
Handling over-privileged Android applications
based on the minimum permission set identification

Mohammed El Amin TEBIB∗, Pascal André†, Mariem Graa‡, Oum-El-Kheir Aktouf∗
∗ Univ. Grenoble Alpes, Grenoble INP, LCIS - Email: mohammed-el-amin.tebib, oum-el-kheir.aktouf@univ-grenoble-alpes.fr

†Univ. of Nantes, LS2N - Email: pascal.andre@ls2n.fr
‡CNAM - Nantes - Email: mariem.graa@gmail.com

Abstract—Android applications (apps) access to smartphone
resources that manipulate users sensitive data such as position,
contacts and images. This access is controlled through permissions
to restrict the actions performed by apps on system resources. To
safely manage permissions, developers are highly recommended
to assign the smallest set of permissions, those required to run
the app. Unfortunately, most of them let apps opened to data
privacy risks generated by other vulnerabilities. Previous works
proposed assisting tools for developers to define the optimal
set of permissions for their apps. However, these works suffer
from two significant limits: outdatedness and incompleteness.
In this paper, we present PermDroid, a tool implementing a
new development approach for preventing over-privileged apps.
PermDroid combines static and dynamic app analysis to produce
more complete results. To obtain a good code coverage analysis
with automatic updated results, the tool enables a collaborative
mode. Developers will apply the analysis process from different
nodes on the various Android versions. Combining their analysis
results will help to improve the robustness against the continuous
evolution of Android API versions. We implement PermDroid
as an open source plugin of the IntelliJ IDE.

Index Terms—Android, Development, Permissions, Over-
privilege, Static analysis, Dynamic analysis, Collaborative con-
struction

I. INTRODUCTION

According to CVE details 1 (the official MITRE datasource
for Android vulnerabilities), recent years witnessed the most
significant increase of Android security threats, which can lead
to serious security attacks enabling the manipulation of users
sensitive data. Experimental research studies [1], [2] show that
most of these vulnerabilities are introduced unconsciously at
the development stage and 60% among them are related to
privileges and private data manipulation. Privileges are access
authorizations manipulated through the concept of Permissions
in Android applications. These permissions are declared by the
developer to define which system resources can be used by the
app. The least privileges principle [3] tells developers to assign
the smallest set of permission as possible to be able to run the
app. But most developers declare useless permissions leading
to over-privileged applications that can be used by malicious
apps to perform insecure tasks such as invoking unprotected
API [4]. Google provides an official documentation [5] to
explain how to properly use each permission. However, due

1https://www.cvedetails.com/product/19997/Google-
Android.html?vendor id=1224

to the continuous changes of permissions rules, this docu-
mentation is hardly readable for developers; it is incomplete
and contains inaccurate informations [6], [7]. Previous works
proposed tools to assist developers to define an optimal set
for a safe app execution context [8], [9], [10], [11]. This
set is optimal in filling the gap between the set of declared
permissions and the used permissions. The first one is defined
statically while the second one depends on the execution. The
key element to obtain an optimal permissions set is to build a
permission-mapping (PM) indicating for each API call in the
application which permissions have to be used [7]. Existing
solutions suffer from Outdatedness, the tools are not up-to-
date with Google specifications, and Incompleteness, meaning
that these works are not accurate enough to detect a precise
permissions set.

In this paper, we target these limitations by providing the
following contributions:

1) We propose to combine static and dynamic analysis to
target the completeness limitations. PermDroid performs
a hybrid analysis at two levels: (1) The application level
in order to extract a complete list of API calls performed
by the app; and (2) the framework level to construct a
more complete PM enabling developers to find all the
required permissions for their corresponding API calls.

2) Instead of launching the analysis process on one local
node, PermDroid builds the PM based on a collaborative
development approach. A set of developers can simul-
taneously run the analysis process, share the analysis
results, and iterate to ensure continuous updates with re-
cent API versions (not yet covered in a previous analysis
iteration).

We implement PermDroid as an IntellIJ/Android Studio IDE
plug-in that can be used alongside the Android-specific devel-
opment environment provided in the SDK.

The rest of the paper is organized as follows. Section 2
reviews the existing approaches proposed in the literature.
Section 3 underlines limits and presents our main contribu-
tions. Finally, we resume the on-going work and we present
the future steps.

II. BACKGROUND & RELATED WORKS

In this section we recall the main concepts related to
permissions and how to detect over-privileged application. We
overview current research and on-going challenges.



TABLE I: Overpriviledge Detection: Integrated IDE Solutions

ToolName Year of publication Support IDE U.Permission Mapping Approach Api Level Availabity
PermDroid 2021 IntellIJ, Android Studio pscout, dynamo, arcade, self-constructed Hybrid 9..30 Y
PerHelper 2018 IntellIJ pscout Static 12 N
PermiMe 2014 Eclipse pscout Static 12 N
Curbing 2011 Eclipse Manual Static 9 N

Permissions in Android applications are a basic element
to define authorizations. They represent access rights granted
to applications to use system resources such as: position,
camera, voice, contacts, etc. The app requests to access a
specific resource through the concept of API. For each API
call, specific permission(s) is (are) required to be declared
in the app. If permission is missing, the API can not be
used (so the system resource can not be accessed). On the
other hand, the application is considered over-privileged if
a declared permission is not required by any corresponding
API call. This useless declared permission could be exploited
to create critical security effects at runtime. To understand
how to automatically detect over-privileged applications, we
formalized the algorithm 1. Starting from the set of api-

Algorithm 1 Detecting Over-privileged Applications

declaredPerms← getDeclaredPerms(manifest);
apiCalls← getApiCall(sourceCodeF iles);
Initialize perm.used = false forallperm ∈ declaredPerms
for each apiCall ∈ apiCalls do

perms← getPermissionsOfApiCall(apiCall);
for each p ∈ perms do

if p ∈ declaredPerms then perm.used=true;
end if

end for
end for

Calls performed by the app, we investigate the set of the
declared permissions declaredPerms to perform these calls.
Each declared permission perm that does not correspond to
any apiCall will be considered as unused (perm.used=false)
and the app will be notified as over-privileged.

Research works over the last ten years proposed app analysis
tools to inspect the application source code and raise up
the list of unused permissions to developers in order to be
removed from the app. In Table I we summarize the tools we
found in the literature such as PerHelper[10], PermitMe[9],
Curbing[8]. There are also general-purpose quality tools
such as Sonarqube[12], FindBugs[13], Checkmarx [14] and
Fortify[15]. We studied their abilities in detecting over-
privileged applications.

We experimented industrial tools during a student cyber-
security project by analyzing a malicious application pre-
senting an over-privileged case [4] by exposing a permission
that will not be used by the app. These tools are known as
code smells analysis tools. They analyse statically an Android
application and raise up the different code smells related to
different metrics such as readiness, performance and security.
We focused on security related metrics by installing and testing

each tool in the above presented malicious app. None of them
detected the extra used permission presented in the app. This
project demonstrated that those tools that are well known by
their performance in tracing code smells are not adapted to
this kind of specific analysis in Android applications.

Since the mentioned academic tools are not available, we
carefully studied the published paper related to each one. A
comparative view is presented in Table I. These works provide
a PM indicating for each API call to the application framework
which permission(s) is (are) required. Except the oldest work
Curbing [8] that builds the PM starting from a manual analysis
of the official Android documentation, the remaining works
are based on the PM of pscout[16] that statically analysed
the application framework having the SDK version 2.2. After
analysis of these works, we underline the following limits:

• Outdatedness. All the solutions are completely/partially
outdated due to the evolution of permissions (number
and specification) and APIs. All of them are based on
pscout PM[16] that recognizes only permissions used for
API level 12. If the PM is incomplete and inaccurate,
it may lead to false negatives when detecting the used
permissions.

• Incompleteness. All works are based on static analysis
approaches. On the application side, static analysis serves
to detect the existing API calls, and the list of declared
permissions. However, dynamic development techniques
such as Reflective calls to API are commonly used, and
not addressed by these approaches leading to unsound
results. On the application framework side, reusing pscout
PM[16] does not provide full coverage for all API levels,
and cannot handle reflective calls, which is an open
problem for static analysis tools.

• Availability. We were surprised that none of these tools is
available to be used in real development projects. As we
found during the experimentation of the industrial tools
that they are not able to detect over-privileged applica-
tions, academic tools are also not publicly available nor
ready to be used in the context of industrial projects.

Next section presents our contribution to reduce these limita-
tions.

III. OVER-PRIVILEGED DETECTION WITH PERMDROID

We aim to improve the analysis results by performing static
and dynamic analysis in a combined app and framework levels.
The goal is to provide a better PM enabling developers to
detect if their apps are over-privileged or not (see Figure 1).

Through static analysis, we first investigate the Program
Structure Interface (PSI) provided by the IDE to determine the
list of declared permissions, and the API calls performed by



Fig. 1: Analysis process of Android apps

the app. We combine our analysis by monitoring the invoked
APIs of system services during the dynamic testing of the
app on the IDE emulator. This enables to collect all the
API references performed during the app execution (including
reflective calls).

Then we build a permission-mapping starting from the
monitoring of access control checks performed by the Android
framework. The goal is to collect permissions checked by the
framework for each API call. To reach this goal, our tool
PermDroid implements a dynamic testing service that gen-
erates input API calls and invokes the APIs of related system
services. The framework runs the required security checks and
lists the permissions required for each API call.Collecting the
set of tuples <api, permissions> enables PermDroid
to built a stand-alone PM set that will be used as a reference
to investigate if the declared permissions by the app represent
the optimal (minimum) set that could be used regarding the
API calls that are performed.

While performing dynamic analysis enables to obtain com-
plete and sound permission-mapping, there are some external
factors that can explicitly affect the quality of the constructed
PM such as (1) the analysis time & speed [The app execution
time will not be sufficient to invoke all API system services
and collect all the required permission corresponding to them]
and (2) the rapid evolution of Android specification, which
could make the solution not suitable to new framework ver-
sions. To deal with these challenges, we propose PermDroid
to perform the analysis process in a collaborative mode as
described in Figure 2, based on a crowd-sourcing principle.

Fig. 2: Our Dynamic Collaborative Approach

Having several devices running in parallel reduces the anal-

ysis time and provide a wider coverage. On the other side it
enables to automatically reproduce scenarios for new Android
versions. The results of each analysis node will be published to
enrich the permission-mapping directory to effectively detect
over-privileged applications.

IV. CONCLUSION & PERSPECTIVES

Android developers face the security challenge of avoiding
to program over-privileged applications, that may lead to vul-
nerabilities. After discussing the limits of existing works, we
presented here a method to assist developers to avoid this issue.
We propose a dynamic and collaborative approach to ensure
a complete analysis coverage with accurate results, which is
not dedicated to a specific Android API. The PermDroid
plugin is currently experimented on at least 100 open source
application. Future works will focus on extracting API calls
for an application, install the crowd architecture and integrate
the tool to real industrial development projects.

REFERENCES

[1] J. Mitra, V.-P. Ranganath, T. Amtoft, and M. Higgins, “Sema: Extending
and analyzing storyboards to develop secure android apps,” arXiv
preprint arXiv:2001.10052, 2020.

[2] W. Guo, “Management system for secure mobile application devel-
opment,” in Proceedings of the ACM Turing Celebration Conference-
China, 2019, pp. 1–4.

[3] G. L. Scoccia, A. Peruma, V. Pujols, I. Malavolta, and D. E. Krutz,
“Permission issues in open-source android apps: An exploratory study,”
in 2019 19th International Working Conference on Source Code Analysis
and Manipulation (SCAM). IEEE, 2019, pp. 238–249.

[4] “Ghera,” Access 2021-12-25, https://bitbucket.org/secure-it-i/android-
app-vulnerability-benchmarks/src/master/Permission/UnnecesaryPerms-
PrivEscalation-Lean/.

[5] “Developer documentation,” no date, accessed on 15/01/2022. [Online].
Available: https://developer.android.com/training/permissions/requesting

[6] Y. Aafer, G. Tao, J. Huang, X. Zhang, and N. Li, “Precise android
api protection mapping derivation and reasoning,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1151–1164.

[7] A. Dawoud and S. Bugiel, “Bringing balance to the force: Dynamic
analysis of the android application framework,” Bringing Balance to the
Force: Dynamic Analysis of the Android Application Framework, 2021.

[8] T. Vidas, N. Christin, and L. Cranor, “Curbing android permission
creep,” in Proceedings of the Web, vol. 2, 2011, pp. 91–96.

[9] E. Bello-Ogunu and M. Shehab, “Permitme: integrating android per-
missioning support in the ide,” in Proceedings of the 2014 Workshop on
Eclipse Technology eXchange, 2014, pp. 15–20.

[10] G. Xu, S. Xu, C. Gao, B. Wang, and G. Xu, “Perhelper: Helping
developers make better decisions on permission uses in android apps,”
Applied Sciences, vol. 9, no. 18, p. 3699, 2019.

[11] M. E. A. Tebib, P. André, O.-E.-K. Aktouf, and M. Graa, “Assisting
developers in preventing permissions related security issues in an-
droid applications,” in European Dependable Computing Conference.
Springer, 2021, pp. 132–143.

[12] “Sonarqube,” no date, accessed on 15/01/2022. [Online]. Available:
https://docs.sonarqube.org/latest/

[13] “Findbugs,” Access 15/01/2022. [Online]. Available:
http://findbugs.sourceforge.net/

[14] “Checkmarx. the world runs on code. we secure it.” no date, accessed
on 15/01/2022. [Online]. Available: https://checkmarx.com/

[15] “Fortify,” no date, accessed on 15/01/2022. [Online]. Avail-
able: https://www.microfocus.com/fr-fr/products/static-code-analysis-
sast/overview

[16] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security, 2012, pp. 217–
228.


