
ProVeCS Workshop, TOOLS Europe, Zürich, 2007

A Formal Analysis Toolbox for the Kmelia

Component Model

Pascal André, Gilles Ardourel, Christian Attiogbé 1

LINA CNRS FRE 2729
University of Nantes

France

Abstract

We present in this paper the COSTO toolbox that supports the Kmelia abstract component model. First, an
overview of the COSTO toolbox is given. Then the abstract component model Kmelia is presented. One main
feature of the toolbox is the connection with existing tools in order to perform the analysis of specification
properties. We present this approach for the dynamic aspect analysis; an example of the connection with
the CADP toolbox to check Kmelia service behavioural compatibility is used as an illustration.

Keywords: Property Verification Toolbox, Components, Services, Model Checking

1 Introduction

It is an important challenge to deliver correct software components on demand,

from various development frameworks and for various problem requirements. Some

identified parameters for the success of such enterprise are the availability of reli-

able, proof-certified and interoperable components. This is tightly related with the

availability of tools to help in the design, development and analysis of the compo-

nents.

Component Based Software Engineering emphasises the development of com-

ponents and their assemblies to build large scale software. However, in practise

the existing component model proposals, both in industry and academia, do not

propose provably-correct components and they are quite different and even not in-

teroperable. This motivates our work. For instance a given abstract component

model, proved to have desired properties, may be refined into code with respect to

various executable platforms. The obtained codes may be used in various software.

This work contributes to assist the user, with a toolbox, in the development of

correct components and assemblies from their abstract specifications. Correctness is

1 pascal.andre@univ-nantes.fr , gilles.ardourel@univ-nantes.fr ,christian.attiogbe@univ-nantes.fr

1

mailto:pascal.andre@univ-nantes.fr
mailto:gilles.ardourel@univ-nantes.fr
mailto:christian.attiogbe@univ-nantes.fr

P. Andre, G. Ardourel, C. Attiogbe

considered from various points of view: in this article we deal with the behavioural

interaction between components.

In the article we present the COSTO toolbox which is designed to support

the Kmelia abstract component model. The toolbox is currently an experimental

prototype not yet publicly available. We give an overview of the modules that

compose the toolbox. Instead of presenting in details all the modules we focus

on the ones concerned by the verification of dynamic properties and especially the

LOTOS Module. It illustrates an important principle in COSTO: the use of adequate

languages and tools to perform complex verifications.

The article is organised as follows. In Section 2 we give an overview of COSTO,

our formal analysis toolbox for components. We present the Kmelia abstract compo-

nent model based on services in Section 3; this model serves as the component model

for property verification. Section 4 is devoted to the analysis of one property related

to the dynamic aspect of components: behavioural compatibility. We present the

principle of connecting the COSTO toolbox with existing tools by translating Kmelia

specifications into targeted formalisms. In Section 5 we illustrate one component of

the toolbox: the connection with CADP to check behavioural compatibility. Finally

some perspectives are given in Section 6.

2 An Overview of the COSTO Toolbox

Considering that mechanisation is a means to assess design and development tech-

niques based on formal methods, we start the development of a prototype named

COSTO (Component Study Toolbox) to support design and analysis of component

using the Kmelia Abstract component model. The specification language named

Kmelia and the Kmelia abstract component model are briefly described in Section 3.

One of the main features of COSTO is the definition of bridges to existing formal

analysis frameworks and their integration in the verification process.

2.1 COSTO Main Modules

The COSTO prototype is composed of several modules written in Java. Most of

them can be used in command-line, through their API or using the costo eclipse

plugins. Figure 1 shows the main COSTO modules.

Architectural
Verification
Classes

uses COSTO Core
Module

uses

uses uses

Exportuses

Lotos Module

uses

Verification

Mec Module

Framework

Fig. 1. An overview of the COSTO Toolbox

The Core module is the main COSTO module used by all the other modules.

It contains a parser for Kmelia textual specifications based on ANTLR, and an API

2

P. Andre, G. Ardourel, C. Attiogbe

for manipulating the resulting Kmelia Object Models. Syntax analysis and basic

typing checks are done during and after parsing.

The Verification module contains a verification framework that is used to

define verification processes, execute them on Kmelia Object Models and manipulate

verification results. Architectural properties analysis such as the correct composition

of components according to their services’ signatures and interfaces are defined using

this framework.

Consistency checks such as Component Interface and Services consistency and

Consistency between Services Interfaces and Behaviours rely on an earlier version

of this module and they are currently being integrated in the verification framework

to add more flexibility.

The LOTOS module contains a translator of Kmelia specifications to LOTOS

specifications according to a context (this module is described in section 5). The

generated LOTOS specifications can then be checked with CADP (a toolbox with

various analysis modules, [16]).

The MEC module contains an extractor which selects and transforms parts of a

Kmelia behaviour specification in MEC specifications according to a context. It also

generates properties to be checked in the MEC model checker. It features a MEC

feedback analyser which parses MEC results and generates documentation in order

to correct the Kmelia specification. In order to go beyond simple documentation,

an automatic integration of this MEC feedback in the verification framework is in

the works.

The Export module contains generators that help in the documentation of the

Kmelia specification. This modules generates LATEX documentation for components

using an export of the Kmelia service behaviours in dot for visual representation.

2.2 COSTO Eclipse Modules

In order to simplify the use of COSTO, several tools have been integrated to the

Eclipse Integrated Development Environment as plugins.

Specification

Kmelia
Verification

ContextVerification

Kmelia
CADP, MEC...

or user interaction
optional external calls

Kmelia Editor
Creation Wizard

Checks configured for the Editor
Verification Wizards

Edition Creation Selection Tools Verification Tools Verification Module

Run
verification

Feedback

1a 2a

1 2 3

3b

3c Feedback

2b

3a

Fig. 2. Using eclipse plugins to verify Kmelia components

The previously described COSTO modules (see Figure 1) are packed into the

coloss.costolib.base plugin.

Several tools have been built in the coloss.costolib.ui:

• A text editor for Kmelia specifications which shows results from syntactic and

consistency verifications;

3

P. Andre, G. Ardourel, C. Attiogbe

• A tree-based view that outlines a Kmelia specification;

• Wizards for creating Kmelia components and assemblies;

• Menu actions for exporting a Kmelia specification to the various formats supported

in the COSTO Exports Module (such as LATEX);

• Wizards for creating verification contexts and starting the verifications with MEC

or LOTOS.

Figure 2 illustrates a scenario of use of the COSTO plugins: starting with a

Kmelia specification, generated by a wizard or created with the editor, the user

selects or create a verification process and its context with a wizard, then he runs

the verification that may or may not rely on an external tool, and finally he gets

the verification result.

The Kmelia examples from the following section have been generated or checked

with the COSTO prototype.

3 A Multi-Service Component Model: Kmelia

We present here the specification language Kmelia which is central to the COSTO

tool. Instead of presenting the language itself (syntax and semantics) we sketch a

quick overview of the concepts using examples.

Kmelia is an abstract formal component model based on services [7,3]. Its goal

is to describe component systems and to study their properties before any imple-

mentation. The interactions between components are described through services

and synchronous communications. The dynamic behaviour of services is formally

specified by labelled transition systems.

Related component models with dynamic behaviours (or protocols) are SOFA

[19], Fractal [10], Tracta [14], Wright [1] and other works [20,6,11,18]. The main

difference between Kmelia and the above models and proposals is that Kmelia em-

phasises the concept of service: (i) components are linked by their services rather

than connected by structural ports or gates; (ii) dynamic behaviours are associated

to services rather than to components 2 ; (iii) services are functionalities that define

contracts; (iv) services can be composed horizontally and vertically.

3.1 Components, Services and Assemblies

A Kmelia abstract component is a mathematical model of an open multi-service

system that supports synchronous communication with its environment. A Kmelia

component is defined through an abstract state model (made up with variables, an

invariant, and an initialisation), an interface (made up with provided and required

services) and a constraint definition (logic expressions). Yet, the property language

is an ad hoc typed first order logic; the planned evolution is to interact with existing

theorem provers to check the expressions.

Let us illustrate the model with a simplified real-world problem: a bank Au-

tomatic Teller Machine (ATM). Since the case is very common, the details are

omitted here. The ATM provides bank services (withdrawal, deposit money, query

2 Additionally to provided services, Kmelia enables one to specify component protocols as special services.

4

P. Andre, G. Ardourel, C. Attiogbe

accounts...) to users. Figure 3 is a textual Kmelia specification of an ATM core com-

ponent. The component interface provides four usual bank services for exchanging

money and requires an external authorisation. The component state model manages

the ATM cash data.

COMPONENT ATM_CORE
/* The ATM_CORE component is the central component for a bank cashier station.

The main services of such a system are cash withdrawal, account query, deposit money
and transfer bank query.
The current specification focuses only on cash withdrawal. */

INTERFACE
provides : {withdrawal, account_query, deposit, transfer}
requires : {ask_authorization, ask_account_balance}

TYPES
CashCard : struct {code:Integer, id:Integer, limit:Integer} // record type

CONSTANTS
// constants definitions
available_cash : Integer := 100,
swallowed_size : Integer := 100

VARIABLES
// variables definitions
name : String,
swallowed_cards : Set,
available_notes : Integer

PROPERTIES
// predicates
cash_disp: available_notes >= 0,
card_capacity: size(swallowed_cards) <= swallowed_size
INITIALIZATION
// variables assignments
name := "ATM203";
swallowed_cards := emptySet;
available_notes := 10000;

SERVICES
// services from external files (currently only in the same directory) can be included
provided external account_query
provided external deposit
provided external transfer
provided withdrawal (card : CashCard)
// see the service withdrawal in Figure 3
...

//required services
required ask_authorization (id : Integer, code : Integer) : Boolean
...

//internal services
provided debit (c : CashCard, m : Integer)
...

END_SERVICES
// end of ATM_CORE specification

Fig. 3. Overview of the ATM CORE component specification

Basically, a Kmelia service encodes a functionality; it is defined with an interface

and a behaviour. The service interface includes the service signature, the local

declarations, the assertions (pre/post conditions) and the service dependency (i.e

the list of services this service depends on). The service dependency of a service

si includes the references to provided subservices (they are the services which are

provided in the context of another service) and to required services (those required

in the context of si). The latter are required from the component itself, from the

calling component or from any components.

Figure 4 shows a specification of the withdrawal service of the core component

for the ATM system in Kmelia. The subprovides, calrequires, extrequires

clauses in the interface of the withdrawal service make explicit the hierarchy and

the dependencies between services: the withdrawal service provides an ident sub-

service and requires three other services, two of them being required from the com-

ponent which is calling withdrawal.

5

P. Andre, G. Ardourel, C. Attiogbe

Provided withdrawal (card : CashCard)
/* The service withdrawal is available if there is enough money in the cash dispenser.

This services requires a bank credit card, a code, an amount to withdraw.
An authorization is required from the bank consortium.
This service provides an identification subservice if needed.

*/
Interface

subprovides : {ident}
calrequires : {ask_code, ask_amount} //required from the caller
extrequires : {ask_authorization}

Pre
//service available if there is enough money
available_notes >= available_cash

Variables
nbt : Integer, // nbt : number of authorized trials of code entering
c : Integer, // c : input code given by the user
a : Integer, // a : input amount given by the user
rep : Boolean, // rep : reply from the authorization request
success : Boolean // success : result of the withdrawal request

Behaviour
init i // i is the initial state
final f // i is a final state
{
... see the service behaviour in Figure 5 ..

}
Post
available_notes <= pre(available_notes)
// (success && (available_notes = pre(available_notes) - a)) ||
// ((not success) && available_notes = pre(available_notes))

end

Fig. 4. Overview of the Kmelia service syntax

Component assemblies establish the communication channel used by the (ser-

vice) communication actions. Assembling Kmelia components consists in linking

their pairwise services: required services may be linked to provided services. An

implicit channel is associated to this link that supports the communication actions

or messages between the services (see section 3.2). The semantics of the links is not

straightforward because it must conform to the service interface hierarchy. Indeed

the services that appear in the subprovides and the calrequires clauses of the

service interface dependency must (i) share a common link (they are sublinks) and

(ii) their links must conform to the hierarchy levels. This constraint is recursive

on service inclusion. A component composition is the encapsulation of an assembly

within a component with a projection of services by promotion links. Promotion

links relate the composite services to the inner component services.

Figure 5 is a graphical view of a Kmelia model for the bank ATM. The as com-

ponent is a composition of an ATM CORE (ac) with an ATM user interface (ui).

The main provided service behaviour of the ui component drives the user com-

mands. For example, the user can ask for money (required service ask for money)

which is linked to the service withdrawal provided by the ATM core ac compo-

nent. According to Figure 5, the withdrawal service may call internal services

(debit,...), external services (ask authorization), external services required from

the caller (ask code, ask amount) and it provides the ident service in the context

of ask code. Note that the amount and code links are sublinks: they share the

ask for money-withdrawal link and its implicit communication channel.

The assembly links support the service interactions specified in the service be-

haviours.

6

P. Andre, G. Ardourel, C. Attiogbe

aac : AAC

lb : LOCAL_BANK

ui : USER_INTERFACEac : ATM_CORE

ask_id

as : ATM_SYSTEM

provided service

required service

service link

subservice link

service call
 calrequires extrequires

service call on
the caller componnentprovided subservice

subprovides

debit
eject_card
swallow_card
display

ask_
authorizationask_

autho
rization

ask_
account_balanceask_

account_
balance

balance

authorization

account_update

behaviour

ask_for_money

code

amount

query_account

behaviour

promotion link

withdrawal

account_query

ask_code

ask_amount

deposit

transfer

ident

deposit

Fig. 5. Assembly for an ATM System

3.2 Service Behaviour Description

In Kmelia, a service behaviour is an extended labelled transition system (eLTS)

where the states define the service evolution steps and the transitions are labelled

with possibly guarded combination of actions: [guard] action*. The actions are either

elementary actions or communication actions. An elementary action (e.g. an as-

signment) does not involve other services; it does not use a communication channel.

A communication action is either a service call/response or a message send/ receive.

The services run concurrently; the communications are synchronous. The com-

munication actions use either the standard communication primitives ! and ? for

sending/receiving simple messages or their extended forms !! and ?? to deal

with service calls and service responses. They are prefixed with a communica-

tion channel which can either denote the required service (service-name) or the

caller (CALLER) or the component itself (SELF). A communication channel that

is used in a service behaviour has to be established by a link. For example the

ask for money-withdrawal link (Figure 5) establishes the caller service of the

withdrawal service: CALLER = ask for money.

Figure 6 is a visual representation of the withdrawal service eLTS. This figure

has been produced by the COSTO toolbox. A withdrawal consists in reading the

given cash card. The user enters the password. The given password is compared

with the card password. If the verification succeeds, the card holder is authenticated

otherwise the password is requested again. When the verification fails three times,

the card is swallowed. After the card holder identification in the withdrawal service,

an authorisation is required from its ACD/ATM controller (AAC), which represents

the bank management. If the AAC accepts the transaction, the withdrawal service

asks for the amount of cash, otherwise the card is ejected and the transaction ends.

The user enters an amount which is compared with the current card policy limit.

If the allowed amount is lower than the requested or if the current cash is not

sufficient, the amount of cash is asked again. Otherwise, the transaction proceeds.

In any positive case the withdrawal transaction ends after a card ejection.

7

P. Andre, G. Ardourel, C. Attiogbe

e4

f

__CALLER!!withdrawal(success)

i

e0

; nbt:=3;
 success:=false

e1<<__CALLER.ident>>

__CALLER!!ask_code()

e2

; display("Card
 swallowed,

 sorry");
 swallow_card()

display("Enteryourcardcode,please")

e3

rep:=_ask_authorization!!
 ask_authorization(card.id, c)

e2i

__CALLER!rdv()

e7

display("requiretoomuchmoney,
 pleaseentertheamountagain")

e8

; debit(c, m); eject_card()

e5

e6

__CALLER!!ask_amount()
; __CALLER??ask_code(c);

 nbt:=nbt-1

; display("Transaction
 refused");

 eject_card()

display("Enterthecashamount,
 please?")

__CALLER??ask_amount(a)

success:=true

Fig. 6. The withdrawal service eLTS (COSTO export)

In Kmelia, service behaviours may contain execution points (states or transitions)

where a subservice (declared in the service’s interface) can be called. These states or

transitions are annotated with Kmelia’s vertical structuring operators. For instance,

the label of node e1 in Figure 6 means that the ident optional service may be

called by a widthdrawal’s caller when the running reaches the e1 node. This

label features the <<>> operator that denotes an optional service call. Kmelia main

vertical operators are: optional service call <<>> , optional behaviour insertion <||>,

mandatory service call [[]], mandatory behaviour insertion [||]. An extended

LTS is one in which the states and transitions may be annotated with subservices.

These structuring mechanisms provide a means to reduce the LTS size, to share

common services or subservices and to master the complexity of service specifica-

tion. This hierarchical behaviour structuring is naturally reflected in the service

interfaces: this permits a precise description of the use of a subservice in the con-

text of the interaction with a service. Both hierarchies must be consistent. Going

one step further, they must be consistent with the link hierarchy of the component

assemblies. This point will be one aspect of the compatibility property that will be

discussed later in the paper.

The current version of the Kmelia language does not handle broadcast ; this point

and multi-way communications are subject to ongoing works. However we deal with

the case where several services run simultaneously, as an interleaved behaviour plus

synchronous communications on shared channels.

4 Dynamic Aspects Analysis within COSTO

In this section we focus on one dynamic property of components assemblies: checking

that components interact well through their services. We choose this property

because it is complex and it illustrates the principle of connecting COSTO to others

(external) powerful tools to run the effective verification of the property.

8

P. Andre, G. Ardourel, C. Attiogbe

4.1 Analysis of Component Dynamic Aspects

The starting point is an assembly of components. The interaction between the linked

services implies a concurrent evolution of the services; this evolution is considered

as a dynamic aspect of the component analysis.

Behavioural compatibility is about the correct interaction between two or more

components which are combined via some of their services. The behavioural com-

patibility analysis is performed by considering the correct interaction between the

eLTS of the involved services. It is a topic already studied in several approaches

[20,12,6,9]. The main concern shared by these approaches is: checking that a given

component interacts correctly with another one which may be provided by a third

party developer.

In the Kmelia model, the interaction between components results in an inter-

action between linked services of the components. The interaction between com-

ponents may involve not only two but many components. But we consider only

one caller service and one called service at the same time. Therefore the compo-

nent interacts correctly with its environment if its services are compatible with the

other services with which they are linked. The behavioural compatibility analysis

is precisely formalised in [7]. We recall here the main idea.

A service is compatible with another if either their eLTSs evolve independently,

in an interleaved way, or they perform complementary communication actions. That

is the basis of our compatibility analysis approach; we check that a given eLTS that

models the behaviour of one service matches with a second eLTS that models the

linked service behaviour. A complete interaction between the services of several

components results in a pairwise local analysis between the eLTS of a caller and

that of the called service.

Two eLTS interact from their initial state until a terminal state according to a

set of rules that we have defined. The rules indicate the correct evolutions of the

eLTS according to the current states of involved services and the labels of their

transitions. If the transitions are labelled with independent elementary actions,

we have an interleaving of the independent actions of the transition systems. If

the transitions are labelled with communication labels involving the same channels,

and the actions are complementary (an emission and a reception) then we have a

synchronous communication involving the complementary actions. If the labels are

communication actions but not complementary, we get an incompatibility.

After a final state of a called service, the caller may continue with its independent

transitions or with transitions that involve other (sub)services. After a final state of

the caller the called service may continue only with elementary actions or with com-

munication actions that do not need a complementary action from the terminated

caller, otherwise we get an incompatibility.

Practically, several points need to be considered to check the behavioural com-

patibility: various kinds of interactions, synchronous or asynchronous communi-

cations, atomic actions or composite ones. Technically, checking the behavioural

compatibility often relies on checking the behaviour of a (component based) system

through the construction and the analysis of a global finite state automaton. How-

ever the state explosion limitation is a flaw of such an approach. We tackle this

9

P. Andre, G. Ardourel, C. Attiogbe

problem by considering local pairwise verification of behavioural compatibility: as

a component provides several services in its interface, one has to select the service

to be checked. Therefore only the links and sublinks of this service will be consid-

ered within a compatibility checking. Each service behaviour being encoded with

a eLTS, we check only the eLTSs of the involved services. This local verification

process iterates for each (linked) pair of services of the component assembly leading

to a global checking.

4.2 Principle of Open Property Verification in COSTO

The effective verification of specification properties may require powerful systems

such as model checker or theorem prover. Implementing such tools requires much

effort and knowledge. One major principle we adopted when building COSTO tool-

box was to open it to other languages, tools and environment in order to delegate

various computations. The application of this principle to the verification of dy-

namic properties currently led to the LOTOS module and the MEC module (see

Figure 1). This section illustrates this principle.

The analysis of properties which are specific to the Kmelia model are imple-

mented as modules inside the COSTO toolbox; for example the composability of

components is specific to Kmelia components, therefore composability checking is

implemented as a specific COSTO tool.

But the analysis of general properties or properties that can be translated into

general ones is handled with available external tools. For example the behavioural

compatibility of two eLTS is a general property that can be checked using existing

tools such as MEC [15] or LOTOS [16]. For that purpose, a gateway to these tools

is built. The part of the Kmelia specifications to be verified is translated into the

input formalism of the targeted tool. The verification is then performed within the

target environment. It is suitable that the feedback of such an external analysis be

related to the Kmelia specification to help the specifier.

We conducted various experiments with the reuse of existing tools. We used

the MEC model checker [5] to deal with behavioural part of Kmelia services. Using

MEC we can focus specifically on service behaviours during preliminary analysis

(were data are ignored). Some feedbacks from this analysis can help to correct the

submitted specification. As far as two linked services (a caller and a callee) are

concerned, we translate the LTS of each service into MEC automata, then the MEC

synchronous product of both automata is built and then we search for deadlock

freeness. The absence of deadlock implies the compatibility of the services. This

experimentation with MEC has been reported in [2].

We have also used the LOTOS/CADP toolbox [13,16] as external tool to conduct

experiments on Kmelia specifications. We detail the connection between COSTO

and CADP in the following section.

5 An External Module to Verify Service Interactions

In this section we explain how the CADP toolbox is connected to COSTO and

how behavioural analysis is performed. Considering services to be checked for be-

10

P. Andre, G. Ardourel, C. Attiogbe

havioural compatibility, the components that embody these services are first parsed

by the Kmelia parser which generates their internal representation; the services

involved in the analysis are extracted from the internal representation; then the

extracted services are translated as LOTOS processes. To deal with behavioural

compatibility we use the LOTOS selective parallel operator |[...]| to compose

the generated LOTOS processes. This selective parallel composition operator is

used because its semantics corresponds to our behavioural compatibility between

services (see section 4.1); that is a synchronisation on specific selected actions and

the interleaving of the other actions.

The result of the translation and the composition of the processes are used as

input of CADP tools.

5.1 LOTOS and CADP

LOTOS [17] is an ISO standard formal specification language. It is initially designed

for the specification of network interconnection (OSI) but it is also suitable for con-

current and distributed systems. LOTOS extends the process algebra CCS and CSP

and integrates algebraic abstract datatypes. A LOTOS specification is structured

with process behaviours. It has the main behaviour description operators of the

basic process algebra CCS and CSP. LOTOS uses the ”!” and ”?” operators of CSP

which denote respectively emission and reception. The salient features of LOTOS

are: the powerful multi-way synchronisation; the use of communication channels

called gates; the synchronous interaction of processes; the use of algebraic data

types to model data part of systems; the availability of a toolbox (CADP [13,16]).

CADP (Construction and Analysis of Distributed Processes) is the toolbox associ-

ated to LOTOS; it enables one to apply its various model checking techniques on

the described processes which are first compiled into labelled transition systems.

5.2 Translating the Kmelia Services into LOTOS Processes

Remind that the behaviour of each Kmelia service is modelled with an eLTS the

transitions of which are labelled with service calls, elementary actions, guarded

actions and communication actions. Each state of the eLTS has an identifier. Some

of the states are additionally labelled with a list of action names.

An output transition of a given state is a transition going from this state to another

one. An input transition is a transition coming from any one state and entering

another considered state.

The general principle of the translation (or encoding) is as follows. The input

of the translation is the internal form of the transition system which describes a

service. The internal form is obtained from the output of the Kmelia specification

parser. The input is translated into a LOTOS process.

We define a set of semantic encoding rules to support the translation of the com-

ponent services into LOTOS . These semantic rules permit a systematic translation.

Three kinds of encoding rules are defined: service interface translation, state transla-

tion rules (denoted by the LotosEncoding procedure) and transition label translation

rules (denoted by the LotosEncodingL procedure). We do not give a full description

of these rules (please see [4]), but we give some illustrations of the used approach.

11

P. Andre, G. Ardourel, C. Attiogbe

The translation of the data part of the Kmelia service results in LOTOS data

types. To deal with communication, each service has a default channel with the

same name as the service.

The translation of a transition system is achieved as follows. One main process

is associated to the initial state of a transition system of a service and several related

sub-processes are associated to the other states of the service. The processes have

at least one parameter which is the default channel of the translated service; the

used abstract actions are collected as an alphabet that complements the process

parameter.

A service without formal parameters (servName()) is called by sending its name

on the default channel of the service; it is translated by:

process servName[servName_chan, ...]: exit :=

servName_chan? varx: MsgTypeservName;[varx = servName];

A service with formal parameters is translated by a process which waits for the

encoded service name and its parameters. Thus a service servName(p1: T1, p2: T2,

...) is translated with:

process servName[servName_chan, ...]: exit :=

servName_chan? snx: MsgTypeservName;

? p1: MsgTypeservName;

?p2: msgTypeservName; [snx = servName] ->

...

From each state of the service there are one or several output transitions.

A state with several output transitions is translated with a non-deterministic

choice between the translations of the output transitions; it results in a choice

between as many process behaviour as possible in the LOTOS process. The

translation into LOTOS of the transitions S0--act1-->fs1, S0--act2-->fs2 is

the encoding of the S0 state:

LotosEncoding(s0) =

(LotosEncodingL(act1); LotosEncoding(fs1)

[] LotosEncodingL(act2); LotosEncoding(fs2))

A state with more than one input transition is translated with a sub-process.

Indeed, having more than one input transition means that the state can be reached

from several transitions, therefore the sub-process is reused from different state

translations.

A state annotated with a list of service names is translated by a non-deterministic

choice between several sub-processes. Each sub-process corresponds to the interac-

tion with one of the listed services. Consider the branching state S0 < <subserv1>

>< <subserv2>>. If the service subserv1 is called, then the current service pro-

ceeds with the initial state in the subserv1. The encoding into LOTOS of S0 is as

follows:

LotosEncoding(S0) =

Process SP_Process_S0[...]: exit :=

12

P. Andre, G. Ardourel, C. Attiogbe

(chan_subserv1?fprm: MsgTypesubserv1 [fprm = subserv1];

LotosEncoding(initial_State(subserv1))

[] chan_subserv2?fprm: MsgTypesubserv2 [fprm = subserv2];

LotosEncoding(initial_State(subserv2))

)

Endproc

The translation of labels are as follows. An elementary action is translated with

an abstract action that will be an element of the process alphabet. As far as the

guarded actions are concerned, first the guard is abstracted as an atomic element

and then the guarded action gives a sequence of actions. Activations of service are

treated as communication primitives. Communication actions are translated with

LOTOS communication operators ! and ?.

According to the previous statements, we have formalised a specific semantic en-

coding (namely LotosEncoding) of the service specifications. Briefly, the encoding

into LOTOS of service specifications is inductively performed by considering: ser-

vice interface without formal parameters; service interface with formal parameters;

service states (initial, final, intermediary and annotated) and service transitions.

For the translation of the data part of Kmelia services into LOTOS, we use

enumerated types or bytes as data abstractions; the data values are then restricted

in order to limit the state explosion problem. For each service, we define a specific

LOTOS data type which has a constructor named with respect to the service; this

permits the call of the service by sending its name on the convenient channel.

Besides, all the messages which are sent to the default channel associated to a

service are used as constructors of the data type associated to this service. The

expressions used within actions are translated as abstract actions of the alphabet

of the LOTOS process.

After the translation process, we get full LOTOS processes which are used to

check behavioural compatibility; they can also be analysed using various CADP

verification modules.

5.3 Experimentation Results

The formal analysis using CADP starts after the generation of the LOTOS processes

from the parsed Kmelia specifications of the involved components that embody the

services.

To check the behavioural compatibility of a pair of services, the LOTOS pro-

cesses resulting from their translation are composed with the |[alph]| operator to

form a specific interacting system; alph is the action alphabet used for the synchro-

nisation of the processes. The system obtained by composing the service processes is

compiled with the CADP compiler caesar which also checks for the consistent use

of the parallel composition operator. If the compilation is successful then the com-

position is correct hence the behavioural compatibility. If we have a deadlock from

the compilation process due to communication actions mismatch then the processes

are not compatible. This result is provided as feedback to the Kmelia specifier.

When there is no communication mismatch, caesar generates an internal graph

13

P. Andre, G. Ardourel, C. Attiogbe

(corresponding to the LTS) from which various analysis are available. For example

the EVALUATOR module of CADP is used to model-check temporal properties

(written in µ-calculus) that express safety or liveness properties on the service de-

scriptions. More generally, all the analysis modules provided by the CADP tools

are now made available due to the connection we have made through the translation

into LOTOS. But in this case the specifier should move to the CADP environment.

6 Conclusion and Perspectives

We have presented an overview of the COSTO toolbox which supports the Kmelia

abstract component model. The input of COSTO is Kmelia specifications. Several

modules are available within COSTO for parsing, behaviour visualisation, service

or component interactions analysis.

The result of the Kmelia specification parsing is either used with the specific

tools of COSTO or translated into the input formalisms of external tools. We

have emphasised the connection between COSTO and CADP by illustrating with

the analysis of the behavioural compatibility analysis with the caesar compiler of

the CADP toolbox after a translation of Kmelia service specifications into LOTOS

processes. The COSTO toolbox is then connected to the CADP analysis framework

after the generation of LOTOS processes.

At the current stage of the COSTO development we focus on the use of model

checking tools with respect to the behaviours of Kmelia services. Connections are

made with the MEC tool and the CADP toolbox.

However, Kmelia component and service specifications are equipped with prop-

erties that appear as logical assertions. Therefore we begin a bridging with theorem

proving tools such as that of the B Method. For example, we have introduced pro-

tocols as user guides in the Kmelia model[3]; they are treated as specific services but

their consistency is being studied using the assertions of the services which are to

be translated in first order logic and proved correct with theorem proving.

The SOFA [19] framework provides behavioural verification tools but they are

specific to SOFA component models. The Vercors platfom [8] has a similar approach

to ours; its is yet more mature than the COSTO toolbox. However the input com-

ponent models of COSTO and Vercors are quite different and they need specific

processing; for example, LOTOS specifications are directly used as component be-

haviour in Vercors whereas LOTOS specifications are generated for the services

described inside the Kmelia component models. Moreover the Kmelia model and

the related tools consider a correct development of components from their abstract

specifications.

The perspectives of this work are: the bridging with the SOFA approach in order

to share modules through our toolbox; the bridging with theorem proving tools

to complement the property verification aspect for data-intensive systems and the

enhancement of the data and assertion language of the Kmelia model for scalability.

A methodological analysis process is needed to integrate the various verification

modules; for example the combination of a mismatch detection with a module to

guide the correction is viewed as the integration of a compatibility analysis tool

with an adaptation tool.

14

P. Andre, G. Ardourel, C. Attiogbe

Furthermore we are working on a translation of a subset of Kmelia into the Frac-

tal component model which has a Java execution environment but lacks property

verification means. We expect some simulation facilities that will be complementary

with the formal analysis aspect provided by Kmelia.

References

[1] Allen, R. and D. Garlan, A Formal Basis for Architectural Connection, ACM Transactions on Software
Engineering and Methodology 6 (1997), pp. 213–249.

[2] André, P., G. Ardourel and C. Attiogbé, Vérification d’assemblage de composants logiciels
Expérimentations avec MEC, in: M. Gourgand and F. Riane, editors, 6e conférence francophone de
MOdélisation et SIMulation, MOSIM 2006 (2006), pp. 497–506.

[3] André, P., G. Ardourel and C. Attiogbé, Defining Component Protocols with Service Composition:
Illustration withe Kmelia Model, in: 6th International Symposium on Software Composition, SC’07,
LNCS to appear (2007), pp. –.

[4] André, P., G. Ardourel, C. Attiogbé, H. Habrias and C. Stoquer, A Service-Based Component Model:
Formalism, Analysis and Mechanization, Technical Report RR05.08, LINA (2005).

[5] Arnold, A., P. Crubillé and D. Bégay, “Construction and Analysis of Transition Systems with MEC,”
AMAST Series in Computing: Vol. 3, World Scientific, 1994, iSBN 981-02-1922-9.

[6] Attie, P. and D. H. Lorenz, Correctness of Model-based Component Composition without State
Explosion, in: ECOOP 2003 Workshop on Correctness of Model-based Software Composition, 2003,
pp. –.

[7] Attiogbé, C., P. André and G. Ardourel, Checking Component Composability, in: 5th International
Symposium on Software Composition, SC’06, LNCS 4089 (2006), pp. –.

[8] Barros, T., A. Cansado, E. Madelaine and M. Rivera, Model-checking distributed components: The
vercors platform, in: International Workshop on Formal Aspects of Component Software (FACS’06)
(2006).

[9] Bracciali, A., A. Brogi and C. Canal, A formal approach to component adaptation, Journal of Systems
and Software 74 (2005), pp. 45–54.

[10] Bruneton, E., T. Coupaye, M. Leclercq, V. Quéma and J.-B. Stefani, The fractal component
model and its support in java: Experiences with auto-adaptive and reconfigurable systems, Softw. Pract.
Exper. 36 (2006), pp. 1257–1284.

[11] Canal, C., L. Fuentes, E. Pimentel, J. M. Troya and A. Vallecillo, Adding Roles to CORBA Objects,
IEEE Trans. Softw. Eng. 29 (2003), pp. 242–260.

[12] de Alfaro, L. and T. A. Henzinger, Interface Automata, in: Proceedings of the Ninth Annual Symposium
on Foundations of Software Engineering (FSE) (2001), pp. 109–120.

[13] Fernandez, J.-C., H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier and M. Sighireanu, CADP: A
Protocol Validation and Verification Toolbox, in: R. Alur and T. A. Henzinger, editors, Proc. of the 8th
Conference on Computer-Aided Verification (CAV’96), LNCS 1102 (1996), pp. 437–440.

[14] Giannakopoulou, D., J. Kramer and S.-C. Cheung, Behaviour Analysis of Distributed Systems Using
the Tracta Approach., ASE 6 (1999), pp. 7–35.

[15] Griffault, A. and A. Vincent, The Mec 5 Model-checker, in: CAV: International Conference on
Computer Aided Verification, Lecture Notes in Computer Science 3114 (2004), pp. 488–491.

[16] Hubert Garavel, R. M., Frédéric Lang, An overview of cadp 2001, (Also in European Association for
Software Science and Technology (EASST) Newsletter) RT-254, INRIA (2002).

[17] LOTOS, I., “A Formal Description Technique Based on The Temporal Ordering of Observational
Behaviour,” International Organisation for Standardization - Information Processing Systems - Open
Systems Interconnection, Geneva, 1988.

[18] Pavel, S., J. Noye, P. Poizat and J.-C. Royer, Java Implementation of a Component Model with Explicit
Symbolic Protocols, in: 4th International Symposium on Software Composition, SC’05, LNCS 3628
(2005), pp. 115–124.

[19] Plasil, F. and S. Visnovsky, Behavior protocols for software components (2002), iEEE Transactions on
SW Engineering, 28 (9), 2002.
URL citeseer.ist.psu.edu/plasil02behavior.html

[20] Yellin, D. and R. Strom, Protocol Specifications and Component Adaptors, ACM Transactions on
Programming Languages and Systems 19 (1997), pp. 292–333.

15

citeseer.ist.psu.edu/plasil02behavior.html

	Introduction
	An Overview of the COSTO Toolbox
	COSTO Main Modules
	COSTO Eclipse Modules

	A Multi-Service Component Model: Kmelia
	Components, Services and Assemblies
	Service Behaviour Description

	Dynamic Aspects Analysis within COSTO
	Analysis of Component Dynamic Aspects
	Principle of Open Property Verification in COSTO

	An External Module to Verify Service Interactions
	LOTOS and CADP
	Translating the Kmelia Services into LOTOS Processes
	Experimentation Results

	Conclusion and Perspectives
	References

