesses, (4) promote an extended

2

http://boso.tigris.org



veri�ation tool support, as a servie, whih is standard evolving and CASE tool

independent.

We urrently implemented a FM approah for diagrammati onsisteny ver-

i�ation and a RBS approah where rules are heked by algorithms and the

veri�ation proess are ustomizable.

Sine the projet is ambitious, there remain many work to do. On one hand,

the transformation approah has to be extended to inlude other (existing) for-

mal tehniques espeially for the Message Sequene Charts (MSC) and a om-

plete notation for statemahines. On the other hand, the RBS approah is to

further develop. The rule atalog has to be ompleted, espeially for OCL de-

sriptions. The struturation of a properties and rule is to be improved and

applied to real ase studies, generated by urrent UML CASE Tools. A (the-

oretial) work on the onsisteny of the rule set is neessary, based on some

logis. Last, the rule de�nitions should be as independent of the UML standard

as possible.

Referenes

1. Pasal André, Gilles Ardourel, and Gerson Sunye. The Boso Projet, A JMI-

Compliant Template-based Code Generator. In W. Dosh and N. Debnath, edi-

tors, Proeedings of the 13th International Conferene on Intelligent and Adaptive

Systems and Software Engineering, pages 157�162, July 2004. ISBN 1-880843-52-X.

2. Pasal André, Annya Romanzuk, Jean-Claude Royer, and Aline Vasonelos.

Cheking the Consisteny of UML Class Diagrams Using Larh Prover. In T. Clark,

editor, Proeedings of the third Rigorous Objet-Oriented Methods Workshop, BCS

eWis, January 2000.

3. Andy S. Evans, Jean-Mihel Bruel, Robert B. Frane, Kevin C. Lano, and Bernhard

Rumpe. Making uml preise. In OOPSLA'98 Workshop on �Formalizing UML.

Why and How?�, Otober 1998. Vanouver, Canada.

4. Andy S. Evans, Robert B. Frane, Kevin C. Lano, and Bernhard Rumpe. The

UML as a formal modelling notation. In UML'98 - Beyond the notation, LNCS.

Springer, 1998.

5. Martin Fowler and Kendall Sott. UML Distilled. Objet-Oriented Series. Addison-

Wesley, 3rd edition, 2003. ISBN 0-321-19368-7.

6. S.J. Goldsak and S.J.H. Kent, editors. Formal Methods and Objet Tehnology.

Springer-Verlag, London, 1996.

7. Objet Management Group. The OMG Uni�ed Modeling Language Spei�a-

tion, version 1.5. Tehnial report, Objet Management Group, available at

http://www.omg.org/gi-bin/do?formal/03-03-01, June 2003.

8. Ludwik Kuzniarz, Zbigniew Huzar, Gianna Reggio, and Jean-Louis Sourrouille,

editors. Proeedings of �UML� 2004 Workshop on Consisteny Problems

in UML-based Software Development III, Lisbon, Portugal, Otober 11 2004.

http://uml04.i.pwr.wro.pl/Workshop-materials.pdf.

9. Ludwik Kuzniarz, Zbigniew Huzar, Gianna Reggio, Jean-Louis Sourrouille,

and Miroslaw Staron, editors. Proeedings of �UML� 2003 Workshop on

Consisteny Problems in UML-based Software Development II, San Fran-

iso, California, USA, Otober 20 - 24 2003. IEEE and Blekinge In-

stitute Of Tehnology. ISSN 1103-1581 also Researh Report 2003:06,

http://www.ipd.bth.se/onsistenyUML/Consisteny_Problems_in_UML_II.pdf.



10. Ludwik Kuzniarz, Gianna Reggio, Jean-Louis Sourrouille, and Zbigniew Huzar,

editors. Proeedings of �UML� 2002 Workshop on Consisteny Problems

in UML-based Software Development, Dresden, Germany, Otober 1 2002.

Blekinge Institute Of Tehnology. ISSN 1103-1581also Researh Report 2002:06,

http://www.ipd.bth.se/uml2002/RR-2002-06.pdf.

11. Kevin Lano and Howard Haughton, editors. Objet-Oriented Spei�ation Case

Studies. Objet Oriented Series. Prentie Hall, 1993.

12. Stephen J. Mellor and Mar J. Baler. Exeutable UML - A Foundation For Model-

Driven Arhiteture. Addison Wesley, 2002. ISBN 0-201-74804-5.

13. Chris Raistrik, Paul Franis, Ian Wilkie, John Wright, and Colin B. Carter. Model

Driven Arhiteture with Exeutable UML. Cambridge University Press, 2004.

ISBN 0-521-53771-1.

14. Gianna Reggio and Roel Wieringa. Thirty one problems in the semantis of uml

1.3 dynamis. In Proeedings of the OOPSLA'99 Workshop on "Rigorous Modelling

and Analysis of the UML: Challenges and Limitations, 1999.

15. James Rumbaugh, Ivar Jaobson, and Grady Booh. The Uni�ed Software Develop-

ment Proess. Objet-Oriented Series. Addison-Wesley, 1999. ISBN 0-201-57169-2.

16. Joelyn Simmonds, Ragnhild Van Der Straeten, Viviane Jonkers, and Tom Mens.

Maintaining onsisteny between UML models using desription logi. L'Objet,

Ates de LMO'04, 10(2-3):231�244, 2004.

17. Anthony Simons. 37 things that don't work in objet-oriented modelling with

UML. In Haim Kilov and Bernhard Rumpe, editors, Proeedings Seond ECOOP

Workshop on Preise Behavioral Semantis (with an Emphasis on OO Business

Spei�ations), pages 209�232. Tehnishe Universität Münhen, TUM-I9813, 1998.

18. Ambrosio Toval, Jose Sàez, and Franiso Maestre. Automated Property Veri-

�ation in UML Models. In Stefan Gruner Mihael Leushel and Stéphane Lo

Presti, editors, Proeedings of the 3rd Automated Veri�ation of Critial Systems

(AVoCS'03). DSSE Tehnial Report DSSE-TR-2003-2, April 2003.

19. Jos B. Warmer and Anneke G. Kleppe. The Objet Constraint Language, Preise

Modeling with UML. Objet-Oriented Series. Addison-Wesley, 1998. ISBN 0-201-

37940-6.


