
Preventing Permissions Security Issues in Android:
a Developer’s Perspective

Mohammed El Amin TEBIB ∗, Pascal Andre†, Mariem Graa ‡, Oum-El-Kheir Aktouf∗
∗ Univ. Grenoble Alpes, Grenoble INP, LCIS - Email: mohammed-el-amin.tebib, oum-el-kheir.aktouf@univ-grenoble-alpes.fr

†Univ. of Nantes, LS2N - Email: pascal.andre@ls2n.fr
‡CNAM - Nantes - Email: mariem.graa@gmail.com

Abstract—Permissions related attacks are a widespread secu-
rity issue in Android environment. Due to the misuse of the
privileges, attackers steal the user rights and perform malicious
actions. Most existing defence solutions are specified from end-
users perspectives e.g. building anti-malwares and changing
system configurations. In this paper we take the developers
perspective because security should be a software design issue.
We review existing approaches, we underline their limits and
present our main contributions. The goal is to assist developers to
prevent permissions related security flaws and to set permissions
more effectively and accurately.

I. INTRODUCTION

According to the Veracode team security report, 83% of
Android apps have at least one security flaw1. As security is
often a secundary concern for developers, most of the Android
apps security problems are introduced during the development
process[1]. In this study we focus on permission security
issues identified at the development stage. Permission is a main
security concept to ensure the privacy protection. It restricts
the action performed by the ressource and controls the access
to the operating system. A recent experimentation study [2]
realised on 574 GitHub repositories of open-source Android
apps, showed that permissions-related issues still are a frequent
phenomenon in Android apps.

In Android apps, permissions are declared on the mani-
fest.xml configuration file, and required at different stages:
(1) system APIs interactions, (2) database access, (3) message
passing system via intents, (4) invocation of specific protected
methods in public APIs and (5) content provider data access.
Android provides an official document to explain how to
properly use each of them2. However, due to the continuous
changes, this documentation becomes hardly readable to devel-
opers, leading to different security issues and drawbacks such
as: 1) Wrong permission usage: due to some permissions sim-
ilarity, developers may intentionally use wrong permissions.
.e.g.: the use of ACCESS COARSE LOCATION instead of
ACCESS FINE LOCATION 2) Permissions over-privilege: a
widespread phoneme that occurs when the application declares
more permissions than those used. The unused permissions
could be exploited by hackers to perform malicious actions,
especially ransomware. 3) Permissions under-privileged: oc-
curs when the application uses more permissions than those

1https://www.veracode.com/state-of-software-security-report
2http://developer.android.com/sdk/api diff/30/changes

declared, which does not conform with the transparency prin-
ciple that each developers should respect. 4) Unprotected API
occurs when developers forget to add an exception handler to
some API methods, which may throw exceptions. Solving this
non-exhaustive list of issues must be achieved at development
time and not later. Our aim is to provide such an assistance
tool, ensuring an effective analysis of the permissions used by
the application, and and highlighting the security flaws of the
apps under development.
In the rest of the paper, we review existing approaches pro-
posed in the literature to assist developers avoid these issues,
then we underline limits and presents our main contributions.

II. BACKGROUND

Let briefly review existing methods focused on the detection
and analysis of permissions related security issues in Android
environment from developers perspectives.

PermCheck tool [4] is a static analysis tool that helps the
developer to build apps with the least required permissions.
PermCheck is based on a Permission-API database in which
each permission is mapped to one or more methods, or one
or more classes. During the static analysis of the Android
application source files, each API reference is checked against
the API database. The main limitation of this tool is that the
permission-function pairs used by the tool is generated for
only Android API level 2.2. also they consider only permission
required for API in the main Java sources.
PermitMe [5] is an Eclipse plugin that improves the API-
permission mapping proposed by, PermCheckTool [4] by
analysing the Java source code. but again, only it could works
for Android apps with April level 2.2.
PerHelper [6] handles permissions under-privileged. However
it does not specify the required permissions present in (1)
native code where a several API references that require per-
missions exist. and also (2) intents and broadcast Receivers,
where privileged intent could be used.

Research Year Approach Supported Api Level
PermCheck [4] 2011 static 2.2
PermitMe [5] 2014 static 5.0
PerHelper [6] 2018 static 26

TABLE I
PERMISSIONS CHECK ASSISTANCE TOOLS



We underline the following limits in the existing works:
1) Many existing solutions would be completely/partially
outdated due to the evolution of permissions (number and
specification) and APIs. If the permission map is incomplete
and inaccurate, it may lead to the false negatives when detect-
ing used permission. 2) All the existing analysis approaches
are static, while the most used IDEs for developing Android
apps support emulator to run locally and testing their devel-
opment. Adding a dynamic analysis during the development
stage will provide clearer security guidelines for developers.
For example, in case of the used APIs, dynamic analyses
deliver information on whether those APIs misuse the required
permissions or not. 3) There is a significant lack on native code
analysis approaches (Java Native Interface). 4) For evaluating
the effectiveness of proposed tools, no open source database
exist that focus on the above mentioned permission issues.
5) All the approaches are based on the Abstract Syntax Tree
(AST provided by the tool) which make the analysis process
difficult and may lead to an accurate calculations.

III. PERMISSIONS SECURITY ANALYSIS AND DETECTION

Security is not a user duty except some main privacy
rules. Security is neither a developer’s concern because his
goal is mainly to develop an efficient and ergonomic running
application. Developers are usually not security specialists.
Consequently our goal is to provide assistance at development
time and we target the following main research contributions:

• A framework based on Model Driven Reverse Engineer-
ing called PermDroid. Instead of analysing the source
code from its AST, we propose to use a model based
analysis. We started using the Modisco tool3 which helps
to understand and analyse the Android apps by providing
a graphical representation of the program AST structure.
Having models enables to use many powerful model
transformation abilities.

• We investigate hybrid analysis techniques
(static+dynamic) at developpement time. Static analysis
will serve to: 1) determine the requested permissions
declared on the manifest configuration file, 2) generate
permissions used (PUs) by the application through
inspecting the permission related APIs, 3) inspect
methods involving sendind and receiving intents, (4) and
methods involving the management of content provider.
Wherease dynamic analysis could assist in 1) handling
the dynamic loading of classes from embedded .jar
and .apk files, 2) handling Java refection which is
used by more than 57% (2013) of Android apps [8]
which provides a program the ability to inspect classes,
methods, interfaces and fields at runtime without
knowing the names of the classes and methods in prior.

• To increase the detection accuracy of our solution in
determining overprivilidges and underprivilidges permis-
sions. Build a permission map that identifies what per-
missions are needed for each API call for all API level

3https://www.eclipse.org/MoDisco/

versions is needed. As a starting point we aim to use
the permissions dataset proposed recently by Almomani
et .al [7] that lists all the permissions starting from API
level 1 to API level 30

• Formal Analysis of Security Policies. Formal methods
have proven their potential and high accuracy either in
Android malware detection via model checking [10], or
in the modelling and analysis of the permission frame-
work at system level [11]. We aim to combine to our
tool a lightweight formal methods to automatically infer
security-relevant properties related to intra-app granting
permissions. Having the application model of Modisco
will help to generate a formal model specifying 1) the
permission level, 2) the permission related events and
3) component invocation (this list could be extended).
Formal models enable the developers to rigorously check
the defined security policies, and detect potential permis-
sion violations or misuse during development.

IV. CONCLUSION & PERSPECTIVES

In this paper we presented the limits in existing works
related to permissions attempting to assist developers take
privacy as a first class element during the implementation
of Android apps. In the following, we plan to continue the
implementation of the proposed approach with static and
dynamic verification modules and to integrate it as an Android
Studio/IntelliJ based tool called ”PermDroid”.

REFERENCES

[1] Guo, Wei. ”Management system for secure mobile application develop-
ment.” Proceedings of the ACM Turing Celebration Conference-China.
2019.

[2] Scoccia, G. L., Peruma, A., Pujols, V., Malavolta, I., & Krutz, D. E.
(2019, September). Permission issues in open-source Android apps: An
exploratory study. In 2019 19th International Working Conference on
Source Code Analysis and Manipulation (SCAM) (pp. 238-249). IEEE.

[3] AU, Kathy Wain Yee, ZHOU, Yi Fan, HUANG, Zhen, et al. Pscout:
analyzing the Android permission specification. In : Proceedings of the
2012 ACM conference on Computer and communications security. 2012.
p. 217-228.

[4] Vidas, T., Christin, N., & Cranor, L. (2011, May). Curbing Android
permission creep. In Proceedings of the Web (Vol. 2, pp. 91-96).

[5] Bello-Ogunu, E., & Shehab, M. (2014, October). Permitme: integrating
Android permissioning support in the ide. In Proceedings of the 2014
Workshop on Eclipse Technology eXchange (pp. 15-20).

[6] Xu, G., Xu, S., Gao, C., Wang, B., & Xu, G. (2019). PerHelper: Helping
Developers Make Better Decisions on Permission Uses in Android Apps.
Applied Sciences, 9(18), 3699.

[7] Almomani, I. M., & Al Khayer, A. (2020). A Comprehensive Analysis
of the Android Permissions System. IEEE Access, 8, 216671-216688.

[8] Hoffmann, J., Ussath, M., Holz, T., & Spreitzenbarth, M. (2013, March).
Slicing droids: program slicing for smali code. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing (pp. 1844-1851).

[9] NIRUMAND, Atefeh, ZAMANI, Bahman, et TORK LADANI, Behrouz.
VAnDroid: A framework for vulnerability analysis of Android apps using
a model-driven reverse engineering technique. Software: Practice and
Experience, 2019, vol. 49, no 1, p. 70-99.

[10] Iadarola, G., Martinelli, F., Mercaldo, F., & Santone, A. (2019, October).
Formal methods for Android banking malware analysis and detection.
In 2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS) (pp. 331-336). IEEE.

[11] He, X. (2017, July). Modeling and Analyzing the Android Permission
Framework Using High Level Petri Nets. In 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS) (pp. 232-
239). IEEE.


