
FESCA 2010

Contract-based Verification of Kmelia Component
Assemblies using Event-B

Pascal André1 Gilles Ardourel1 Christian Attiogbé1

Arnaud Lanoix1

COLOSS Team
LINA CNRS UMR 6241

University of Nantes
France

Abstract

Building reliable software systems from components requires to verify the consistency of components and the correctness of
component assemblies. In this work, we design a verification method to address the problem of verifying the consistency of
component states and the correctness of assembly contracts, using pre-/post-conditions. The starting point is specifications
written with Kmelia: a Kmelia component type declares provided and required services which are used to link components in
component assemblies. From these Kmelia specifications we generate Event-B models in such a way that we can check the
consistency and also the correctness of assembly at the Kmelia level, using Event-B provers. An illustrative example based
on a stock management system is used to support the presentation.

Keywords: Components, services, contracts, assembly, formal verification, Event-B

1 Introduction

Component-based software engineering is a practical approach to address the issue of build-
ing large software by combining existing and new components. Establishing the correct-
ness of such software systems is still a challenging concern. In this context we proposed
an abstract and formal model, named Kmelia [9,6], with an associated language to specify
components, their provided and required services and their assemblies. Our main concern
is to establish their correctness; preliminary works are presented in [8]. The COSTO frame-
work [4] is dedicated for directly doing some local checkings (as type-checking) and for
extracting from the Kmelia specifications the necessary inputs to reuse other verification
tools, as illustrated in Fig. 1. Currently LOTOS/CADP and MEC are used to check the
behavioural compatibility [9,5].

Among the formal analysis necessary to ensure the global correctness, we consider
in this article: (i) the component invariant consistency vs. pre-/post-conditions of each
provided/required service; (ii) the Kmelia assembly link contract correctness, that relates

1 Email: Firstname.Lastname@univ-nantes.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:Arnaud.Lanoix@univ-nantes.fr

Andre, Ardourel, Attiogbe, Lanoix

MACHINE StockManager

REFINES StockManager_obs

VARIABLES
 catalog,

 vendorCodes

 plabels,

 pstock

INVARIANTS
 ...

EVENTS

 Event newReference = ...

 Event deleteReference = ...

 Event store = ...

 Event order = ...

 Event getNewReference = ...

END

MACHINE StockManager_obs

VARIABLES
 catalog

INVARIANTS
 ...

EVENTS

 Event newReference = ...

 Event deleteReference = ...

 Event store = ...

 Event order = ...

END

Event-B
/ Rodin

increase
Item

remove
Item

decrease
Item

addItem
code

ve : Vendor

vending

sm : StockManager

delete
Reference

store

order

authorisation

display
 ...

newReference

ask_code

getNew
Reference

Kmelia / COSTO

COMPONENT StockManager
VARIABLES
 vendorCodes : ...
 obs catalog : ...
 plabels : ...
 pstock : ...
INVARIANT
 ...
INITIALIZATION
 ...
SERVICES
 provided newReference ()
 Pre ...
 Variables ...
 Initialization ...
 Behavior
 { i − _CALLER!!ask_code() −>e1,
 e1 − [c in vendorCodes]

 _CALLER?msg(d) -> e2 ,
 ...
 Post ...
 End
 ...
END_SERVICES

ASSEMBLY
 COMPONENTS
 ve : Vendor ;
 sm : StockManager
 LINKS
 @lref : r−p ve . addItem ...
 ...
 END_LINKS
END

COMPONENT Vendor
VARIABLES
 ...
INITIALIZATION
 ...
SERVICES
 ...
 required addItem ()
 Virtual Variables
 catalogFull : ...
 catalogEmpty : ...
 Virtual Invariant ...
 Pre ...
 Post ...
 End
END_SERVICES

MEC transition_system Vendor_vending
< width = 0 >;
init |- e -> init,
start__CALLER_vending -> i;
e0 |- e -> e0 ,
_choice___stop_display__bye__ -> f,
...
< initial = { init }; final = { f } >.

synchronization_system Verif_StockManager_newReference
list = (StockManager_newReference, Vendor_vending)>;
...
(rcv_result__SELF_getNewReference.e);
(call__SELF_getNewReference.e);
(...
(rcv_result__CALLER_ask_code.emit_result_addItem_code).

transition_system StockManager_newReference
< width = 0 >;
init |- e -> init,
start__CALLER_newReference -> i;
e1 |- e -> e1 * epsilon transition *\,
...
emit_result__CALLER_newReference -> f;
< initial = { init }; final = { f } >.

LOTOS
extraction

MEC
extraction

Event-B
extraction

LOTOS/CADP
PROCESS addItem[Chan_addItem, guardVal4, assign2, ...] : exit :=
 (* i *)
 SP1_addItem[Chan_addItem, guardVal4, assign2, ...]
ENDPROC

PROCESS SP1_addItem[Chan_addItem, guardVal4, assign2, ...] : exit :=
 c :=Chan_addItem!ask_code;
 (* e1 *)
 SP2_addItem[Chan_addItem, guardVal4, assign2, ...]
ENDPROC

...

Behavioural
compatibility

checking

Behavioural
compatibility

checking

Local checkings :
type-checking, etc.

Assertion Checkings :
(i) Invariant consistencies
(ii) Assembly contracts

Diagnostic

Fig. 1. Kmelia/COSTO framework overview

services which are linked in the assemblies. We successfully apply the design-by-contracts
paradigm [14]. In [17] several cases of matchings and contracts between (behaviours of)
components were considered. Our case is more linked with plugin matching: a required
service must match with a provided service in an assembly link; it corresponds to the fol-
lowing relation between an existing behaviour S and a given behaviour Q intended to match
S: the pre-condition of Q is at least as strong as the pre-condition of S and the post-condition
of S is at least as strong as the post-condition of Q.

The main contribution of this work is as follows. We design a verification method
that uses Event-B to check the consistency of Kmelia components and the correctness of
their assembly contracts. We show how to generate the necessary Event-B models from
parts of the Kmelia specifications we want to verify. We design Event-B patterns to guide
the extraction and produce the necessary proof obligations. Then, we describe how these
proof obligations at the Event-B level are linked with the attempted proofs at the Kmelia
level: checking the Event-B invariant preservation is related to Kmelia invariant consistency.
Event-B refinements are used to check the correctness of Kmelia component assemblies.
The Rodin framework [16] is used to achieve the formal analysis.

Using (Event-)B to validate components assembly contracts was investigated in [10,12].
The work in [10] was devoted to the use of B for component interfaces and assemblies: the
component interfaces are specified using classical B and then the provided interface is
proved to be a refinement of the required one. Development of adapters are also consid-
ered [11,12]. Our approach is quite similar with respect to the use of the refinement to
check the assembly, but we start from complete component descriptions and target Event-B
to prove properties related to the data part (invariant consistency, service behaviour consis-
tency, assembly correctness). In [15], (web-)services are specified as B abstract machines

2

Andre, Ardourel, Attiogbe, Lanoix

and service composition only considers the call contract by simply ordering B operations
(sequence, loop, . . .) in order to create new operations. In our work we focus on the
clientship contract while the call contract that has to be verified locally to a component can
be proved once for all.

The article is structured as follows. Section 2 gives an overview about Event-B con-
cepts. In Section 3 we introduce the Kmelia concepts and the consistency of components
and services. Section 4 is dedicated to the verification method proposed to establish the
Kmelia component consistency using Event-B. Section 5 describes component assemblies
and assembly link contracts. Then, Section 6 is devoted to the verification of assembly
links contracts. Finally, in Section 7 we illustrate the proposed verification method with
an assembly of components for a stock management system. The article is concluded in
Section 8 where we give some perspectives.

2 Event-B

The B method [1] is a well known approach for formal specification and development
of sequential computer programs. An extension known as Event-B [2,3] covers system
modelling, reactive and distributed systems development. Event-B extends the classical B
method with specific constructions and usage.

An Event-B abstract specification comprises a static part called the CONTEXT (defining
SETS, CONSTANTS and their AXIOMS) and a dynamic part called the MACHINE. The
machine is made of a state defined by means of VARIABLES and an INVARIANTS clause
which contains predicates that constrain the variables. They are supposed to hold whenever
variable values change.

MACHINE M1
VARIABLES x
INVARIANTS I1(x)
EVENTS
Event E1 =̂
any p where G1(p,x)
then S1(p,x)
end

END

MACHINE M2
REFINES M1
VARIABLES y
INVARIANTS I2(x,y)
EVENTS
Event E2 =̂
refines E1
any q where G2(q,y)
then S2(q,y)
end

END

Fig. 2. A machine M1 and a possible refinement M2

Besides its state, a machine has an EVENTS clause containing a list of events that
describe the way the machine evolves. Each event is made of a guard and an action. When
the guard of an event is true, the event is enabled. When the guards of several events
are true, the choice of the triggered event is non-deterministic. The action of an event
determines the way the state variables evolve when the event occurs. In the event E1 of
Fig. 2, p denotes variables (i.e. parameters) that are local to the event 2 , G1(p,x) is a
predicate denoting the guard and S1(p,x) denotes the action that updates some variables,
it is a collection of assignments as follows:

2 When no local variables are used, the event becomes E1 =̂ when G1(x) then S1(x) end

3

Andre, Ardourel, Attiogbe, Lanoix

Assignment Before-after predicate

x := E1(p,x) x’ = E1(p,x) (Deterministic)

x : | Q1(p,x,x’) Q1(p,x,x’) (non-deterministic)

where E1(p,x) denotes an expression and Q1(p,x,x’) is a before-after predicate.
The semantics of an Event-B machine is expressed via proof obligations (POs), which

must be discharged to ensure the machine consistency. For instance, for the non-deterministic
assignment, we must prove (see [2]):

• Feasibility: I1(x) ∧ G1(p,x) ⇒ ∃ x’. Q1(p,x,x’)

• Invariant preservation: I1(x) ∧ G1(p,x) ⇒ I1(x’)

A refinement process is used to transform the abstract machine into a more concrete
one, which REFINES the abstract machine. New variables can be introduced and the (old)
abstract variables can be refined to more concrete ones. This is reflected in the substitutions
of the events as well. A concrete event refines its abstraction 1) when the guard of the
former is at least as strong as the guard of the latter (guard strengthening), and 2) when the
concrete actions “realise” the abstract ones. New events may be introduced at the refined
level. These new events should not prevent forever the old ones from being triggered.

The previous POs (feasibility and invariant preservation) are to be proved on the refined
machine. Furthermore, new POs ensure that the refinement is correct, i.e. the refined events
do not contradict their abstract counterpart. We have to discharge these POs (see [2]):

• Guard strengthening: I1(x) ∧ I2(x,y) ∧ G2(q,y) ⇒ G1(p,x) ∧ I2(x’,y’)

• Action simulation: I1(x) ∧ I2(x,y) ∧ G2(q,y) ∧ Q2(q,y,y’) ⇒ ∃x’.Q1(p,x,x’)

Event-B is accompanied with tool support in the form of a framework called Rodin [16].
POs corresponding to the Event-B models are automatically generated. Then, they can be
discharged automatically or interactively, using the Rodin provers.

In this short presentation we omit some Event-B concepts: deadlock freeness POs,
variant POs, decomposition of Event-B models, etc. A complete description of Event-B
can be found in [2,3].

3 Kmelia Components, Services and Invariant Consistency

In this section first we describe the main features of a Kmelia component type, then we show
how to establish its invariant consistency. Note that many details and features of Kmelia are
omitted here; we focus only on the contract aspects and not on the behavioural ones. The
reader will find detailed descriptions of Kmelia in [9,8].

3.1 Main features of a component

A component type is introduced by a COMPONENT clause identified by a specific name.
The simplified component pattern of Fig. 3 illustrates the Kmelia language and the graphical
representation.

The INTERFACE of a component declares the services that the component provides
and requires. The TYPES clause contains new type definitions. The VARIABLES clause
includes the component state variables. It distinguishes the observable variables o, which

4

Andre, Ardourel, Attiogbe, Lanoix

are visible from any client, from the other ones x which are supposed to be non-observable.
The INVARIANT clause declares a conjunction of predicates that build the component state
invariant property. The INITIALIZATION clause assigns values to state variables. The par-
tition (observable/non-observable) propagates to the whole state space (e.g. invariant, ini-
tialisation) and the service assertions. For the sake of simplicity, the different parts of the
pattern given in Fig. 3 are made abstract, for example inv(o) represents the invariant built
using the variables o, init (o,x) represents the initialisation expression on the variables o
and x, etc.

COMPONENT C
INTERFACE

provides : { serv }
requires : { servR }

TYPES
To ; Tx ; Tp ; Tres

VARIABLES
obs o : To ;
x : Tx

INVARIANT
obs i nv (o) ,
i nv (o , x)

INITIALIZATION
i n i t (o , x)

Observability

: C
o : To

x : Tx

Service call

servR

preR lpreR

postR

v : Tv

intserv
ipre

ipost

lpost
post

 serv

pre

callserv

SERVICES
provided serv (p : Tp) : Tres / /−−−−−−−−−−−
In ter face

extrequires : { servR }
in t requires : { i n t s e r v }

Pre
pre (p , o)

Post
post (p , old (o) , o , r) ,
local l p o s t (p , old (o) , o , old (x) , x , r)

End
provided i n t s e r v (p : Tp) : Tres / /−−−−−−−
Pre

local i p r e (p , o , x)
Post

local i p o s t (p , old (o) , o , old (x) , x , r)
End
required servR (p : Tp) : Tres / /−−−−−−−−−−
Vi r tua l Variables
v : Tv

Vi r tua l Invar iant
invR (v)

Pre
preR (p , v) ,
local lpreR (p , o , x)

Post
postR (p , old (v) , v , r)

End
END_SERVICES

Fig. 3. Kmelia pattern C and its graphical form

The SERVICES clause lists the component services whose behaviours describe the
functionalities offered by the component. A Kmelia service is more than a simple oper-
ation because it has (i) a dynamic behaviour defined by a state-transition system (which is
formally an extended Labelled Transition System detailed in [9,6,7]), (ii) it can require or
provide other services, through its interface , i.e. a description of its service dependency.
That includes the declaration of the services required from any component (extrequires),
and, it may also include the services locally required from its own component (intrequires).

Two kinds of services should be considered in a component:

• The provided services implement functionalities achieved and offered by the compo-
nent; Pre-/Post-conditions are expressed on the component state variables to specify the
effect of the service behaviours.

• the required services are abstractions of services provided by other components. The
Virtual variables and invariant of a required service give the observable state of the
“imaginary” component; Pre and Post denote the requirements about them.

Invariant and pre-conditions are classical first-order predicates with specific variable
scopes, constrained by observability rules. Post-conditions are before-after predicates: in
Kmelia, old(x) denotes the before value of variable x, when x denotes the after value. In
Fig. 3, r denotes the returned result of the service where it is used. Note that local Pre-

5

Andre, Ardourel, Attiogbe, Lanoix

/Post-conditions of a service serv are defined on variables of the whole state space of the
component that defines the service serv. The following restrictions are due to observability:
a required service has an empty local post-condition, a provided service which is in the
provided interface of a component has an empty local pre-condition, whereas a provided
service which is not in the provided interface of a component is called an internal service
e.g. intserv .

3.2 Invariant consistency

Among the analysis we have to perform to establish a Kmelia component correctness, one
is the component invariant consistency: the provided and required services do not break
their corresponding component invariant. We assume this preservation at three levels of
observability. Hence the following rules.

(i) The observable part of the component must be consistent, i.e. the observable part of
the post-condition of a provided service is sufficient to establish the observable part
of the invariant:

inv(old(o)) ∧ pre(p,old(o)) ∧ post(p,old(o),o,r) ⇒ inv(o) (INV/O)

(ii) The complete invariant must be preserved by the provided services:

inv(old(o)) ∧ inv(old(o),old(x)) ∧ pre(p,old(o))
∧ post(p,old(o),o,r) ∧ lpost(p,old(o),o,old(x),x, r)
⇒ inv(o) ∧ inv(o,x)

(INV/F)

and also by the internal services:

inv(old(o)) ∧ inv(old(o),old(x)) ∧ ipre(p,old(o),old(x))
∧ ipost(p,old(o),o,old(x),x, r)
⇒ inv(o) ∧ inv(o,x)

(INV/F’)

(iii) The last verification concerns the consistency of the “imaginary” context, i.e. each
required service preserves its associated virtual invariant:

invR(old(v)) ∧ preR(p,old(v)) ∧ postR(p,old(v),v, r) ⇒ invR(v) (INV/V)

These rules should be checked to ensure the invariant consistency at the Kmelia level.

4 Formal Analysis of Kmelia Components using Event-B

In order to verify the rules defined in the previous section, we design a verification method
that uses Event-B: we systematically build appropriate Event-B models, by extracting the
necessary Kmelia elements in such a way that the Event-B proof obligations (POs) corre-
spond to the specific rules we need to check at the Kmelia level. Then, we can discharge
these POs using Rodin and interpret the proof results at the Kmelia level.

Remark 4.1 We are not going to deal in this article with the details of an automatic trans-
lation procedure from Kmelia to Event-B. The pattern in the listing of Fig. 4 (and the others)
postpones a strong hypothesis about the translation of Kmelia expressions to Event-B; For

6

Andre, Ardourel, Attiogbe, Lanoix

example we assume the same type universe (for basic types).

4.1 Verification of INV/O

For each Kmelia component, we generate a first Event-B model as illustrated by the pattern
given in Fig. 4. The observable state variables and invariant of Kmelia become variables
and invariant of the Event-B model C_obs. For each service provided in the component
interface, a new event is built: parameters and pre-conditions become local variables and
guards of the event, observable post-conditions become a non-deterministic assignment.

MACHINE C_obs
SEES C_cxt_obs
VARIABLES
o, r
INVARIANTS
o ∈ To
inv(o)
r ∈ Tres

EVENTS
Event serv_obs =̂
any p where
p ∈ Tp
pre(p,o)
then
o, r : | post(p,o,o’,r’)
end

END

Fig. 4. Pattern C_obs

The Kmelia invariant and pre-condition translations are quite systematic. The post-
conditions are quite directly translated into before/after predicates using the following pro-
cedure: we extract a list of the updated variables, then we build a non-deterministic as-
signment where the left hand side is these updated variables and the right hand side is the
post-conditions viewed as a before-after predicate. We have to switch from the Kmelia
notation to the one of Event-B; the before variables old(o) are used in Kmelia whereas the
after variables o’ are used in Event-B. Finally, the result variable r of each service becomes
a global variable of the Event-B model; it is processed as the other state variables in the
before/after predicate.

Remark 4.2 Another way to deal with post-conditions in Event-B consists to abstract a
post-condition by using an ANY substitution that satisfies the post-condition (once trans-
lated) as proposed in the context of UML/OCL to B translations [13].

Proposition 4.3 (INV/O-Consistency) The Event-B proof of the consistency of the gener-
ated Event-B machines ensures the proof of the rule INV/O for the invariant consistency of
the observable part at the Kmelia level.

Proof. Consider the generated POs [2] for the consistency of C_obs by serv_obs :

(Feasibility)

o ∈ To ∧ inv(o) ∧ r ∈ Tres
∧ p ∈ Tp ∧ pre(p,o)
⇒ ∃ o’,r’. post(p,o,o’,r’)

(Invariant preservation)

o ∈ To ∧ inv(o) ∧ r ∈ Tres ∧ p ∈ Tp
∧ pre(p,o)
⇒ o’ ∈ To ∧ inv(o’) ∧ r’ ∈ Tres

From (Feasibility) we deduce post(p,o,o’,r’). Combined with (Invariant preser-
vation), we obtain exactly the expected rule INV/O and then we establish the proposi-
tion 4.3. 2

7

Andre, Ardourel, Attiogbe, Lanoix

4.2 Verification of INV/F and INV/F’

Now, we consider the whole component, not only its observable parts. We build another
Event-B model (C) as a refinement of the previous one C_obs. The non-observable variables
and invariants are added to the state of the model C. For each provided service, we refine the
corresponding event by adding the local post-conditions to the assignment. Each internal
service is also translated as a new event. The pattern in Fig. 5 gives an overview of the
translation scheme.

MACHINE C
REFINES C_obs
SEES C_cxt
VARIABLES
o, r, x
INVARIANTS
x ∈ Tx
inv(o,x)

EVENTS
Event serv =̂
refines serv_obs
any p where
p ∈ Tp
pre(p,o)
then
o, r, x : |
(post(p,o,o’,r’)
∧ lpost(p,o,o’,x,x’,r’))

end

Event intserv =̂
any p where
p ∈ Tp
ipre(p,o,x)
then

o, r, x : |
ipost(p,o,o’,x,x’,r’)

end
END

Fig. 5. Pattern C

Proposition 4.4 (INV/F/F’-Consistency) Proving the refinement on the generated Event-
B models results in the proof of the rules INV/F and INV/F’ for the invariant consistency of
the whole Kmelia component.

Proof. The Event-B proof obligations concerning the refined event serv of C correspond
exactly to the expected rule INV/F. Similarly, the POs concerning the new event intserv
introduced by refinement ensure the rule INV/F’. 2

4.3 Verification of INV/V

For each required service (and its associated “virtual context”) we have to generate an
Event-B model. The Virtual variables and Virtual invariant at the Kmelia level become
respectively the variables and invariant of the Event-B model whereas the required service
becomes the only one event of the model as shown in Fig. 6.

MACHINE C_servR
SEES servR_cxt
VARIABLES
v, r
INVARIANTS
v ∈ Tv
invR(v)
r ∈ Tres

EVENTS
Event servR =̂
any p where
p ∈ Tp
preR(p,v)
then
v, r : | postR(p,v,v’,r’)
end

END

Fig. 6. Pattern C_servR

Proposition 4.5 (INV/V-Consistency) The Event-B proof obligations of the model C_servR
ensure the proof of the rule INV/V for the invariant consistency of the required service
servR.

Proof. As previously, the correspondence between the generated POs about the invariant
preservation by C_servR and the Kmelia rule INV/V is obvious. 2

8

Andre, Ardourel, Attiogbe, Lanoix

5 Kmelia Assembly Links Correctness

In the following we consider Kmelia component assemblies and we show how an assembly
contract is established. Again, only the part of Kmelia related to contracts is covered.

5.1 Component Assembly and Links

A Kmelia assembly is a set of components that are linked through their services. An assem-
bly link associates a required service to a provided one. In order to introduce the services to
be linked in an assembly, we consider another component-type A given in Fig. 7 in addition
to the component type C already shown in the Listing of Fig. 3.

COMPONENT A
INTERFACE

provides : { servP }
VARIABLES

obs o : To
INVARIANT

obs invP (o)
SERVICES
provided servP (p : Tp) : Tres
Pre

preP (p , o)
Post

postP (p , old (o) , o , r)
End
END_SERVICES

ASSEMBLY
COMPONENTS

c :C ;
a :A

LINKS
r−p c . servR , a . servP

Context mapping MAP(v , o)
End

END_LINKS

 servR

preR

postR

v : Tv

c : C
serv

a : A

o : To

postP

servP

preP

Observability
Service call
Assembly link
Mapping

MAP(v,o)

Fig. 7. Kmelia assembly pattern

An ASSEMBLY is specified by two main clauses, as shown in Fig. 7: the COMPONENTS
clause gives the instances of component type that we consider in the assembly and the
LINKS clause indicates the assembly links. For the sake of simplicity we assume that the
parameters of the two linked services are the same (or they have been renamed to be the
same). A Context mapping specifies an expression MAP(v,o) which denotes how the vari-
ables v of the virtual context of the required service servR are mapped to the observable
variables o of the component which offers the provided service servP.

If the linked services have service dependencies, then Kmelia requires the description of
assembly sublinks according to the interface of services but we are not going to introduce
them here.

5.2 Assembly contracts

The correctness of a link is established by: (i) the matching of the service signatures (with
parameter renaming), (ii) the service dependency consistency, (iii) the respect of the service
contracts and (iv) the behavioural compatibility between the linked services. The first two
steps (i) and (ii) are handled by the Kmelia compiler. The behavioural compatibility (iv)
definition and analysis is presented in [9].

In this article we focus on the contract part (iii) only. Informally this contract is as
follows: whenever the required service servR is called, the provided service servP should
apply. It is expressed by two rules PRE and POST given below:

9

Andre, Ardourel, Attiogbe, Lanoix

 servR

preR

postR

<

<
postP

servP

preP
invR(v) ∧ invP(o) ∧ MAP(v,o) ∧ preR(p,v)⇒ preP(p,o) (PRE)

invP(old(o)) ∧ MAP(old(v),old(o))
∧ postP(p,old(o),o,r) ⇒ postR(p,old(v),v, r)

(POST)

Similarly to the component invariant consistency, the above rules are the starting point
for the effective verification method.

6 Formal Analysis of Kmelia Assembly Links using Event-B

The main idea behind our method for checking the correctness of an assembly link is the
following: we consider a provided service as a refinement of a required service. Practically,
we convert the Kmelia assembly correctness rules to an Event-B refinement proofs; we
generate the appropriate Event-B models such that their proof obligations correspond to
the intended rules PRE and POST. Here the generated Event-B models concern the links
between given required/provided services already checked to be consistent.

For each link between a required service servR and a provided one servP, we build
an Event-B model which REFINES the Event-B model previously generated for the re-
quired service servR (as shown in Section 4). The corresponding refinement pattern is
shown in Fig. 8: the observable variables of the provided service are added and the invari-
ant is completed with the mapping MAP(v,o). The pre-condition of the required service
is preserved to avoid a guard strengthening. To ensure the PRE rule we add the expres-
sion ∀ q. q∈Tp ∧ preR(q,v) ⇒ preP(q,o) to the invariant; it expresses that the pre-
condition of the required service is at least as strong as the one of the provided service
in Kmelia assembly 3 . Finally, the only event of the abstract machine is refined using the
post-condition of the provided service as assignment.

MACHINE c_servR_a_servP
REFINES C_servR
VARIABLES
v, r, o
INVARIANTS
o ∈ To
inv(o)
MAP(v,o)
∀q . q∈Tp ∧ preR(q,v) ⇒ preP(q,o)

EVENTS
Event servP =̂
refines servR
any p where
p ∈ Tp
preR(p, v)
then
v, r, o : | postP(p,o,o’,r’) ∧ MAP(v’,o’)
end

END

Fig. 8. Event-B pattern for an assembly link

Proposition 6.1 (PRE/POST-Contract) The refinement proof between the generated Event-
B events establishes both the rules PRE and POST for the Kmelia assembly correctness as
shown below.

Proof. The following POs concerning the refinement proof [2] of servP establish the
proposition 6.1:

3 This predicate can be simplified if the service has no parameter

10

Andre, Ardourel, Attiogbe, Lanoix

(i) If the POs about the Invariant preservation are discharged, then
∀q . q∈Tp ∧ preR(q,v) ⇒ preP(q,o) is established
and the rule PRE is ensured.

(ii) The POs about Action simulation are:

v ∈ Tv ∧ inv(v) ∧ res ∈ Tres
∧ o ∈ To ∧ inv(o) ∧ MAP(v,o)
∧ (∀q . q∈Tp ∧ preR(q,v) ⇒ preP(q,o))
∧ p ∈ Tp ∧ preR(p,v)
∧ postP(p,o,o’,r’) ∧ MAP(v’,o’)
⇒ ∃ v$0’. postR(p,v,v$0’,r’)

which obviously corresponds to POST (by substituting v$0’ by v’).
2

7 Case Study: a Stock Management System

We report on the experimentation of the proposed method using a case study on a simplified
Stock Management system. The system manages product references (catalog) and product
storage (stock). Administrators have specific rights, they can add or remove references un-
der some business rules such as: a new reference must not be in the catalog or a removable
reference must have an empty stock level. The detailed Kmelia and Event-B specifications
are available in appendix at our website 4 .

Function call

Service call

Assembly
link

increase
Item

remove
Item

decrease
Item

addItem
code

ve : Vendor

vending

sm : StockManager

delete
Reference

store

order

authorisation

display
 ...

newReference

ask_code

getNew
Reference

Fig. 9. Assembly of the Stock Management Case Study

As shown in Fig. 9 the system is designed as an assembly of two components sm of type
StockManager and ve of type Vendor. The former one is the core business component to
manage references and storage. The latter one is the system interface with a main service,
the vending service. The Vendor component requires a service addItem which may get a
new reference and perform the update of the system. In this paper we focus on the vending
and newReference services, the other services will not be further detailed.

4 http://www.lina.sciences.univ-nantes.fr/coloss/download/fesca10_app.pdf

11

http://www.lina.sciences.univ-nantes.fr/coloss/download/fesca10_app.pdf

Andre, Ardourel, Attiogbe, Lanoix

7.1 Checking the Invariant Consistency of the Components

We have to build several Event-B models to check the different levels of component consis-
tencies, as presented in Sections 4 and 6. The figure 10 gives an overview of the necessary
Event-B models which should be generated to check the Kmelia specifications.

ve : Vendor

vending

addItem
code

remove
Item

increase
Item

decrease
Item

sm : StockManager

authorisation

newReference
ask_code

delete
Reference

store

order

getNew
Reference

MACHINE ve_addItem

 _sm_newReference

REFINES
 Vendor_addItem

VARIABLES
 catalogFull

 catalogEmpty

 catalog

INVARIANTS
 ...

EVENTS

 Event newReference =

 refines addItem

 ...

END

MACHINE Vendor_addItem

VARIABLES
 catalogFull

 catalogEmpty

INVARIANTS
 ...

EVENTS

 Event addItem = ...

END

MACHINE StockManager

REFINES StockManager_obs

VARIABLES
 catalog,

 vendorCodes

 plabels,

 pstock

INVARIANTS
 ...

EVENTS

 Event newReference = ...

 Event deleteReference = ...

 Event store = ...

 Event order = ...

 Event getNewReference = ...

END

MACHINE StockManager_obs

VARIABLES
 catalog

INVARIANTS
 ...

EVENTS

 Event newReference = ...

 Event deleteReference = ...

 Event store = ...

 Event order = ...

END

Event-B
extraction

Fig. 10. Overview of the generated Event-B models

First we focus on the Kmelia specification of the StockManager component, which is
made of some variables, particularly the observable variable catalog which contains the set
of product references. Two arrays (plabels and pstock) are used to store the labels of the
current references and their available quantities. The component invariant expresses that
the catalog has an upper bound; each reference in the catalog has a label and a quantity; the
unknown references have no entries in the two arrays pstock and plabels.

The consistency checking of StockManager follows the verification method presented
in Section 4:

(i) An Event-B model StockManager_obs is generated following the pattern of Fig. 4:
only the observable variable catalog of the component becomes a variable of the
model. The observable part of invariant is also translated. Finally, the model contains
one event per provided service. StockManager_obs is used to prove the consistency
of the component vs. the current service according to its observable part (proposi-
tion 4.3).

(ii) Afterward, an Event-B model StockManager is built as a refinement of StockMana-
ger_obs following the pattern given in Fig. 5. It takes into account the internal part
of the component state by adding the non-observable parts through the refinement.
The events corresponding to the provided services are refined to include their local
post-conditions. Thus, StockManager is used to check the Kmelia rules INV/F and
INV/F’ (proposition 4.4).

(iii) For the required services of StockManager, specific Event-B models are generated
and checked as explained in Section 4 with the pattern of Fig. 6.

12

Andre, Ardourel, Attiogbe, Lanoix

Total Auto. Manual. Undischarged

StockManager_obs 9 5 4 -
StockManager 13 7 3 3
Vendor_addItem 5 2 3 -
ve_addItem_sm_newReference 19 12 5 2

Table 1
Overview of the Generated/discharged POs with Rodin

The consistency of the component Vendor and of its required/provided services are
verified using the same process. We focus particularly on the required service addItem
and its corresponding Event-B model Vendor_addItem obtained by applying the pattern
presented in Fig. 6.

7.2 Checking the Correctness of the Assembly links

The verification method presented in Section 6 is used to validate the assembly links de-
picted in Fig. 9. Let us consider the link between the service addItem of the Vendor com-
ponent which is fulfilled with the provided service newReference of StockManager. As
described in our method (Section 6), an Event-B refinement (named ve_addItem_sm_new
Reference) is generated to check the correctness of this contract. It refines the previously
generated Event-B model Vendor_addItem. Its invariant includes the observable invari-
ant of the component StockManager and also a mapping between the virtual variables of
addItem and the observable variable catalog of StockManager.

7.3 Investigating the Event-B models and reviewing the Kmelia sources

We check all the generated Event-B models using Rodin. The POs have been generated.
The major part of the POs are automatically discharged. The other ones are done manually
with the use of the interactive provers, as illustrated Table 1:

• Concerning StockManager, 3 POs are not discharged, but they are related to the lack of
typing information at the B level.

• Considering ve_addItem_sm_newReference, 2 POs are not yet discharged. These re-
maining POs are related to the proof of the preservation of the initialisation, which are
not considered into the required service and its virtual context.

Studying this example within Rodin revealed some errors during the development of the
Kmelia specifications. For example, the first version of the post-condition of newReference
was wrong; one of the associated POs could not be discharged; looking at it thoroughly,
its is related to the fact that this version of the post-condition did not cover all the needed
cases.

Altogether, the main found errors were about interval limits (integers, ranges, null val-
ues...) and implicit preservation of unchanged component state variables.

8 Conclusion and Perspectives

We introduced a method to check the consistency of Kmelia components and the correct-
ness of their assemblies using the Event-B framework. Our verification method is based on
the generation of Event-B models from parts of the Kmelia specifications, and their analysis

13

Andre, Ardourel, Attiogbe, Lanoix

using Event-B tools. The Kmelia specifications are equipped with contracts in the form of
pre-/post-conditions defined on services and with invariants at the component level. The
contracts are exploited to generate appropriate Event-B models suited to validate the com-
ponents and their assemblies. The refinement technique of Event-B is used to manage both
the structuring of the generated Event-B models and also the proofs to be discharged. This
work contributes to fill the gap on the way to build correct software from existing compo-
nents. The current results constitute one more step for rigorously building components and
assemblies using the Kmelia framework. We put emphasis on tool assistance as a corner-
stone for the adoption of rigorous software methods. The Rodin tools which are suitable
for that purpose was selected for experimentations.

Perspectives
We plan to use Event-B and refinement to check the consistency between service asser-

tions and the eLTS describing the service: in order to ensure that the eLTS establishes the
post-condition, each transition would be translated to an event of an Event-B model. This
model must refine the Event-B model containing the post-condition.

The generation of the Event-B models is currently not fully mechanised. We are im-
plementing a dedicated module in our COSTO framework [4], to support this generation
work. An important related aspect is the traceability between the Kmelia specification and
the Event-B tools used to manage the consistency checking. Currently the Event-B models
are generated in such a way that there is an obvious structuring of the relationship between
Kmelia components and services on the one hand and Event-B models and events on the
other hand; it remains to exploit the output of the proof tools to go back into the initial
Kmelia specifications; this will considerably help in updating the source specifications.

References
[1] J.-R. Abrial. The B Book. Cambridge University Press, 1996.

[2] J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An Open Extensible Tool Environment for Event-B. In ICFEM
2006, volume 4260 of LNCS. Springer, 2006.

[3] J.-R. Abrial and S. Hallerstede. Refinement, Decomposition, and Instantiation of Discrete Models: Application to
Event-B. Fundamenta Informaticae, 77(1-2):1–28, 2007.

[4] P. André, G. Ardourel, and C. Attiogbé. A Formal Analysis Toolbox for the Kmelia Component Model. In Proceedings
of ProVeCS’07 (TOOLS Europe), number 567 in Technichal Report. ETH Zurich, 2007.

[5] Pascal André, Gilles Ardourel, and Christian Attiogbé. Vérification d’assemblage de composants logiciels
Expérimentations avec MEC. In 6e conférence francophone de MOdélisation et SIMulation, MOSIM 2006, pages
497–506. Lavoisier, April 2006.

[6] Pascal André, Gilles Ardourel, and Christian Attiogbé. Defining Component Protocols with Service Composition:
Illustration with the Kmelia Model. In 6th International Symposium on Software Composition, SC’07, volume 4829 of
LNCS. Springer, 2007.

[7] Pascal André, Gilles Ardourel, and Christian Attiogbé. Composing Components with Shared Services in the Kmelia
Model. In 7th International Symposium on Software Composition, SC’08, volume 4954 of LNCS. Springer, 2008.

[8] Pascal André, Gilles Ardourel, Christian Attiogbé, and Arnaud Lanoix. Using Assertions to Enhance the Correctness
of Kmelia Components and their Assemblies. In 6th International Workshop on Formal Aspects of Component
Software(FACS 2009), LNCS, 2009. to be published.

[9] Christian Attiogbé, Pascal André, and Gilles Ardourel. Checking Component Composability. In 5th Intl. Symposium
on Software Composition, SC’06, volume 4089 of LNCS. Springer, 2006.

[10] S. Chouali, M. Heisel, and J. Souquières. Proving Component Interoperability with B Refinement. ENTCS, 160:157–
172, 2006.

14

Andre, Ardourel, Attiogbe, Lanoix

[11] S. Colin, A. Lanoix, and J. Souquières. Trustworthy interface compliancy: data model adaptation. Electronic Notes
in Theoretical Computer Science, 203(7):23–35, April 2009. Proceedings of the Formal Foundations of Embedded
Software and Component-Based Software Architectures (FESCA 2007).

[12] A. Lanoix and J. Souquières. A Trustworthy Assembly of Components using the B Refinement. e-Informatica Software
Engineering Journal (ISEJ), 2(1):9–28, 2008.

[13] Hung Ledang and Jeanine Souquières. Integration of UML and B Specification Techniques: Systematic Transformation
from OCL Expressions into B. In 9th Asia-Pacific Software Engineering Conference (APSEC 2002). IEEE Computer
Society, 2002.

[14] Bertrand Meyer. Applying "design by contract". IEEE COMPUTER, 25:40–51, 1992.

[15] Nikola Milanovic. Contract-Based Web Service Composition Framework with Correctness Guarantees. In Service
Availability, Second International Service Availability Symposium, ISAS 2005, volume 3694 of LNCS, pages 52–67.
Springer, 2005.

[16] Rodin. http://rodin-b-sharp.sourceforge.net.

[17] A. M. Zaremski and J. M. Wing. Specification Matching of Software Components. ACM Transaction on Software
Engeniering Methodolology, 6(4):333–369, 1997.

15

http://rodin-b-sharp.sourceforge.net

Andre, Ardourel, Attiogbe, Lanoix

This separate appendix for the FESCA@ETAPS 2010 article is available at the Kmelia
website 5 .

A Kmelia specification

A.1 The Kmelia assembly StockSystem

ASSEMBLY
COMPONENTS

ve : Vendor ;
sm : StockManager

LINKS
@lref : r−p ve . addItem , sm . newReference
Context mapping

catalogEmpty == empty (sm . ca ta log) ,
c a t a l o g F u l l == s ize (sm . ca ta log) = MaxInt

sub l i nks : { lcode }
End
@lcode : p−r ve . code , sm . ask_code
. . .
END_LINKS

A.2 The Kmelia component StockManager

COMPONENT StockManager
INTERFACE

provides : { newReference , removeReference , s to re I tem , order I tem }
requires : { a u t h o r i s a t i o n }

USES {STOCKLIB}
TYPES

Reference : : range 1 . .maxRef
VARIABLES

vendorCodes : setOf I n t ege r ; / / au thor ised a d m i n i s t r a t o r s
obs ca ta log : setOf Reference ; / / product i d = index o f the ar rays
p labe ls : array [Reference] o f S t r i n g ; / / product d e s c r i p t i o n
pstock : array [Reference] o f I n tege r / / product q u a n t i t y

INVARIANT
obs @borned : s ize (ca ta log) <=maxRef ,
@referenced : f o r a l l r e f : Reference | i nc ludes (ca ta log , r e f) imp l i es

(p labe ls [r e f] <> emptyStr ing and pstock [r e f] <> noQuant i ty) ,
@notreferenced : f o r a l l r e f : Reference | excludes (ca ta log , r e f) imp l i es

(p labe ls [r e f] = emptyStr ing and pstock [r e f] = noQuant i ty)
INITIALIZATION

ca ta log := emptySet ;
vendorCodes := emptySet ; / / f i l l e d by a requ i red serv i ce
p labe ls:= a r r a y I n i t (p labe ls , emptyStr ing) ; / / cons i s ten t w i th . .
pstock := a r r a y I n i t (pstock , noQuant i ty) ; / / . . empty ca ta log

SERVICES
########### requ i red serv ices (p a r t i a l d e s c r i p t i o n)
required ask_code () : I n t ege r

/ / d e f a u l t asse r t i on = t r ue and No LTS
End
required a u t h o r i s a t i o n () : setOf I n t ege r / / . . .
End
########### provided serv ices
provided newReference () : I n t ege r / / Resul t = Product Id or noReference
In ter face

calrequires : { ask_code } # requ i red from the c a l l e r
in t requires : { getNewReference }

Pre
s ize (ca ta log) < maxRef #the ca ta log i s not f u l l

Variables # l o c a l to the serv i ce
c : I n t ege r ; # c : i npu t code given by the user
res : Reference ;
d : S t r i n g ; # product d e s c r i p t i o n

I n i t i a l i z a t i o n
res := noQuant i ty ;

Behavior
I n i t i # the i n i t i a l s t a t e
Final f # a f i n a l s t a te
{ i −− c := __CALLER !! ask_code () −−> e1 ,

gets the password on the ask_code (se rv i ce) channel
e1 −− [not (c i n vendorCodes)]

d i sp lay (" adding a re ference i s not al lowed ") −−> end ,

5 http://www.lina.sciences.univ-nantes.fr/coloss/download/fesca10_app.pdf

16

http://www.lina.sciences.univ-nantes.fr/coloss/download/fesca10_app.pdf

Andre, Ardourel, Attiogbe, Lanoix

e1 −− [c i n vendorCodes] __CALLER ? msg(d) −−> e2 ,
gets the product d e s c r i p t i o n

e2 −− [d = emptyStr ing]
d i sp lay (" adding an EmptySet d e s c r i p t i o n i s not al lowed ") −−> end ,

e2 −− [d <> emptyStr ing] res := __SELF !! getNewReference () −−> e4 ,
e4 −− { ca ta log := i n c l u d i n g (ca ta log , res) ; / / add new reference

pstock [res] := 0 ; / / d e f a u l t s tock i s n u l l
p labe ls [res] := d / / product d e s c r i p t i o n i s the one provided

}−−> end ,
end −− __CALLER !! newReference (res) −−> f

the c a l l e r i s informed from the Resul t and the serv i ce ends .
}
Post

@resultRange : ((Resul t >= 1 and Resul t <=maxRef) or (Resul t = noReference)) ,
@resultValue : (Resul t <> noReference) imp l i es (no t In (o ld (ca ta log) , Resul t)

and ca ta log = add (o ld (ca ta log) , Resul t)) ,
@noresultValue : (Resul t = noReference) imp l i es Unchanged { ca ta log } ,
loca l @refAndQuantity : (Resul t <> noReference) imp l i es

(pstock [Resul t] = 0 and p labe ls [Resul t] <> emptyStr ing and
(f o r a l l i : Reference | (i <> Resul t) imp l i es

(pstock [i] = o ld (pstock) [i] and p labe ls [i] = old (p labe ls) [i]))
) ,

loca l @NorefAndQuantity : (Resul t = noReference) imp l i es Unchanged { pstock , p labe ls }
End
/ / / / / / / / / / i n t e r n a l prov ided serv ices / / / / / / / / / / / / / / /
query provided getNewReference () : Reference
Pre

s ize (ca ta log) < maxRef # poss ib le i f the ca ta log i s not f u l l
Variables

i : Reference ;
I n i t i a l i z a t i o n

i := 1 ;
Behavior
I n i t i
Final f
{ i −− { wh i le (pstock [i] <> noReference) do

i := i +1
endwhile } −−> res ,

res −− __CALLER !! getNewReference (i) −−> f
}
Post

no t In (ca ta log , Resul t) / / the re ference i s r e a l l y new
End
END_SERVICES

A.3 The Kmelia component Vendor

COMPONENT Vendor
INTERFACE

provides : { vending }
requires : { addItem , removeItem , increaseI tem , decreaseItem }

USES {STOCKLIB}
CONSTANTS
obs noID : I n t ege r :=−1 ;
VARIABLES

obs orders : setOf ProductI tem ; # observable user card
vendorId : I n t ege r # vendor personal code

INITIALIZATION
orders := emptySet ;
vendorId := noID

SERVICES
########### provided serv ices
The main (prov ided) se rv i ce i s vending .
provided vending () / / . . .
In ter face

extrequires : { addItem , removeItem , increaseI tem , decreaseItem }
Pre t r ue
Variables # l o c a l to the serv i ce

choice : CommandChoice ; # command choice : addItem , . . .
r e f : I n t ege r ; # product re ference given by the user
qty : I n t ege r ; # product q u a n t i t y given by the user
desc : S t r i n g ; # product d e s c r i p t i o n given by the user
p i : I n t ege r ;

Behavior / / The behaviour i s s p e c i f i e d as an i n f i n i t e loop
I n i t i # i i s the i n i t i a l s t a t e
Final f # f i s a f i n a l s t a te
{ i −− {

displayMenu () ; # c a l l an i n t e r n a l ac t i on
d i sp lay (" Please enter your choice ") ;
choice := readCommandChoice () # c a l l an i n t e r n a l ac t i on
} −−> e0 ,

e0 −−[choice = stop] d i sp lay (" bye bye ") −−> f ,

17

Andre, Ardourel, Attiogbe, Lanoix

/ / f i n a l s t a t e = end of vending
e2 −−[choice = add] _addItem !! addItem () −−> e10 ,
e0 −−[choice <> stop] d i sp lay (" Product re ference ") −−> e1 ,
e1 −− r e f:=r ead In t () −−> e2 ,
e2 −−[choice = remove] _removeItem !! removeItem (r e f) −−> e20 ,
e2 −−[choice = s to re] { _ increaseI tem !! increaseI tem (r e f , r ead In t ()) } −−> e30 ,
e2 −−[choice = order] _decreaseItem !! decreaseItem (r e f , r ead In t ()) −−> e40 ,
/ /−−−− add Item
e10 <<code>>, #subserv ice code i s a v a i l a b l e here
e10 −− { desc:=readSt r ing () ; / / product d e s c r i p t i o n

_addItem ! msg(desc) } −−> e11 ,
e11 −− _addItem ?? addItem (p i) −−> e12 ,
e12 −− { i f (p i <> noReference)

then d i sp lay ("New reference : "+asSt r ing (p i))
end i f } −−> i

/ /−−−− other choices . . .
}
Post obs t r ue
End
provided code () : I n t ege r / / . . .
/∗ daemon serv i ce t h a t answers the code of the user ∗ /

Pre obs t r ue
Behavior
I n i t e0
Final f
{ e0 −− [vendorId = noID] d i sp lay (" Enter your vendor code ") −−> e1 ,

e0 −− [vendorId <> noID] __CALLER !! code (vendorId) −−> f ,
e1 −− vendorId:=r ead In t () −−> e0

}
Post obs Resul t <> noID
End
########### requ i red serv ices (p a r t i a l d e s c r i p t i o n)
required addItem () : I n t ege r
In ter face

subprovides : { code }
Vi r tua l Variables

c a t a l o g F u l l : Boolean ;
catalogEmpty : Boolean / / poss ib l y ca ta logSize

Vi r tua l Invar iant not (catalogEmpty and c a t a l o g F u l l)
Pre not c a t a l o g F u l l

/ / No LTS
Post

@ref : (Resul t <> noReference) imp l i es (not catalogEmpty) ,
@noref : (Resul t = noReference) imp l i es Unchanged { catalogEmpty , c a t a l o g F u l l }

End
END_SERVICES

18

Andre, Ardourel, Attiogbe, Lanoix

B Event-B Models

B.1 The Event-B context StockLib
CONTEXT StockLib
EXTENDS Default
CONSTANTS
References
MaxRef
NullInt
NoQuantity
NoReference

AXIOMS
axm5 : References = 1 ..MaxRef
axm1 : MaxRef = 100
axm2 : NullInt =−1
axm3 : NoQuantity =−2
axm4 : NoReference =−3

END

B.2 The Event-B model StockManager_obs
MACHINE StockManager_O
SEES StockLib
VARIABLES
catalog
Result_newReference

INVARIANTS
type1 : catalog ∈ P(References)
type2 : finite(catalog)
@borned : card(catalog)≤MaxRef
type3 : Result_newReference ∈ Z

EVENTS
Initialisation

begin
act2 : catalog :=∅
act5 : Result_newReference := 0

end
Event newReference =̂

when
grd1 : card(catalog)< MaxRef

then
act1 : Result_newReference,catalog : |

(
((Result_newReference′ > 0∧Result_newReference′ ≤MaxRef)∨Result_newReference′ = NoReference)
∧
(Result_newReference′ 6= NoReference⇒

Result_newReference′ /∈ catalog∧ catalog′ = catalog∪ {Result_newReference′}
)
∧
(Result_newReference′ = NoReference⇒ catalog′ = catalog)
)

end
END

B.3 The Event-B model StockManager
MACHINE StockManager
REFINES StockManager_O
SEES StockLib
VARIABLES
catalog
Result_newReference
vendorCodes
plabels
pstock

INVARIANTS
type5 : vendorCodes⊆ Z
type6 : plabels ∈ 1 ..MaxRef → String
type7 : pstock ∈ 1 ..MaxRef → Z
@referenced : ∀ref1·(ref1 ∈ References∧ ref1 ∈ catalog⇒plabels(ref1) 6= EmptyString∧pstock(ref1) 6= NoQuantity)

19

Andre, Ardourel, Attiogbe, Lanoix

@notreferenced : ∀ref2·(ref2∈References∧ref2 /∈ catalog⇒plabels(ref2)=EmptyString∧pstock(ref2)=NoQuantity)
EVENTS
Initialisation

extended
begin
act2 : catalog :=∅
act5 : Result_newReference := 0
act8 : vendorCodes :=∅
act7 : plabels := (1 ..MaxRef)×{EmptyString}
act6 : pstock := (1 ..MaxRef)×{NoQuantity}

end
Event newReference =̂

refines newReference
when
grd1 : card(catalog)< MaxRef

then
act2 : Result_newReference,catalog,pstock,plabels : |

(
((Result_newReference′ > 0∧Result_newReference′ ≤MaxRef)∨Result_newReference′ = NoReference)
∧
(Result_newReference′ 6= NoReference⇒

Result_newReference′ /∈ catalog∧ catalog′ = catalog∪ {Result_newReference′}
)
∧
(Result_newReference′ = NoReference⇒ catalog′ = catalog)
∧
(Result_newReference′ 6= NoReference⇒

pstock′(Result_newReference′) = 0∧plabels′(Result_newReference′) ∈ String\{EmptyString}∧
(∀ii·(ii∈ 1..MaxRef ∧ii 6=Result_newReference′⇒pstock′(ii)= pstock(ii)∧plabels′(ii)= plabels(ii)))

)
∧
(Result_newReference′ = NoReference⇒pstock′ = pstock∧plabels′ = plabels)
)

end
END

B.4 The Event-B model Vendor_addItem
MACHINE Vendor_addItem
SEES StockLib
VARIABLES
catalogFull
catalogEmpty
Result_addItem

INVARIANTS
inv1 : catalogFull ∈ BOOL
inv2 : catalogEmpty ∈ BOOL
@notFullEmpty : ¬(catalogEmpty = TRUE∧ catalogFull = TRUE)
inv4 : Result_addItem ∈ Z

EVENTS
Initialisation

begin
act1 : catalogFull,catalogEmpty : |(¬(catalogEmpty′ = TRUE∧ catalogFull′ = TRUE))
act3 : Result_addItem :∈ Z

end
Event addItem =̂

when
grd1 : ¬(catalogFull = TRUE)

then
act1 : Result_addItem,catalogEmpty,catalogFull : |

((Result_addItem′ 6= NoReference⇒
catalogEmpty′ = FALSE∧ catalogFull′ ∈ BOOL)

∧
(Result_addItem′ = NoReference⇒

catalogEmpty′ = catalogEmpty∧ catalogFull′ = catalogFull)
)

end
END

B.5 The Event-B model v_addItem_sm_newReference
MACHINE v_addItem_sm_newReference

20

Andre, Ardourel, Attiogbe, Lanoix

REFINES Vendor_addItem
SEES StockLib
VARIABLES
catalogEmpty
catalogFull
Result_addItem
catalog

INVARIANTS
inv1 : catalog ∈ P(References)
inv6 : finite(catalog)
borned : card(catalog)≤MaxRef
assemblyEmpty : catalogEmpty = bool(card(catalog) = 0)
assemblyFull : catalogFull = bool(card(catalog) = MaxRef)
inv7 : (¬(catalogFull = TRUE))⇒ (card(catalog)< MaxRef)

EVENTS
Initialisation

extended
begin
act1 : catalogFull,catalogEmpty : |(¬(catalogEmpty′ = TRUE∧catalogFull′ = TRUE))
act3 : Result_addItem :∈ Z
act4 : catalog :=∅

end
Event newReference =̂

refines addItem
when
grd1 : ¬(catalogFull = TRUE)

then
act1 : Result_addItem,catalog,catalogEmpty,catalogFull : |

(
((Result_addItem′ > 0∧Result_addItem′ ≤MaxRef)∨Result_addItem′ = NoReference)
∧
(Result_addItem′ 6= NoReference⇒

Result_addItem′ /∈ catalog∧ catalog′ = catalog∪ {Result_addItem′}
)
∧
(Result_addItem′ = NoReference⇒ catalog′ = catalog)
∧
(catalogEmpty′ = bool(card(catalog′) = 0))
∧
(catalogFull′ = bool(card(catalog′) = MaxRef))
)

end
END

21

	Introduction
	Event-B
	Kmelia Components, Services and Invariant Consistency
	Main features of a component
	Invariant consistency

	Formal Analysis of Kmelia Components using Event-B
	Verification of INV/O
	Verification of INV/F and INV/F'
	Verification of INV/V

	Kmelia Assembly Links Correctness
	Component Assembly and Links
	Assembly contracts

	Formal Analysis of Kmelia Assembly Links using Event-B
	Case Study: a Stock Management System
	Checking the Invariant Consistency of the Components
	Checking the Correctness of the Assembly links
	Investigating the Event-B models and reviewing the Kmelia sources

	Conclusion and Perspectives
	References
	Kmelia specification
	The Kmelia assembly [language=Kmelia,basicstyle=]StockSystem
	The Kmelia component [language=Kmelia,basicstyle=]StockManager
	The Kmelia component [language=Kmelia,basicstyle=]Vendor

	Event-B Models
	The Event-B context [language=Bmethod,basicstyle=]StockLib
	The Event-B model [language=Bmethod,basicstyle=]StockManagerobs
	The Event-B model [language=Bmethod,basicstyle=]StockManager
	The Event-B model [language=Bmethod,basicstyle=]VendoraddItem
	The Event-B model [language=Bmethod,basicstyle=]vaddItemsmnewReference

