
Submitted to:
WCSI10

c© M. Messabihi, P. André & C. Attiogbé
This work is licensed under the
Creative Commons Attribution License.

Multi-levels Use of Contracts for Trusted

Components

Mohamed Messabihi Pascal André Christian Attiogbé
LINA UMR CNRS 6241

University of Nantes, France

FirstName.LastName@univ-nantes.fr

We present in the article a formal approach for handling and analysing contracts in com-
ponent model early in development process. Contracts are helpful to describe component
interoperability levels. This work is founded on the correctness-by-construction methodology
with the aim to assist in building correct complex systems. The approach is illustrated on the
Kmelia component model and on the COSTO framework, an Eclipse plugin, which supports
user friendly editing, and verification of Kmelia contracts by providing various bridges with
efficient external tools. A case study is presented as illustration of our approach.

1 Introduction

Component-Based Software Engineering (CBSE) using off-the-shelf components is one approach
to deal with the complexity of modern software. Since these components are developed by third-
parties, assembling components requires means to ensure the correctness of the components
behaviour and their interoperability. Therefore building trusted components with rich interface
descriptions is an important concern and requires formal support.

As a component is usually defined as ”an unit of composition with contractually specified
interfaces and explicit context dependencies only” [20], the notion of contract appears as a natural
solution to express and organise component specification and verification. Contracts are helpful
to ensure component consistency and check the interoperability level. Therefore to improve
confidence in components and their assemblies, it is necessary to make contracts explicit [9].
This demands a strong emphasis on the analysability early in development process and its
automation to ensure the correctness and quality of the final components with respect to the
contracts. However, most of today component-based technologies lack the formal analysis tools
needed to ensure component dependability. Our work contributes in filling this gap.

In this article we show how various contracts can be integrated and practically used at
different levels to ensure correctness properties in component model. The considered multi-levels
contract approach deals with specification, analysis, and verification. We describe contracts and
the related properties and we show how they are checked in our experimental Kmelia component
model. We experiment the proposals with the COSTO (COmponent Study TOolkit) toolbox
associated to the Kmelia model.

The remainder of the article is organised as follows: In Section 2 we give the relations between
properties to be verified and the appropriate contracts. Section 3 describes how we integrate
contracts at different levels in the Kmelia component model. Section 4 describes verification
techniques and supporting tools. A simple bank Automatic Teller Machine (ATM) case study
is discussed. In Section 5 we discuss related approaches. Finally Section 6 concludes the article
and describes planed extensions of this work.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Multi-levels Use of Contracts for Trusted Components

2 Towards Multi-levels Contractual Component Model

Developing trusted components and services involves the specification and the verification steps.
The specification step combines the definition of elementary components and their assemblies.
The verification of individual properties and assembly properties crosses the specifications in
a round-trip process as shown in Figure 1. To separate the concerns we promote the use of
contracts in different contexts and at different levels. This provides a convenient framework to
check locally various kind of properties such as functional correctness, component consistency,
service and component interoperability, assembly link compatibility. With contracts, component
suppliers can offer to the customers an independently issued guarantee for stated functional
properties. For software designers, contracts offer a guarantee against unexpected surprises
when building the software from components.

Assume in the following that a compo-
nent interface is defined by one or sev-
eral services (called protocols in some
models), also, that a component may
be assembled with other components
via its interface services. Contracts
may appear at the level of services, of
components and of assemblies to en-
sure desired properties. The syntac-
tic correctness is required at various
levels, from service interfaces to the
use of components and their interfaces
in assemblies. A syntactic conformity
contract may be used at all levels to
guarantee the syntactic correctness of
services, components and assemblies:
it is the role of the client to respect
the expressed typing or syntactic well-
formedness when using given services,
components or assemblies.

Services Component Assembly/Composite

Component
Specification

Service
Specification

Consistensy
Checking

Functional
Correctness

Static Analysis

Assembly/Promotion
Contracts Verification

Bihavioural
Compatibility

Design

Formal
verification

Trusted Componets & Assemblies

ok okok

not ok not ok not ok

System
Design

ok

not ok

Figure 1: Contracts and verification process

Service contract The contract at the service level deals with functional correctness property
and component consistency property.

• The functional correctness property expresses that a service achieves what it is supposed to
do. Using the Hoare-style specification (Pre-condition, Statement, Post-condition) where
Statement is the service behaviour, we have a definition of the functional correctness of a
service. This property is to be checked with respect to a component which is the context
of the service.

• The component consistency property states that the invariant properties of the component
are preserved by the services embodied in the component. Considering that a component
equiped with services is consistent if its properties are always satisfied whatever the be-
haviour of the services, one can set a consistency preservation contract between the services
and their owner component to ensure that property.

M. Messabihi, P. André & C. Attiogbé 3

Assembly contract The assembly contract ensures correctness properties at three levels:

• static interoperability : it states that a component gives enough information about its
interface(s) in order to be (re)usable by other components. It concerns first, the signature
matching between the involved services of component interfaces (the client should respect
the defined signature); the matching of signatures and interfaces (naming and typing).
Second, if the considered component model permits the use of subservices, the subservice
interfaces should also be compatible through interface matching.

• the second level is the services compliancy contracts of the assembled components. If the
services use a Hoare-like specification, one has to relate their pre-conditions and post-
conditions [22]. The caller pre-condition is stronger than the called one. The called
post-condition is stronger than the caller’s one. Each part involved in the assembly should
fulfill its counterpart of the contract.

• the third level is the behavioural compatibility between the linked services of the assembled
components. Behavioural compatibility is about the correct interaction between two or
more components which are combined through their services (often described as automata).
It is a widely studied topic [21, 6, 10]. Checking behavioural compatibility often relies on
checking the behaviour of a (component-based) system through the construction of a finite
state automaton. However the state explosion limitation is a flaw of this approach [6].

In the following we present the application of multi-level contracts in the context of the
Kmelia multi-service component model.

3 Overview of the Kmelia Component Model

We introduce here the main features of Kmelia, an abstract and formal component model [7]; an
up-to-date formal description of the model can be found in [4]. We illustrate the use of contracts
with a simple bank Automatic Teller Machine (ATM).

The key features of Kmelia are:

• service: a service describes a functionality; it is more than a simple operation; it has a
pre-condition, a post-condition and a behaviour described with a labelled transition system
(LTS). Moreover a service may hierarchically give access to other services. The behaviour
supports communication interactions, dynamic evolution rules and service composition;

• component : a component is a container of services; it is described with a state space
constrained by an invariant. A component is designed independently from its environment
by setting assumptions such as virtual client components or required service specifications;

• assembly of components: an assembly is a set of components linked via their required and
provided services with the aim to build effective functionality. Linking components by
their services in assemblies establishes a possible bridge to Service Oriented Architectures.
The component assemblies are governed by strict service composability rules;

• composite component: a composite component is a component that encapsulates assemblies
or other components; it is handled by encapsulation and promotion policies.

We consider the ATM case study with standard services (withdrawal, etc) via an user in-
terface. We model it in Kmelia as an assembly with four components (Figure 2): the central

4 Multi-levels Use of Contracts for Trusted Components

ATM CORE which handles the ATM bank services, the USER INTERFACE component which con-
trols the user access, the AAC component stands for the bank management and the LOCAL BANK

component holds the local management access. Components are pairwise linked: a required ser-
vice is achieved by the provided service it is linked to. A link is a correspondence between a
required service and a provided one up to mapping relations (names, context, messages, subser-
vices). An assembly link materialises the support for assembly contracts.

aac: AAC
authorization

lb: LOCAL_BANK

balance ask_
account_balance

withdrawal

account_query

ui: USER_INTERFACE

behaviour

ask_for_money

atm: ATM_CORE

codeask_code

amountask_amount

account_update

ask_
authorization

swallow_card

query_account

deposit

transfer

provided service required service
assembly link

service call

Figure 2: A component assembly for the ATM System

Listing 1: Kmelia specification ATM CORE
COMPONENT ATM CORE
INTERFACE

p r o v i d e s : {wi thd rawa l , accoun t que r y , d e p o s i t , t r a n s f e r }
r e q u i r e s : { a s k a u t h o r i z a t i o n , a s k a c c oun t b a l a n c e }

USES {ATMLIB}
CONSTANTS

obs a v a i l a b l e c a s h : I n t e g e r := 0 ; // ob s e r v a b l e con s t an t
sw a l l ow e d s i z e : I n t e g e r := 100 //non−o b s e r v a b l e con s t an t

VARIABLES
obs a v a i l a b l e n o t e s : I n t e g e r ; // ob s e r v a b l e v a r i a b l e
name : S t r i n g ; //non−o b s e r v a b l e v a r i a b l e s
i d e n t : I n t e g e r ; //ATM i d e n t i f i e r
swa l l owed ca r d s : s e tOf CashCard // kept c a r d s

INVARIANT
@cash d i sp : a v a i l a b l e n o t e s >= 0 ,
@ca r d c apa c i t y : s i z e (swa l l owed ca r d s) <= sw a l l ow e d s i z e

INITIALIZATION
a v a i l a b l e n o t e s := 10000 ;
name := ”ATM203” ;
i d e n t := r e a d I n t () ;
swa l l owed ca r d s := emptySet ;

A Kmelia component is described by an inter-
face, a state space and service descriptions.
The component interface declares which ser-
vices are provided or required by the com-
ponent. The component state space is a set
of variables constrained by an invariant. In
Listing 1 the ATM CORE state space includes
an ATM name, an identifier, a set of swal-
lowed cards and the available notes where the
CashCard data type is defined in the user-defined
library ATMLIB. The obs prefix denotes a vari-
able with a read-only access for a linked client
service.

A service may be a non-trivial entity with a state and a dynamic behaviour. A service
may also declare required and provided subservices. All these elements are involved in the
service contract. The service behaviour defines via an extended labelled transition system (eLTS)
the order in which the service performs its actions. Communication actions are primitives for
synchronous interactions between services. The withdraw service achieves a withdrawal on a cash
card, under some controls. Listing 2 illustrates its declaration.

M. Messabihi, P. André & C. Attiogbé 5

The withdrawal behaviour starts with an
identification step: card insertion, password
control, authentication by ACD/ATM Con-
troller (AAC). If the AAC accepts the transac-
tion, the ATM asks for the amount of cash, oth-
erwise the card is ejected and the withdrawal
transaction ends. The given amount is com-
pared with the current card policy limit. When
the allowed amount is lower than the requested
one or if the current ATM cash is not sufficient,
the ATM asks again for the amount of cash.
Otherwise the ATM asks the AAC to process
the transaction, updates the card limit, deliv-
ers the cash and prints a receipt when possi-
ble, and the withdrawal transaction ends after a
card ejection. Two actions (debitCard, ejectCard)
represent functions defined by the specifier in
the user-defined ATMLIB library while display is
predefined in Kmelia.

Listing 2: Kmelia specification of ATM services

p r o v i d ed w i thd rawa l (ca rd : CashCard) : Boolean
I n t e r f a c e

s u bp r o v i d e s : { i d e n t } # from c a l l e r
c a l r e q u i r e s : { ask code , ask amount }#from auth r c a l l e r
e x t r e q u i r e s : { a s k a u t h o r i z a t i o n } #from anothe r cmp
i n t r e q u i r e s : { swa l l ow ca r d } #from the mys e l f

Pre
a v a i l a b l e n o t e s >= a v a i l a b l e c a s h # enough money

Va r i a b l e s # l o c a l to the s e r v i c e
nbt , c ,m : I n t e g e r ; # c , a : i n pu t code and amount
nbt : number o f a u t h o r i z e d t r i a l s o f code e n t e r i n g
r ep : Boolean ; #rep : r e p l y from the a u t h o r i z a t i o n
s u c c e s s : Boolean # suc c e s s : r e s u l t o f the w i thd rawa l

Behav io r
// see the c o r r e s p ond i n g LTS f i g u r e

Post
obs @notes : (r e s u l t=t r u e i m p l i e s a v a i l a b l e n o t e s

< o l d (a v a i l a b l e n o t e s))
|| (r e s u l t= f a l s e && a v a i l a b l e n o t e s == o l d (a v a i l a b l e n o t e s)) ;
// f i n de s e r v i c e
End

The corresponding required service ask for money is
defined in the USER INTERFACE component.
r e q u i r e d a sk fo r money (ca rd : CashCard) : Boolean
I n t e r f a c e

s u bp r o v i d e s : { code}
// p r o v i d ed to the c a l l e e

V i r t u a l V a r i a b l e s
d i s p e n s a b l e : Boolean ;
// assume t h i s o b s e r v a b l e i n f o rma t i o n

V i r t u a l I n v a r i a n t t r u e
Pre d i s p e n s a b l e

//No LTS

Post not (Re s u l t) i m p l i e s d i s p e n s a b l e
// d i s p e n s a b l e may e v o l v e i n the o th e r ca se

End

Required service may have a full service specification in Kmelia, especially by defining as-
sumptions on the provider service via a virtual context. This allows to define separately service
contracts from assembly contracts and to improve locality of property verification. As an exam-
ple for the ATM system of Figure 2 the context mapping shows how the virtual context of the
required service is ”instanciated” by an actual context of the provider service:
Assembly

Components atm :ATM CORE ; u i : USER INTERFACE
L ink s // ////////// assemb ly l i n k s //////////
@lw i th : p−r atm . wi thd rawa l u i . a sk fo r money

con t e x t mapping //a k ind o f e x p l i c i t a dap t a t i o n
u i . d i s p e n s a b l e = atm . a v a i l a b l e n o t e s >= 0

s u b l i n k s : { l c o d e , lamount}
@lamount : r−p atm . ask amount u i . amount
@lcode : r−p atm . ask code u i . code

6 Multi-levels Use of Contracts for Trusted Components

4 Checking Contracts in Kmelia

Formal analysis of components is performed according to the different contract levels we have in-
troduced. In this section we overview the formal verifications of contracts that we experimented
with COSTO (COmponent Study TOolbox). COSTO is the Eclipse-based plugin [2] we devel-
oped to support the specification and analysis of Kmelia component systems. The verifications
of the primary properties (syntactic analysis, types checking, static analysis, ...) are integrated
in COSTO.

Kmelia
specification
.................
.................
.................

ANTLR
parser

Internal
Kmelia
model

Key
System

COSTO

MEC

CADP

External tools

Kmelia
Grammar

Data model

Rodin

AtelierB

LatexKml2latex

Kmelia Editor

Kml2lotos

Kml2MEC

Static analyser

Kml2B

Kml2JML

Figure 3: COSTO Framework Overview

We assume at this step that the static verifications (syntactic, type, well-formedness checking)
are already performed by the COSTO tool. In this section we show how other verification tools
are used to check the contracts.

4.1 Checking service contracts

On the one hand we must verify that the pre/post-conditions establish the component state
space invariant consistency, on the other hand we must establish that the behaviour (actions
and LTS) is consistent with the pre/post-conditions.

4.1.1 Checking component consistency

Our approach here consists in reusing B tools like Atelier-B1 and Rodin2 because the B provers
are skill to prove that kind of property and the Kmelia data language is mostly covered by B
types. We develop a plugin named Kml2B in the COSTO architecture (Figure 3) that extracts
(Event-)B specifications. For each Kmelia component C we build an (Event-)B model called
C, its state space is extracted from the component’s one. The provided services srvi in C are
translated into srv i operations within C model. The extracted specification is imported and
checked in Atelier-B or Rodin. The B tools proof enables the verification of invariant consistency
at the Kmelia level. The full translation procedure is formally defined in [15].

1http://www.atelierb.eu/
2http://rodin-b-sharp.sourceforge.net

http://www.atelierb.eu/
http://rodin-b-sharp.sourceforge.net

M. Messabihi, P. André & C. Attiogbé 7

Example: After extracting (Event-)B models by running the Kml2B plugin, the ATM Core
model is used to prove the preservation of invariant by its provided services. We have proved
consequently the consistency of the invariant component. However, if the post-condition is
modified as available notes <= old(available notes) then the invariant available notes >= 0 is
not preserved anymore. This error is easily detected with B tools.

4.1.2 Checking functional correctness

The basic idea here is to evaluate all paths of a service behaviour (LTS) and to fix whether
it is compliant with the post-condition or not. To prove that property we investigate B tools,
including ProB, a model checker for B, but we had to turn back to more appropriate tools.
Actually this is a non-trivial problem similar to the one of model-checking code. In this section
we present a solution using the KeY3 tool [8]. KeY accepts JML specifications as input; therefore
we define a process for extracting JML specifications from Kmelia services. We are currently
developping a plugin Kml2Jml that implements this extraction (Figure 3). Each Kmelia compo-
nent C is translated as a Java class C.java where: each provided service of C becomes a method
of the C.java class and each required service of C becomes a method of a virtual component class
denoted by an instance variable vc : VC in the C class. The LTS that specifies the dynamic
behaviour B of a Kmelia service is translated in two steps into a Java code. The translation is
not straightforward, due to the lack of control structures in LTSs, and especially the difficulty
of building loops from LTS. Therefore, we introduced the theoretical grounds to provide an
original approach based on regular expression in order to express LTS specifications using Java
control structures. This approach can be generalised to translate LTS-based specifications into
structured programs.
Algorithm (step1): From LTS to Syntax tree Let L(B) bet the set of possible behaviours
of a service srv. Since B can be seen as finite state machine, E such that L(E) = L(B) is
generated by the algorithm of McNaughton/Yamada (cf. Kleene’s theorem in [17]).
Algorithm (step2): From syntax tree to Java It is straightforward from the previously
obtained syntax tree. The main idea is to transform the product (.) as a sequence operator (;
in Java), the Union (+) as a conditional structure (if else ...), and the Kleene start (∗) as a
recursive method modeling E∗. The body of this method describes a statement block repeated
in LTS. The resulting Java code annotated with JML specifications is checked using the Key
tool.

Example: In what follows, the effectiveness of our approach is illustrated by showing how KeY
tool can be used to check correctness of Kmelia components and services presented in Figure 2.
We use the ATM Core component to check functional correctness of its provided withdrawal ’s
service. The analysis of this example with the KeY tool revealed some errors. For example, we
introduced error into the withdrawal service behaviour so that the post-condition is not satisfied.
The error is due to adding amount to availaible notes instead of subtracting it. Consequently
the post-condition is not established because of this error. After correcting this error, the
resulting method has been automatically proved using KeY with 654 symbolic states and 18 path
conditions.

3http://www.key-project.org

http://www.key-project.org

8 Multi-levels Use of Contracts for Trusted Components

4.2 Checking assembly contracts

Checking assembly contract is defined at four levels: (i) the matching of the service signatures
(up to parameter renaming), (ii) the service dependency consistency, (iii) the matching of the
service contracts pre/post-conditions and (iv) the behavioural compatibility between the linked
services. Step (i) and (ii) are performed by checking static interoperability.

4.2.1 Checking static interoperability

This verification deals with type checking, signature matching, component and service interfaces
dependency, observability rules, and availability of required or called subservices. The COSTO
tool performs this analysis by using simple correspondence checking algorithms and standard
typing algorithms. Static analysis of these contracts helps to detect some incompatibilities;
therefore the component designer may correct its component at design time. This corresponds
to the ”Static Analysis” step in Figure 1. The reader can find more details of this analysis in [4].

Example: Figure 4 shows the Kmelia editor in the Eclipse IDE, and a sample of the kind of
errors (typing, observability, incompleteness of the mapping) that are detected. Besides standard
completion, the editor supports smart completion in the case of assembly links. In Figure 4,
only required services defined in the User Interface component type are proposed and the user
is warned that some of them do not match the exact signature of the provided service withdraw

which is defined in the ATM Core component type.

Figure 4: Error detection and smart completion in COSTO/Kmelia

M. Messabihi, P. André & C. Attiogbé 9

4.2.2 Checking service contracts compliancy

Based on an assembly link, the main issue is to decide whether the provided service matches
with the required service it is linked to. The matching condition is the pre-condition of required
service Req is stronger than the one of provided service Prov and the post-condition of Req is
weaker than the one of Prov. In term of B obligation proofs this property is viewed as if: the
provided service refines the required service (considering the adaptation defined in the context
mapping of the link). In practice we reuse parts of the work presented in section 4.1.1 and we
extend it by generating B machines for the required service, its component and the refinement
relation which leads to the generation of specific (Event-)B proof obligations. For each required
service Req in a component C, one (Event-)B model Req is created before to check the consistency
of the virtual context of the service Req. The same (Event-)B model is refined by Req Prov Ref.
The state space of the machine Req is obtained by translating the virtual context of service Req,
and the operation req is the translation of service Req. The full details of the translation schema
and the proof obligations are available in [5] while the Kml2B plugin is introduced in [15].

Example: The analysis of the assembly link between required service ask for money and pro-
vided service withdraw ref with the AtelierB reveals some errors that was voluntary introduced in
the specification of ask for money: as post-condition we have (not(result) implies not (dispensable)).
This post-condition means that if result is f alse then the available notes is less than 0 which
can not be deduced from the withdraw ref post-condition. Then the service contract compliancy
(Post(waithdraw re f)⇒ Post (ask f or money)) is not fulfilled. After correcting the error, the
resulting B machines generate 28 proof obligations which are all proved by the AtelierB prover
in Automatic mode.

4.2.3 Checking behavioural compatibility

At this level we assume that services are not atomic nor executed as transactions, but they
communicate and synchronise. As indicated in section 2 to avoid state explosion we work on
one link but not the whole assembly. Ensuring dynamic behavioural compatibility is a target
property of communicating processes and transition systems, and it is usually checked by model
checkers. Currently we target MEC and CADP tools.

In order to exploit the CADP tools [13], we encode the Kmelia components into Lotos
processes which are the input of the CADP tools. The behavioural compatibility is based on
communication between processes. The translation procedure is performed as follows; each
service state is examined: each outgoing transition of the state corresponds to a Lotos action,
followed by the translation of the reached state. The used channels, the communication actions
and the elementary actions are collected to form the current process alphabet. According to
these working hypotheses, we define a semantic encoding of the service specifications. The
encoding into Lotos of service specifications is inductively performed by considering: service
interface without formal parameters; service interface with formal parameters; service states
(initial, final, intermediary and branching) and the transitions related to each service state.

As a mechanisation of this translation, a A plugin named Kml2Lotos have been developed
in a previous work [7]. The resulting Lotos process can be checked using CADP tool. An
alternative solution based on MEC model checker have been also experimented.

10 Multi-levels Use of Contracts for Trusted Components

Example: The experimentations led to detect message send inconsistencies. The error made
by the specifier was to put a message reception in a loop for one service and a stand alone
message send in the communication service. The deadlock was reached in case of second pass
in the loop. The MEC translator Kml2Mec and a full experimentation with MEC will be found
in [3].

5 Related Work

Contracts are already used at different levels and with various ways in several existing component
models; we consider some of them in the following. However to the best of our knowledge there is
not an homogenous use of them as we done and shown latter on. Contracts for component have
been described in [19]. This proposal considers functional and extra-functional contracts and
dynamic behaviours to provide trust-by-contract components. However the main issue of this
work is software quality and the proof of the contracts is not treated at the design level. Beugnard
et al.[9] have investigated types of component contracts and have classified contracts into four
levels. Syntactic contracts (i), which are taken into account by all component models, more
important semantic constraints such as behavioural contracts (ii) and synchronisation contracts
(iii) are encountered in various component models; and finally quality of service (iv) which is
often used at runtime. For example, a Corba component with IDL proposes a contract at level
(i) only.

In ConFract [12] contracts are independent entities which are associated to several par-
ticipants, not to services and links as in our case; their contracts support a rely/guarantee
mechanism with respect to the vertical composition of Fractal components [11]. ConFract uses
the executable assertions language CCL-J to express specifications at interface and component
levels. In the case of CCL-J, when a method is called on an interface, the contract controller
is then notified and it applies the checking rules. As for pre-conditions, post-conditions and
method invariants of all contracts, they ”are checked at runtime”. CCL-J is used to validate the
contracting mechanisms of ConFract but CCL-J is much simpler than JML in terms of available
constructs. In [18] the definition of Meyer’s contracts and subcontracts is assumed, which led to
rules similar to those of Kmelia. But the interpretation of pre-conditions and post-conditions is
done in terms of call sequences rather than in logical predicates. This relies on behavioural con-
tracts rather than functional contracts. In Kmelia, behavioural contracts are treated separately
with behaviour compatibility rules [7]. The SOFA component model and its behaviour protocol
formalism [16], based on regular expressions, permit the designer to verify the conformance of
a component’s implementation to its specification; this verification is done at runtime. But no
service contracts compliancy is handled.

Architecture Description Languages model software architectures in terms of components
and their overall interconnection structure. Many of these languages support formal notations
to specify components and connectors behaviors. For example, Wright [1] and Darwin [14] use
CSP-based notations. These formalisms allow to verify correctness of component assemblies,
checking properties such as deadlock freedom. However most of the work on applying formal
verifications in ADLs has focused on component interactions, but very few studies have addressed
the contract issue using pre/post-conditions.

Apart from the syntactic contracts level (i), behavioural contracts (ii) and synchronisation
contracts (iii) are also expressed in Kmelia and proved at design time. We do not deal with

M. Messabihi, P. André & C. Attiogbé 11

others constraints such as quality of service, because they depend upon data known only at
runtime.

6 Conclusion

We have presented how a set of correctness properties of components may be guaranted by stating
contracts at the level of services, components and assemblies. We illustrate the idea through the
Kmelia model which is equiped with a rich data language that enables to incorporates pre/post-
conditions at service levels, invariant at component level, and pre-post contract at assembly
level. Consequently, property verification is achieved by checking the contracts at different
levels. The mechanisation of the process is undertaken by considering translation from the
Kmelia specification language into the input language of existing tools such as theorem-provers
or model-checkers depending on what properties we have to deal with.

The multi-levels use of contracts makes it easy to define interoperability policy. For instance
static interoperability exploits low level pre/post-conditions and helps us to check the correctness
of assemblies. This may be generalised to assemblies of heterogeneous components, provided that
a standard pre/post-condition mechanism is defined and respected.

It is clear that CBSE lacks of standard practices in order to raise a large-scale, open use of
components. According to us, the road to a wide spread component-based software engineering
is simplicity, easy of use, availability of well-defined, standard, free and usefull components and
interfaces. The Unix operating system is a convincing example that makes the proof of the
concept, at a different level. The simple use of Unix .h header interfaces, the simple combi-
nation of Unix commands and options, the simple use of unstructured files, the conformance
of the standard interfaces including network levels, are recognised as the main points for the
development of operating system components that make the success of Unix family softwares.
We expect that first order logic integrated in high-level programming languages or operating
systems as the use of script languages, can play a similar role of interface standardisation for
CBSE. We are working in this direction via the reuse and the extension of existing standard
relational database languages which are already integrated in operating system level.
Perspectives A short term perpective of our work is to make the tools used at different levels more
integrated with helpful feedback into the Kmelia specifications. We are working on a translation
of a subset of Kmelia into the Fractal component model which has a Java execution environment
but lacks property verification means. We expect to favour interoperability between the models
and also, some simulation facilities that will be complementary with the formal analysis aspect
provided by Kmelia.

References

[1] Robert Allen & David Garlan (1997): A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3), pp. 213–249.

[2] Pascal André, Gilles Ardourel & Christian Attiogbé (2007): A Formal Analysis Toolbox for the
Kmelia Component Model. In: Proceedings of ProVeCS’07 (TOOLS Europe), number 567 in Tech-
nichal Report, ETH Zurich.

[3] Pascal André, Gilles Ardourel & Christian Attiogbé (2006): Vérification d’assemblage de composants
logiciels Expérimentations avec MEC. In: Michel Gourgand & Fouad Riane, editors: 6e conférence
francophone de MOdélisation et SIMulation, MOSIM 2006, Lavoisier, Rabat, Maroc, pp. 497–506.

12 Multi-levels Use of Contracts for Trusted Components

[4] Pascal André, Gilles Ardourel, Christian Attiogbé & Arnaud Lanoix (2009): Using Assertions to En-
hance the Correctness of Kmelia Components and their Assemblies. In: 6th International Workshop
on Formal Aspects of Component Software(FACS 2009), LNCS, pp. –. To be published.

[5] Pascal André, Gilles Ardourel, Christian Attiogbé & Arnaud Lanoix (2010): Contract-based Verifi-
cation of Kmelia Component Assemblies using Event-B. In: 7th International Workshop on Formal
Engineering approaches to Software Components and Architectures (FESCA 2010), ENTCS, pp. –.

[6] P. Attie & D. H. Lorenz (2003): Correctness of Model-based Component Composition without State
Explosion. In: ECOOP 2003 Workshop on Correctness of Model-based Software Composition.

[7] C. Attiogbé, P. André & G. Ardourel (2006): Checking Component Composability. In: Welf Löwe &
Mario Südholt, editors: Software Composition, LNCS 4089, Springer, pp. 18–33.

[8] Bernhard Beckert, Reiner Hähnle & Peter H. Schmitt, editors (2007): Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer-Verlag.

[9] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau & Damien Watkins (1999): Making Compo-
nents Contract Aware. Computer 32(7), pp. 38–45.

[10] Andrea Bracciali, Antonio Brogi & Carlos Canal (2005): A formal approach to component adaptation.
Journal of Systems and Software 74(1), pp. 45–54.

[11] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma & J.-B. Stefani (2006): The Fractal Component
Model and Its Support in Java. Software Practice and Experience 36(11-12).

[12] P. Collet, R. Rousseau, T. Coupaye & N. Rivierre (2005): ”A Contracting System for Hierarchical
Components”. In: George T. Heineman, Ivica Crnkovic, Heinz W. Schmidt, Judith A. Stafford,
Clemens A. Szyperski & Kurt C. Wallnau, editors: CBSE, Lecture Notes in Computer Science 3489,
Springer, pp. 187–202.

[13] J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier & M. Sighireanu (1996): CADP:
A Protocol Validation and Verification Toolbox. In: R. Alur & T. A. Henzinger, editors: Proc. of
the 8th Conference on Computer-Aided Verification (CAV’96), Lecture Notes in Computer Science
1102, Springer Verlag, pp. 437–440.

[14] Jeff Magee, Jeff Kramer & Dimitra Giannakopoulou (1999): Behaviour Analysis of Software Ar-
chitectures. In: WICSA1: Proceedings of the TC2 First Working IFIP Conference on Software
Architecture (WICSA1), Kluwer, B.V., Deventer, The Netherlands, The Netherlands, pp. 35–50.

[15] Mohamed Messabihi, Pascal André & Christian Attiogbé (2010): Preuve de cohérence de composants
Kmelia à l’aide de la méthode B. In: 4ème Conférence Francophone sur les Architectures Logicielles,
Revue des Nouvelles Technologies de l’Information RNTI-L-4, Cépaduès-Éditions, pp. 113–126.

[16] Frantisek Plasil & Stanislav Visnovsky (2002): Behavior Protocols for Software Components. IEEE
Trans. Softw. Eng. 28(11), pp. 1056–1076.

[17] McNaughton R. & Yamada H. (1960): Regular Expressions and State Graphs for Automata. RE
Trans. Electronic Computers 9 , pp. 39–47.

[18] Ralf Reussner, Iman Poernomo & Heinz W. Schmidt (2003): Reasoning about Software Architectures
with Contractually Specified Components. In: Component-Based Software Quality, LNCS 2693,
Springer, pp. 287–325.

[19] H. Schmidt (2003): Trustworthy components-compositionality and prediction. J. Syst. Softw. 65(3),
pp. 215–225.

[20] Clemens Szyperski (2002): Component Software: Beyond Object-Oriented Programming. Addison
Wesley Publishing Company/ACM Press. ISBN 0-201-74572-0.

[21] D.M. Yellin & R.E. Strom (1997): Protocol Specifications and Component Adaptors. ACM Transac-
tions on Programming Languages and Systems 19(2), pp. 292–333.

[22] A. M. Zaremski & J. M. Wing (1997): Specification matching of software components. ACM Trans-
action on Software Engeniering Methodolology 6(4), pp. 333–369.

	Introduction
	Towards Multi-levels Contractual Component Model
	Overview of the Kmelia Component Model
	Checking Contracts in Kmelia
	Checking service contracts
	Checking component consistency
	Checking functional correctness

	Checking assembly contracts
	Checking static interoperability
	Checking service contracts compliancy
	Checking behavioural compatibility

	Related Work
	Conclusion

