
Domain Based Veri�
ation for UML Models

Pas
al André, Gilles Ardourel

LINA - FRE CNRS 2729

2, rue de la Houssinière, B.P.92208, F-44322 Nantes Cedex 3, Fran
e

gilles.ardourel�univ-nantes.fr

Abstra
t. The software development pro
esses with UML generate nu-

merous do
uments, in
luding UML models. In order to improve the spe
-

i�
ation quality and the pro
ess quality, it is ne
essary �rst to de�ne

spe
i�
ation properties and then to verify them. In this paper we propose

a framework for pra
ti
al veri�
ation of UML models that is
onsistent

with an iterative and in
remental pro
ess. We illustrate it on several ex-

amples.

Keywords: UML, Model, Consisten
y, Veri�
ation, Tools

1 Introdu
tion

Modelling obje
t systems with UML [5,7℄ is a widespread te
hnique in the devel-

opment
ommunity, espe
ially in Model Driven Engineering (MDE). However,

the quality of the produ
ed models is usually low: models are hardly
ommuni
a-

ble,
onsistent,
orre
t,
omplete, pre
ise, homogeneous... Many reasons explain

this situation:

1. There are no standard de�nitions for models. Every one de�nes whi
h
om-

bination of notation elements is a model for a given development pro
ess,

whi
h are not standardised. In other words, models are pro
ess dependent

and not notation dependent.

2. The UML notation is not �tted to the
urrent pra
tise of modelling. On

one hand, it is too large and
omplex (e.g. UML2 de�nes 13 diagrams) and

modellers borrow only a small part of the notation. On the other hand,

there are missing
on
epts for spe
i�
 appli
ation areas or implementation

te
hniques (e.g. Real-Time, Web) for whi
h stereotypes are not su�
ient.

3. There is no formal agreement on the UML semanti
s, despite its metamodel.

Every UML user has an underlying semanti
s, depending on his experien
e

in the obje
t oriented development �eld and the
omputation domain (in-

formation systems, real time...).

In summary, we feel that UML is rather a Babel tower than an Esperanto lan-

guage. So how
an we
ontrol the quality of UML produ
ts ?

The
ommon answer is to de�ne quality fa
tors and
riteria and to measure

them on the models. In the following, the
riteria are the properties to be
he
ked

on models and the measurement is the veri�
ation of the properties. During

v1 : Vehicle
 : Tunnel
 : Light
 v2 : Vehicle
v3 : Vehicle

require(self, #ew)

allow()
 change_col(#green)

require (self, #we)

wait ()

require(self, #ew)

allow()

getOut()

getOut()

allow()

{ordered}

{ordered}

Light

color : Color

change_col()

Vehicule

drive()

getOut()

Tunnel

0..1
0..*

require_ew

0..*

0..1

engaged

allow()

0..2

1

Coul = enum{green,

orange, red}

{xor}

0..1

2

{C1}

require_we

{C2}

{C1}
 {C3}

{ordered}

wait()

/ wait_ew

/ wait_we

state

/ current_way

nb_eng_car()

is_free()

is_occupied()

getOut()

require()

Present

waiting

wait

allow

driving
getOut

require(self,

way)

idle

free

require(car, way)

[way=#ew] ^car.allow

require(car, way)

[way=#we] ^car.allow

occupied W/E

one_vehicle

W/E

two_vehicles

W/E

require(car, way)

[way=#we] ^car.allow

getOut(car)

[v_ew]

getOut(car)

[vv_we]

require(car, way)

[way=#ew] ^car.wait

require(car, way)

^car.wait

getOut(car)

[not v_ew]

^_aew

getOut(car)

[not vv_we] ^_awe

occupied E/W

one_vehicle

E/W

two_vehicles

E/W

require(car, way)

[way=#eo] ^car.allowr

getOut(car)

[v_we]

getOut(car)

[vv_ew]

require(car, way)

[way=#we] ^car.wait

require(car, way)

^car.wait

getOut(car)

[not v_we] ^_awe

getOut(car)

[not vv_ew] ^_aew

Vehicle

tunnel access

Supervisor

tunnel administration

Verification of properties (
 consistency
)

on the Model M

w,i

 in workflow
w
of iteration
i

tunnel state-transition diagram

system sequence diagram

vehicle activity diagram

use case diagram

class diagram

types

instances

use cases

consistency

Evolution
Model

Domain

conformance
 subdomains

refinement

traceability

Consistency rule hierarchy

Diagram
 integration

Figure 1 : Veri�
ation of properties on models

a development pro
ess, several models are produ
ed. The models must have

properties whi
h are
he
ked by some veri�
ations. The
ontext of this work

is thus a quadruple pro
ess-model-property-veri�
ation. In the example

of Figure 1 the goal is to
he
k the
onsisten
y of some model M

w;i

in some

work�ow w of an iteration i in the pro
ess. The
ase study is the management

of vehi
le a

ess in a tunnel.

The properties
an be
lassi�ed into three distin
t
ategories: system prop-

erties (dependent on the target appli
ation, these in
lude validity, safety, live-

ness, reliability, et
. They are often asso
iated to a spe
i�
 point of view -stati
,

dynami
, fun
tional). In the Tunnel
ase study, a safety (system) property is

that the vehi
le
an always run. model properties (mainly
onsisten
y and

the
ompleteness of the models) pro
ess properties (fo
us on the evolution

of models during the development pro
ess, mainly the tra
eability,
onsisten
y

and the
ompleteness of the model evolution). Some properties traverse the
at-

egories. This is the
ase for the
onsisten
y property. A
onsisten
y (model)

property is "the message send
onforms to the operations de�nition". A re�ne-

ment (pro
ess) property is "the
lass de�nitions
onforms to the Use Case". An

evolution (pro
ess) property is "the
lasses of the se
ond iteration are
onsistent

with the ones of the �rst iteration".

The
ontribution of this paper is a general framework and a tool support

for handling the veri�
ation of properties on UML models. In this paper, the

target property is
onsisten
y, but the dis
ourse applies to other properties. Se
-

tion 2 states the four foundation prin
iples of the framework. These prin
iples

are further exploited in the remainder of the paper. In se
tion 3, we propose

a stru
turing of the models that support a stru
turing of the
onsisten
y. Se
-

tion 4 overviews the main issues of the te
hniques for verify the
onsisten
y of

models. In se
tion5 and 6 we fo
us on the rule based part of the veri�
ation.

The tool support is overview in se
tion 7. Last we
on
lude and dis
uss several

perspe
tives of this work.

2 A framework for veri�
ation

Our motivation is to take the problem of verifying the properties of UML mod-

els in the
urrent pra
ti
e of development, i.e. in a large and pra
ti
al view.

By large, we mean that we try to
over the main development work�ow and

notations. Contrarily to the exe
utable UML languages [12,13℄ whi
h handle a

redu
ed (even formal) notation subset, we intend to
over the
on
epts of the 9

or 13 UML diagrams. By pra
ti
al, we mean that veri�
ation must also in
lude

some aspe
ts of the development pro
ess: in MDE approa
hes, the model
over

orthogonal aspe
ts or point of view (heterogeneity) ; they are transformed along

the work�ows, (abstra
tion levels), they evolve along the in
rements (iteration).

Su
h a veri�
ation an overwhelming task be
ause the
on
epts involved at dif-

ferent levels are numerous, the semanti
s of UML model elements
over a wide

spe
trum and the spe
i�
ations are in
omplete by nature. Moreover, the prop-

erties are mutually dependent: what means
ompleteness without
onsisten
y ?

what means
onsisten
y without
orre
tness ?

We propose a framework based on four prin
iples: divide and
onquer, reuse

and adapt, support
ustomised veri�
ation, be independent and evolve.

Prin
iple 1 (divide and
onquer) The veri�
ation should apply to the plain

UML notation.

To be appli
able in pra
ti
e, the veri�
ation should work on any UML model.

In order to organise both the models and the veri�
ation and manage their

omplexity, the notation is partitioned into domains and models. Ea
h domain

is related to some work�ow of the development pro
ess. This point is further

studied in se
tion 3.

Prin
iple 2 (reuse and adapt) The veri�
ation problem does not have to be

started from s
rat
h, thus it must reuse and adapt existing te
hniques and tools.

This point is further studied in se
tion 4. The idea is to smoothly
ombine

the formal te
hniques and the rule based systems, whi
h are the two main and

omplementary approa
hes for veri�
ation.

Prin
iple 3 (support
ustomised veri�
ation) The veri�
ation must be
us-

tomisable depending on the wishes of the designer and the
urrent stage in the

development (iteration, work�ow).

The property tester
an de�ne a veri�
ation pro
ess to assert a property

(prede�ned
ombinations are stored in libraries). The veri�
ation pro
ess should

manage in
omplete models (there are many 'in
omplete' PIM before a PSM)

produ
ed along the development. Besides
ompleteness-based rules �ltering, it

should also be possible to set priorities and weights on the rules a

ording to

di�erent poli
ies. This point is further studied in se
tion 5.

Prin
iple 4 (be independent and evolve) The veri�
ation tools should be

independent from a spe
i�

ase tool and should be able to adapt easily to
hanges

in versions of UML.

This prin
iple
onforms to the MDE philosophy: managing repositories to

a

ept various metamodels (des
ribed in various MOF), de�ning a veri�
ation

servi
e as an additional servi
e of CASE Tools. This point is further studied in

se
tion 7.

3 Manage Models and Consisten
y

Modelling pra
ti
e shows that the notation panel is too large when
onsidering

ea
h phase or ea
h work�ow. In this se
tion we study how to
ombine the model

elements during the development pro
ess a

ording to prin
iple 1.

The UML notation is stru
tured over
onsistent element arrangements: the

nine or thirteen diagrams [7,5℄. The diagram
on
ept does not exist in the nota-

tion metamodel (the only stru
turing me
hanism is the pa
kage) nor in develop-

ment pro
esses e.g. Uni�ed Pro
ess (the stru
turing unit is the model whi
h is a

also a pa
kage in the metamodel). The model's
ontent is not formally de�ned.

"A model is an abstra
tion of a system" [15℄. Ea
h pro
ess work�ow a

epts one

or several models as input and produ
es one or several model (e.g. UC model,

analysis model, deployment model...). Note that domain models, business mod-

els, test models and non-fun
tional requirements are omitted here.

Thus, in order to avoid
onfusions in a seamless use of UML, we propose a

three level stru
ture that fa
ilitates the veri�
ation pro
ess: element, diagram,

model. First, we think that diagrams are more than visual notations (graphs):

they de�ne (quite)
onsistent
ombinations of model elements and should be

used a

ordingly. This idea is not new and is present in most CASE tools but it

is not formalised. Se
ond, we advise to restri
t the number of diagrams available

for ea
h a
tivity. We promote three abstra
tion levels: external, logi
al, physi
al.

Last, we separate the instan
e-related diagrams from the type-related diagrams.

The notation stru
ture is summarised in �gure 2.

� The external (or user) level
orresponds to the requirements work�ow. It

fo
uses on a high level notation (use
ases, s
enarios and �ow-a
tivity di-

agrams). While �ow-a
tivity diagrams
an be used for modelling the main

fun
tions of the system (with swimlanes), we think their semanti
s is quite

ambiguous, inspired from various formal models (Petri Nets, Data Flow Di-

agrams, Control Flow Diagrams).

� The logi
al level
orresponds to the analysis and design work�ows. It fo
uses

on obje
t modelling (
lasses, sequen
es,
ollaborations/
ommuni
ations, state

ma
hines, do-a
tivities).

� The physi
al level deals with the low level abstra
tions (
omponents, deploy-

ment,
ode) of implementation and tests.

Composite stru
ture diagrams and pa
kage diagrams are impli
itly parts of many

of the above diagrams. The intera
tion overview diagram is a mix between se-

quen
es and a
tivities, whi
h has a rather fuzzy semanti
s. Timing diagrams are

quite disjoint from the above diagrams, espe
ially for
onsisten
y. The
rossing

of the diagrams in the levels results in a partition of the diagrams

1

into domains.

Use Cases
 Component diagrams

Deployment diagrams

external domain
 physical domain
logical domain

Type level

instance level

Sequence

diagrams

Collaboration/

communication

diagrams

Class

diagrams

(do)Activity

diagrams

State machine

diagrams

c

o

n

f
o

r
m

s

t

o

(flow)Activity

diagrams

Sequence

diagrams

(Scenarios)

Figure 2 : Domain stru
turing for an iteration i

Ea
h diagram (if we
onsider s
enarios as simpli�ed sequen
e diagrams) ap-

pears in one
ell only: this is a partition. This improves the readability of the

UML models : it is easy to �nd the abstra
tion level it refers, and its relevant

pla
e in the development work�ow. But it redu
es the expressive power be
ause

the
ontext of use is restri
ted. For example, a
tivity diagrams are only related

to operations or state a
tivities (inside a state of a state transition diagram).

Ea
h
ell is a sub-domain. A model is a view on a domain. Based on this

stru
turation, the
onsisten
y property
an be spe
ialised into smaller proper-

ties (e.g. the property hierar
hy of �gure 1).

1

But not a partition of the notation sin
e the same model element may appear on

several diagrams.

1. Diagram
onsisten
y

2. Sub-domain
onsisten
y = inter-diagram
onsisten
y

3. Domain
onsisten
y = Sub-domain
onsisten
y +
onforman
e (instan
e/types)

4. Work�ow
onsisten
y = Domain
onsisten
y + re�nement (or tra
eability)

5. Pro
ess
onsisten
y = Work�ow
onsisten
y + evolution
onsisten
y

Our stru
turation is a bit �ner than the ones of [16,10℄, but domain (resp.

work�ow, pro
ess)
onsisten
y is
lose to horizontal
onsisten
y (resp. verti
al,

evolution). Note that re�nement is quite hard to de�ne when there is no seamless

models, and therefore tra
eability is a looser
onstraint.

4 Integrate Veri�
ation Te
hniques

We
onsider two main approa
hes for automated property veri�
ation of UML

models: formal methods and rules based systems. There are also spe
i�
 te
h-

niques for managing
onsisten
y among models. Details on these approa
hes
an

be found in [10,9,8℄.

The Formal Methods Approa
h (FM) is a MDE approa
h sin
e the model is

transformed into a formal model written in a formal language that is supported

by automated tools for model
he
king or theorem proving. These
an be plain

languages (e.g. Z, B, CASL, LTSA) or OO extensions of them (e.g. Obje
t-Z,

OOZE, Troll, Maude) whi
h have less supporting tools [6,11℄. Formal methods

are also an answer to the UML Semanti
s weakness [14,17℄ in providing a formal

semanti
s for (a part of) the UML notation (or metamodel), e.g. in the pUML

group [3,4℄. The numerous proposals dealt mainly with the
lass diagram, the

state ma
hine diagram and the sequen
e diagram. The (formal) model of evo-

lution is re�nement, thus the proof of the evolution
onsisten
y depends on the

proof of re�nement. Verifying the
onsisten
y of multiple viewpoints is still an

a
tive resear
h area in the formal methods
ommunity. Other operational se-

manti
s, say exe
utable UML [12,13℄,
an be
lassi�ed as formal. They are very

useful for validating the UML produ
ts but not for verifying them.

The Rules-Based Systems Approa
h (RBS) is a test approa
h, where veri�
ation

rules are applied to models to
he
k target properties. A rule is a statement de-

s
ribing a property (or a part of it). The rule language
an be formal (Des
ription

Logi
s, OCL, algorithm, Java
ode...) or informal. This is also the CASE Tool

approa
h, sin
e CASE Tools implement rules and their
he
king dire
tly on the

graphi
al modelling editors. Nevertheless, rules
an be de�ned at the model level

or the metamodel level. Examples are given in [18,10,9℄. The main issue of rule

oriented veri�
ation is property management, be
ause there is a great number

of rules depending on the element
ombination, the diagrams, the models, the

syntax, the typing system and the semanti
s.

Dis
ussion Table 1
ompares both approa
hes in
luding se
tions on the Model-

Property-Veri�
ation triplet. The FM approa
h is not a dire
t answer in our

ontext. It assumes
omplete models, a premise whi
h is not true in the earlier

steps of the development. The
urrent proposals
over only a part of the notation

with a parti
ular semanti
s whi
h is not �tted to a large panel of appli
ations.

Nevertheless, the formal approa
hes are very useful to prove the system and

model properties within these parts (modelling ni
hes). The advantage of the

RBS Approa
h is that the
hoi
e
an be
ustomised to the development pro
ess

and the veri�
ation goal. As a
ounterpart, the main problem is building spe
i�

rules and ensuring a
omplete and
onsistent set of rules.

Formal Approa
hes Rule based Approa
hes

Model

des
ription a formal model a sour
e model

UML notation partial total

Properties

expression formal statements (e.g predi
ate) semi-formal statement

user-de�ned formal statements OCL assertions ?

system prop. a

ording to the target semanti
s none

model prop. yes yes

pro
ess prop. re�nement tra
eability, evolution

Veri�
ation

pro
ess automati
 for model properties sele
t and test

individual for system properties -

he
king formal proof algorithm (or review)

User know- UML, formal model UML

ledge, role property de�nitions and proofs rule sele
tion

experien
e proof theory rule database knowledge

Advantages formal semanti
s
ustomizable a

ording to

(non ambiguous,
onsistent...) - the development step

(re�nement to
ode) vthe appli
ation nature

automation no more than UML

soundness from the formal model programming and tests

Drawba
ks heavy, user proof experien
e implementation dependent

partial UML notation
onsistent,
omplete ?

two models (sour
e + formal) sele
tion require user skill

Table I� Synthesis
omparison

Table 1 shows that the two approa
hes are
omplementary. A veri�
ation

framework that smoothly
ombine both approa
hes would really be the best

solution. We propose the following
oordination for
onsisten
y
he
king:

1. Diagram
onsisten
y is a
hieved by transformations into formal notations,

be
ause diagrams are, by nature, based on
onsistent theories.

2. Sub-domain
onsisten
y
orresponds to multi-view integrations, both formal

te
hniques and rule-based te
hniques apply here.

3. Domain
onsisten
y
an be solved using
onforman
e dependen
ies (see [8℄)

in a rule-base approa
h or a formal typing system.

4. Work�ow
onsisten
y is merely obtained by a rule-based approa
h on re�ne-

ment and tra
eability. A true formal re�nement relations is hard to de�ne

here be
ause the domains have quite di�erent notations.

5. Pro
ess
onsisten
y depends on the four lower level
onsisten
y
he
king

te
hnique. The diagram evolution
onsisten
y
an be seen as diagram re�ne-

ment in the same formal framework but it is merely obtained using evolution

maintenan
e te
hniques su
h as des
ription logi
s in [16℄.

In summary, the low levels of
onsisten
y are a
hieved with transformations

into formal methods be
ause there are many, often synta
ti
, rules. The higher

levels of
onsisten
y are veri�ed using rule-based approa
hes. In a previous work,

we experien
ed the former approa
h using algebrai
 spe
i�
ations, where
onsis-

ten
y has a spe
ial meaning [2℄. In other words, when the number of rules really

grows up (espe
ially when you
onsider other properties than
onsisten
y) we

found it bene�
ial to use a formal model. Formal models are also more appro-

priate for type subdomains than instan
e subdomains whereas the opposite is

true of the rule-based te
hniques.

5 Veri�
ation

In this se
tion, we des
ribe veri�
ations as stru
turing units for a veri�
ation

pro
ess whom goal is to
he
k properties.

5.1 De�ning a Veri�
ation

Several veri�
ations
an be linked to a property. For instan
e, the
onsisten
y

of a model from the logi
al domain needs the following veri�
ations:

�
onformity of the messages sent to an obje
t in a sequen
e diagram with the

messages supported by the type of the obje
t and with the messages that

the emitting obje
t is allowed to send.

�
onformity of the sequen
e of messages with the state diagram of the
lass

of the re
eiving obje
t

�
onsisten
y of the a
tions from a state diagram with its
lass.

We de�ne a veri�
ation by a name, a goal (informal
omment) and a workspa
e.

It
an be realised with rules (algorithms, predi
ates,
ode) or proofs in a formal

model. It is good pra
ti
e to de�ne rules as OCL (Obje
t Constraint Language)

expressions whenever possible.

The workspa
e is related with the part of the metamodel whi
h
on
erns the

veri�
ation. In UML, this metamodel, whi
h des
ribes UML, is the level M2

de�ned by the OMG. The workspa
e is
omposed of:

� U , the set of elements from the metamodel whi
h are needed for the veri�-

ation. It is partitionned into U

v

, set of the elements to be veri�ed, and U

n

the set of elements that need not to be veri�ed.

� C, the set of the metamodel elements
on
erned but not used by the veri�-

ation. The instan
es of the elements of C in the metamodel will be marked

as invalid if one of their subelements is marked as invalid.

U depends on the veri�
ation, while C and the partition of U into U

v

and U

n

depends on the veri�
ation pro
ess. For instan
e, the veri�
ation of
onformity

between sequen
e diagrams and a
lass diagram has
lass diagrams and sequen
e

diagrams as U (that is
lasses, interfa
es, methods, obje
ts and messages), mes-

sages as U

v

and sequen
e diagram as C.

A veri�
ation of a model M1 is done in four steps:

� sele
tion of the elements of M1 that are instan
es of U and
onversion if

ne
essary,

� appli
ation of the rule or the proof asso
iated with the veri�
ation,

� interpretation of the results and marking of the elements of M1,

� propagation of the result on the elements of M1 that are instan
es of C.

Selection of

instances of U

with optional conversion

application

interpretation
and marking of instances of U

Verification V1
U

C

Propagation

on instances of C

Model M1’Model M1

Figure 3 : Applying a veri�
ation on a model

5.2 Pro
ess and Composition of Veri�
ations

In a rule based veri�
ations, the user
hoose the rules and laun
h the veri�
ation

[18℄. Ea
h rule is then applied independently on the model. This requires a deep

knowledge of the rules and of the reasonable sequen
es of their appli
ations.

We wish to help both the designers of veri�
ation and the users, using a veri-

�
ation pro
ess. A veri�
ation pro
ess is the
umulative appli
ation of fun
tions

working on models. These fun
tions
an be veri�
ations or �lters A very sim-

ple �lter
an be the removal of every element previously marked as invalid. The

appli
ation order of the fun
tions is important when �ltering is used. Indeed, a

veri�
ation v1
an invalidate an element whi
h is an input of a veri�
ation v2 if

U(v2)\ (U

v

(v1)[C(v1)) 6= ;. In
ases of
ross dependen
ies,
hoosing the order

is a
ru
ial step of the pro
essus design. The following �gure shows a simple

veri�
ation pro
ess.

C

U

C

U

C

U

M1 M2 M3

Fi
lte

r
F1

M4Verif V1 Verif V2 Verif V3 M5

Figure 4 : Applying a veri�
ation pro
ess on a model

In order to simplify the management of veri�
ations and to automatise pro-

ess
reation, we introdu
e the following
omposition operator:

omp(name, goal, fun
tions list)! veri�
ation(U, C).

The four steps asso
iated with a
omposed veri�
ation are

� sele
tion: no �ltering is ne
essary

� appli
ation:
ontained fun
tions are applied in sequen
e

� interpretation of result: �nal result is a predi
ate on the value of the anno-

tations given by the
ontained veri�
ation

� propagation of result is done a

ording to the optional set C.

Verification VComp

C

Propagation

on the instances of C

Interpretation

and marking

U

Fi
lte

r
F1

Verif V3
C3

U3

C2

U2

Verif V1
C1

U1
Verif V2

Figure 5 : Composing veri�
ations

A pre
ise de�nition of the sets U

v

and C helps to transform the binary result

of a formal veri�
ation into a result a

eptable for the rule-based system.

5.3 Manage In
ompleteness in Veri�
ations

The treatment of in
ompleteness is a
hieved by two means:

� a parameter in the workspa
e de�nition that indi
ates the level of details

that is required. For example, iin a �rst iteration, the
lass name or the

operation names
an be su�
ient. We
urrently de�ned 5 levels: diagram

syntax, nouns resolution (
lass, pa
kage, obje
t, types), nouns resolution

(attributes, relations, operations, state), type
onsisten
y, a
tion
onsisten
y

(pre/post
onditions, guards).

� an adequate sele
tion of the rules in the de�nition of the pro
ess. Sin
e the

veri�
ation is
ustomizable, the rule sele
tion requires some skill from the

tester.

6 The Veri�
ation Pro
ess

We �rst introdu
e the basi
 rule management and then we introdu
e the veri�-

ation pro
ess, sin
e it has an in�uen
e on the rule expressing.

6.1 Basi
 Rule Management

The implementation of the veri�
ation pro
ess is based on the following triplet:

property, rule,
ontrol.

The �rst step is to �nd the properties of models or groups of models. This is

a huge work and unfortunately, there is no library of rules available. We did not

�nd detailed examples of rules to be
he
ked in the plethori
 litterature on UML.

Usually, the authors give some tra
ks like some questions to be asked. A more

informative sour
e is the OMG produ
ts, espe
ially the UML Semanti
s and

UML Notation guide [7℄: the allowed element
ombination, the OCL expressions

of the metamodel. Last, one
an �nd ad-ho
 rules in the visual modeling tools

and try to formalize them.

The se
ond step is to de�ne pre
isely the way the property
an be
he
ked,

say a rule. We
an simply write the rules as senten
es in a stru
tured
he
k-

ing manual, the veri�
ation pro
ess is to take ea
h rule manually and to
he
k

it. To be reliable, e�
ient and
heap, the rules are to be written in a formal

language, merely exe
utable. This
an be a Java
ode, an OCL expression (Ob-

je
t Constraint Language [19℄), algebrai
 axioms, predi
ates...). As far as it is

possible, OCL is adequate for UML models, sin
e it belongs to the same stan-

dards. The MOF des
ription of UML is a powerful means for stru
turing the

rules sin
e they bene�t from the obje
t �avor: the rules
an be atta
hed to mod-

eling elements, spe
ialized, delegated through asso
iations... For example, the

simple expression not self.allParents->in
ludes(self) in the
ontext of a

GeneralizableElement means that inheritan
e is not
ir
ular. Note that, many

lassi�
ation problems o

ur: a rule de�ned for an element applies to all it spe-

ialized elements until ex
eptions have been quoted. For example, ea
h
lassi�er

may have attributes and operations, so a use
ase (whi
h is a
lassi�er)
an

have attributes and operations. Stru
turing the rules, like building the UML

metamodel, is a
lassi�
ation task.

The third step is to
ontrol the rules on the model. This is not simply a

boolean fun
tion whi
h delivers
orre
t or error. As done for
ompilers, the error

an be
lassi�ed from ignored warning to non-re
overable error. The erroneous

model elements
an be removed,
orre
ted. The
ontrol algorithm is related to

the model management and the veri�
ation pro
ess. An example is given in

se
tion 6.3.

6.2 Hierar
hi
al Rule Management

Controlling the synta
ti
 and semanti
s aspe
ts of UML models lead to hundreds

of rules. A �at list of these is thus unmanageable, we need to organize the rules.

We already introdu
ed several
lassi�
ation
riteria for the properties:

Element

(from Kernel)

Diagram
 Subdomain
 Domain
 Model

viewpoint : String

Version

number

Package

(from Kernel)

VProperty
Verification
consistencyRule

Figure 6 : Simpli�ed Meta-model for Veri�
ations

� system / model / pro
ess

� external / logi
al / physi
al domains

� instan
e / types

� multi-view
onsisten
y

� syntax, typing, semanti
s

Moreover, the same rule may be de�ned di�erently a

ording to the development

step (prin
iple 3), be
ause informations are missing. Last, as in every a rule

based system, we need a rule sele
tion pro
ess that helps the user to
he
k

the properties, a

ording to some
riteria. In [18℄, the user sele
ts the rules

to apply. It requires some skill and knowledge. It
an be
ombined with other

approa
hes, like pre
ision level (a

ording to the development iteration and the

work�ow),
oarse/�ne grain element des
ription. For example, an operation
an

be des
ribed by its name in a s
enario, by a pro�le (name and parameters), by a

signature (a name, result and parameter types), by pre/post
onditions in OCL,

by a target
ode.

Our hierar
hi
al veri�
ation of
onsisten
y is based on the domain stru
tur-

ing of �gure 2. The
he
king holds on ea
h domain and ea
h domain relation.

The simplest way to stru
ture the rules is to asso
iate the veri�
ation pro
esses

(se
tion 5.2) with the notation stru
turing nodes of se
tion 3. This is a quite

ommon meta-representation of rules. The veri�
ation hierar
hy is not further

developped here.

6.3 Some Logi
al Domain Veri�
ations

Here, we just overview the
ore of veri�
ation and show examples. The stati

rules are organized in the following way:

1. Combination rules: for example, an interfa
e des
ribes only operations, the

spe
ialization relation is not re�exive.

2. Constraints: typing, multipli
ities,
onstraints on relations (or, xor), OCL

onstraints.

3. Ex
eptions related to some semanti
s: for example, no multiple inheritan
e

for the sub
lasses of a dis
riminator, a passive obje
t
annot send simultane-

ously two messages. These in
lude the
onstraints asso
iated to stereotypes.

The logi
al model is a multi-aspe
t model. Ea
h aspe
t is a diagram. The

veri�
ation is naturally based on this de
omposition: diagram veri�
ation and

model veri�
ation. While we read many do
uments, we only refer to the UML

Semanti
s (metamodel and well-formed rules) and Notation Guide of [7℄, be
ause

they are the only reliable sour
es, even if many information and examples are

just informal.

After the individual veri�
ation of the diagrams, the
orre
tness,
onsisten
y

and
ompletion of the models are examined. The
onsisten
y link between the

diagrams is the obje
t paradigm. The domain level is mainly based on the Be-

havioral and A
tion parts of the UML Semanti
s, whi
h were not a
hieved in

the former release of UML.

The veri�
ation pro
ess handles two abstra
tion levels: instan
es and types.

The diagrams related to instan
es are intera
tion diagrams (obje
ts, sequen
es,

ollaborations). Instan
e diagrams are o

uren
es that
onforms to their type

de�nitions. The diagrams related to types are
lass, state
harts and a
tivity

diagrams. Type diagrams de�ne all what is possible in an obje
t system. The type

level is organized as follow: the
lass diagrams de�nes the stru
turing entities

(stru
tural view) and the operations (fun
tional view), ea
h
lass de�nes its

behavior by a state ma
hine (dynami
 view), the a
tivities of some states are

de�ned by an a
tivity diagram. We
learly restri
t the usage of state ma
hines

and a
tivity graphs in UML, in order to manage the type level
omplexity.

In
luding this reality, the
he
king pro
ess is the following:

1. Type level

(a) Classes/State ma
hines: we ensure the well-foundedness of guards, tran-

sitions and a
tions.

(b) Classes/A
tivities: we ensure the well-foundedness of guards, transitions

and a
tions.

(
) State ma
hines/A
tivities: we ensure the
onsisten
y of a
tivities against

their
omposite states.

2. Instan
e level

(a) We ensure the
onsisten
y of
ollaborations and sequen
es representing

the same reality (spa
e and temporal viewpoints).

(b) We ensure the
ompatibility of messages and obje
ts...

3. Instan
e/Type level. This part is mainly based on the semanti
s of the triplet:

message, a
tion, event. For a long time, the three
on
epts have been studied

in separate
ontexts: instan
e diagrams for the messages and state ma
hines

for a
tion and events. The former issues from OO programming and the

latter from real-time appli
ations. The semanti
s of the triplet is still an open

problem. Consider a simple
onsisten
y rule: a message indu
es an event by

the re
eiver, whi
h
an re
eive other events, an a
tion sends messages.

7 Tool Support

Depending on a parti
ular
ase tool or a parti
ular version of UML, MOF or

OCL is a serious obsta
le for a tool development. A

ording to the prin
iple 4,

we want the support tool to be

� evolving with the standards. Indeed, the UML and MOF models are ongoing

standards, thus a veri�
ation tool should evolve

� independent from a CASE Tool. Sin
e UML is a standard, the veri�
ation

should not depend on a spe
i�
 implementation.

Thus veri�
ation
an be seen as a
omponent or a servi
e in a MDA approa
h.

The model are transformed (or immersed) in a veri�
ation
ontext whi
h is quite

di�erent to a transformation into OO
ode.

The veri�
ation framework developped in the Bos
o tool [1℄. The Bos
o tool

2

is a generi
 open sour
e proje
t that fo
us on the internal representation of

sofware development models. Bos
o parameters are XMI �les des
ribing meta-

models and meta-metamodels. It
urrently works for MOF release 1.4 and UML

metamodels releases. Its entries are software development models (e.g. UML

models, ER models, ...) generated from editing tools. Bos
o add-ins are model

driven fun
tions: the user implements modeling fun
tions su
h that model
he
k-

ing,
ode generation, do
umentation generation, model transformation (e.g. from

UML 1.5 to UML 2.0) and so on.

The
urrent release in
ludes transformations to algebrai
 spe
i�
ations for

the logi
al type level subdomain. The other domains have been studied, but only

a
atalog of informal rules issued. The rule based approa
h handle the full logi
al

domain. The rules are
urrently implemented by algorithm and OCL
onstraints.

8 Con
lusion and future work

In this paper we proposed a framework for the
onsisten
y problem in sofware

development with UML and MDA. We assume a large notation,
overing the

UML notation (but not the pro�les), and a pra
ti
al use of it for modeling the

artifa
ts of the development (iterative and in
remental pro
ess). This implies

to manage the language
omplexity (numerous
on
epts, diagrams and mod-

els) and the model in
ompleteness (due to the development habits). Our answer

is a general veri�
ation framework based on four prin
iples: (1) manage the

language
omplexity by a notation stru
turation and apply
onsisten
y on that

stru
ture, (2) try to reuse various te
hniques in both formal methods approa
hes

and rule-based approa
h, (3) manage in
omplete spe
i�
ation by de�ning veri-

�
ation levels and
ustomizable veri�
ation pro
esses, (4) promote an extended

2

http://bos
o.tigris.org

veri�
ation tool support, as a servi
e, whi
h is standard evolving and CASE tool

independent.

We
urrently implemented a FM approa
h for diagrammati

onsisten
y ver-

i�
ation and a RBS approa
h where rules are
he
ked by algorithms and the

veri�
ation pro
ess are
ustomizable.

Sin
e the proje
t is ambitious, there remain many work to do. On one hand,

the transformation approa
h has to be extended to in
lude other (existing) for-

mal te
hniques espe
ially for the Message Sequen
e Charts (MSC) and a
om-

plete notation for statema
hines. On the other hand, the RBS approa
h is to

further develop. The rule
atalog has to be
ompleted, espe
ially for OCL de-

s
riptions. The stru
turation of a properties and rule is to be improved and

applied to real
ase studies, generated by
urrent UML CASE Tools. A (the-

oreti
al) work on the
onsisten
y of the rule set is ne
essary, based on some

logi
s. Last, the rule de�nitions should be as independent of the UML standard

as possible.

Referen
es

1. Pas
al André, Gilles Ardourel, and Gerson Sunye. The Bos
o Proje
t, A JMI-

Compliant Template-based Code Generator. In W. Dos
h and N. Debnath, edi-

tors, Pro
eedings of the 13th International Conferen
e on Intelligent and Adaptive

Systems and Software Engineering, pages 157�162, July 2004. ISBN 1-880843-52-X.

2. Pas
al André, Annya Roman
zuk, Jean-Claude Royer, and Aline Vas
on
elos.

Che
king the Consisten
y of UML Class Diagrams Using Lar
h Prover. In T. Clark,

editor, Pro
eedings of the third Rigorous Obje
t-Oriented Methods Workshop, BCS

eWi
s, January 2000.

3. Andy S. Evans, Jean-Mi
hel Bruel, Robert B. Fran
e, Kevin C. Lano, and Bernhard

Rumpe. Making uml pre
ise. In OOPSLA'98 Workshop on �Formalizing UML.

Why and How?�, O
tober 1998. Van
ouver, Canada.

4. Andy S. Evans, Robert B. Fran
e, Kevin C. Lano, and Bernhard Rumpe. The

UML as a formal modelling notation. In UML'98 - Beyond the notation, LNCS.

Springer, 1998.

5. Martin Fowler and Kendall S
ott. UML Distilled. Obje
t-Oriented Series. Addison-

Wesley, 3rd edition, 2003. ISBN 0-321-19368-7.

6. S.J. Goldsa
k and S.J.H. Kent, editors. Formal Methods and Obje
t Te
hnology.

Springer-Verlag, London, 1996.

7. Obje
t Management Group. The OMG Uni�ed Modeling Language Spe
i�
a-

tion, version 1.5. Te
hni
al report, Obje
t Management Group, available at

http://www.omg.org/
gi-bin/do
?formal/03-03-01, June 2003.

8. Ludwik Kuzniarz, Zbigniew Huzar, Gianna Reggio, and Jean-Louis Sourrouille,

editors. Pro
eedings of �UML� 2004 Workshop on Consisten
y Problems

in UML-based Software Development III, Lisbon, Portugal, O
tober 11 2004.

http://uml04.
i.pwr.wro
.pl/Workshop-materials.pdf.

9. Ludwik Kuzniarz, Zbigniew Huzar, Gianna Reggio, Jean-Louis Sourrouille,

and Miroslaw Staron, editors. Pro
eedings of �UML� 2003 Workshop on

Consisten
y Problems in UML-based Software Development II, San Fran-

is
o, California, USA, O
tober 20 - 24 2003. IEEE and Blekinge In-

stitute Of Te
hnology. ISSN 1103-1581 also Resear
h Report 2003:06,

http://www.ipd.bth.se/
onsisten
yUML/Consisten
y_Problems_in_UML_II.pdf.

10. Ludwik Kuzniarz, Gianna Reggio, Jean-Louis Sourrouille, and Zbigniew Huzar,

editors. Pro
eedings of �UML� 2002 Workshop on Consisten
y Problems

in UML-based Software Development, Dresden, Germany, O
tober 1 2002.

Blekinge Institute Of Te
hnology. ISSN 1103-1581also Resear
h Report 2002:06,

http://www.ipd.bth.se/uml2002/RR-2002-06.pdf.

11. Kevin Lano and Howard Haughton, editors. Obje
t-Oriented Spe
i�
ation Case

Studies. Obje
t Oriented Series. Prenti
e Hall, 1993.

12. Stephen J. Mellor and Mar
 J. Bal
er. Exe
utable UML - A Foundation For Model-

Driven Ar
hite
ture. Addison Wesley, 2002. ISBN 0-201-74804-5.

13. Chris Raistri
k, Paul Fran
is, Ian Wilkie, John Wright, and Colin B. Carter. Model

Driven Ar
hite
ture with Exe
utable UML. Cambridge University Press, 2004.

ISBN 0-521-53771-1.

14. Gianna Reggio and Roel Wieringa. Thirty one problems in the semanti
s of uml

1.3 dynami
s. In Pro
eedings of the OOPSLA'99 Workshop on "Rigorous Modelling

and Analysis of the UML: Challenges and Limitations, 1999.

15. James Rumbaugh, Ivar Ja
obson, and Grady Boo
h. The Uni�ed Software Develop-

ment Pro
ess. Obje
t-Oriented Series. Addison-Wesley, 1999. ISBN 0-201-57169-2.

16. Jo
elyn Simmonds, Ragnhild Van Der Straeten, Viviane Jon
kers, and Tom Mens.

Maintaining
onsisten
y between UML models using des
ription logi
. L'Objet,

A
tes de LMO'04, 10(2-3):231�244, 2004.

17. Anthony Simons. 37 things that don't work in obje
t-oriented modelling with

UML. In Haim Kilov and Bernhard Rumpe, editors, Pro
eedings Se
ond ECOOP

Workshop on Pre
ise Behavioral Semanti
s (with an Emphasis on OO Business

Spe
i�
ations), pages 209�232. Te
hnis
he Universität Mün
hen, TUM-I9813, 1998.

18. Ambrosio Toval, Jose Sàez, and Fran
is
o Maestre. Automated Property Veri-

�
ation in UML Models. In Stefan Gruner Mi
hael Leus
hel and Stéphane Lo

Presti, editors, Pro
eedings of the 3rd Automated Veri�
ation of Criti
al Systems

(AVoCS'03). DSSE Te
hni
al Report DSSE-TR-2003-2, April 2003.

19. Jos B. Warmer and Anneke G. Kleppe. The Obje
t Constraint Language, Pre
ise

Modeling with UML. Obje
t-Oriented Series. Addison-Wesley, 1998. ISBN 0-201-

37940-6.

