
FACS 2009

Using Assertions to Enhance the Correctness of
Kmelia Components and their Assemblies

Pascal André, Gilles Ardourel, Christian Attiogbé,
Arnaud Lanoix

LINA CNRS UMR 6241 - University of Nantes
2, rue de la Houssinière

F-44322 Nantes Cedex, France
Email: {FirstName.LastName}@univ-nantes.fr

Abstract

The Kmelia component model is an abstract formal component model based on services. It is dedicated to
the specification and development of correct components. This work enriches the Kmelia language to allow
the description of data, expressions and assertions when specifying components and services. The objective
is to enable the use of assertions in Kmelia in order to support expressive service descriptions, to support
client/supplier contracts with pre/post-conditions, and to enhance formal analysis of component-based
system. Assertions are used to perfom analysis of services, component assemblies and service compositions.
We illustrate the work with the verification of consistency properties involving data at component and
assembly levels.

Keywords: Component, Assembly, Datatype, Assertions, Property Verification

1 Introduction

The Kmelia component model [7] is an abstract formal component model dedicated
to the specification and development of correct components. A formal component
model is mandatory to check various kind of properties for component-based software
systems: correctness, liveness, safety; to find components and services in libraries
according to their formal requirements; to refine models or to generate code. The
key concepts of Kmelia are component, service, assembly and composition. One
important feature is the use of services as first class entities. A service has a state,
a dynamic behaviour which may include communication actions, an interface made
of required and provided subservices. The composition of components is based on
the interaction between their linked services. Linking components by their services
in component assemblies establishes a bridge to service oriented abstract models.

In [7] we introduced the syntax and semantics for the core model and language. It
has been incrementally enriched later. We mainly focused on the dynamic aspects of
composition: interaction compatibility in [7] and component protocols with service
composition in [6]. Following this incremental approach, we consider in this article

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:Pascal.Andre@univ-nantes.fr

Andre et al.

an enrichment of the data and expressions in the kmelia model and its impact on
the language syntax, its semantics and the verification of properties. Our guiding
objective is twofold: 1) enable the definition of assertions (with invariant, pre/post
conditions, and properties of services, components, and compositions), 2) increase
the expressiveness of the action statements so as to deal with real size case studies.

Assertions are useful (i) to define contracts 1 on services; contracts increase the
confidence in assembly correctness and they are a pertinent information when looking
for candidates for a required service, (ii) to ensure the consistency of components
respecting the invariant. The actions implement a functional part of the services
which should then be proved to be consistent with the contracts. Therefore the
correctness verification aspects of the Kmelia model is enhanced.

Motivations. Modelling real life systems requires the use of data types to handle
states, actions and property descriptions. The state of the art shows that most of the
abstract components models [4,13,24,12]. They enable various verifications of the
interaction correctness but they lack expressiveness on the data types and do not
provide assertions mechanisms and the related verification rules. As an example,
in Wright the dynamic part based on CSP is largely detailed (specification and
verification) while the data part is minor [4]. In the proposal of [22] the data types
are defined using algebraic specifications, which are convenient to marry with the
symbolic model checking of state transition systems but this proposal does not deal
with contracts and assertions.

Contribution. In this work, we enrich the Kmelia model with data and assertions
at the service and composition levels in order to deal with safe services, component
consistency and assembly contracts. First, the Kmelia language is enriched with
data and assertions so as to cover in an homogeneous way structural, dynamic and
functional correctness with respect to assertions. Second, we deal with state space
visibility and access through different levels of nested components; in addition to
service promotion we define variable promotions and the related access rules from
component state in component compositions. Last, feasibility of proving component
correctness using the assertions is presented. We show how structural correctness is
verified and how the associated properties are expressed with the new data language.

To design it , we have established a trade off 2 between the desired expressiveness
of our language and the verification concerns. To avoid the separation of analysis
tools and to work on the same abstract model, we advocate for an approach where
both data and dynamic part are integrated in a unique Kmelia language.

The article is structured as follows. Section 2 gives an overview of the Kmelia
abstract model and introduces its new features. In Section 3 a working example is
introduced to illustrate the use of data and assertions. The formal analysis issue
is treated in Section 4; we present various analysis to be performed and we focus
on component consistency and on checking assembly links. The formal analysis are
based on the formal descriptions of Section 2 also many details are omitted in this
paper. Section 5 concludes the article and draws some discussions and perspectives.

1 Our contract definitions are related to classical results of works such as design-by-contracts [20].
2 We thought to encapsulate statements from other formal data languages such as Z, B, OCL or CASL,
with the idea to reuse existing tool supports for checking syntax and properties. That approach was not
convincing due to a lack of expressiveness, or a weak tool support or integration problems.

2

Andre et al.

2 The Kmelia Model and its new Features

We enriched the Kmelia language of [7] to allow the description of datatypes, ex-
pressions and first order logic predicates. This section revisits the Kmelia model,
focusing on its new features.

2.1 Data types and expressions

We enrich the Kmelia language by designing a small but expressive data language.
This enables us to deal homogeneously with the expression of the properties related
to the component level and to the composition level.

Basic types such as Integer , Boolean, Char, String with their usual operators
and semantics are permitted. Abstract data types like record, enumeration, range,
arrays and sets are allowed in Kmelia. User-defined record types are built over the
above basic types. Specific types and functions may be defined and imported from
libraries. A Kmelia expression is built with constants, variables and elementary
expressions built with standard arithmetic and logical operators. An assignment is
made of a variable at the left hand side and an expression at the right hand side.

Assertions (pre-/post-conditions and invariants) are first order logic predicates.
In a post-condition of a service, the keyword old is used to distinguish the before and
after variable states. This is close to OCL’s pre or Eiffel’s old keywords. Guards
in the service behaviour are also predicates. All the assertions must conform to an
observability policy described in Section 2.3.

2.2 Components

A component is one element of a component type. A component is referenced with
a variable typed using the component type; for example c :C where c is a variable
and C a component type. The access to a state variable v of c is denoted c .v.

A component type C is a 8-tuple 〈W,A,N ,M, I,D, ν, CS〉 with:
• W = 〈T, V, type, Inv, Init〉 the state space where T is a set of types, V a set of
variables, type : V → T the function that map variables to types, Inv an invariant
defined on V and Init the initialisation of the variables of V .

• A a finite set of elementary actions (based on the expressions).
• N a finite set of service names with NP (provided services) and NR (required
services) two disjoint finite sets of names 3 : N = NP]NR.

• M a finite set of message names.
• I = IP]IR the component interface which is the union of two disjoint finite sets
of names IP and IR such that IP ⊆ NP ∧ IR ⊆ NR.

• D is the set of service descriptions with the disjoint provided services (DP) and
required services (DR) sets: D = DP] DR.

• ν : N → D is the function mapping service names to service descriptions. More-
over there is a projection of the N partition on its image by ν:
s ∈ NP ⇒ ν(s) ∈ DP ∧ s ∈ NR ⇒ ν(s) ∈ DR

3] denotes the disjoint union of sets

3

Andre et al.

• CS is a set of constraints related to the services of the interface of C in order to
control the usage of the services.

Observability of the component state. To preserve the abstraction and en-
capsulation of components, the state of a component is accessed only through its
provided services. Nevertheless to understand the specification of a service (i.e. its
contract) we need to observe its context (an exposed part of its component state
space). Similarly a composite component requires observable informations from its
components. Therefore we define V O as the subset of the observable variables of V .
Consequently the state invariant Inv is composed of an observable (InvO defined on
V O) and a non-observable part. The notion of observability is also applied to service
pre/post conditions with the specific rules described in section 2.3. Observability is
a kind of visibility related to contracts.

2.3 Services

The behaviour of a component relies on the behaviours of its services which are
a kind of concurrent processes. A service models a functionality activated by a
call. An activated service runs its behaviour and shares the component state with
other activated services of the same component. During its evolution a service may
activate other services by calling them or communicate with them by messages. Due
to dependencies and interactions between services, the actions of several activated
services may interleave or synchronise. Only one action of an activated service may
be observed at time. Formally a service s of a component with type C 4 is defined
by a 3-tuple 〈IS, lW,B〉 with:
• The service interface IS is defined by a 6-tuple 〈σ, µ, vW, P re, Post,DI〉 where
· σ is the service signature 〈name, param, ptype, Tres〉 with name ∈ N , param
a set of parameters, ptype : param → T the function mapping parameters to
types and Tres ∈ T the service result type;
· vW = 〈vT, vV, vtype, vInv, vInit〉 is a virtual state space with vT a set of types,
vV a set of variables, vtype : vV → vT the function mapping context variables to
types and vInv an invariant defined on vV and vInit the optional initialisation
of the variables of vV ;
· µ is a set of message signatures 〈mname,mparam,mptype〉 wheremname ∈M,
mparam and mptype are similar to those of the service signature;
· Pre is a pre-condition defined on the union of the variables in V, vV, and
param: V ∪ vV ∪ param;
· Post is a post-condition defined on V ∪ vV ∪ param ∪ { result }, where the
predefined result variable of type Tres denotes the service result;
· DI is the service dependency ; it is composed by services on which the current
service depends. DI is a 4-tuple 〈sub, cal, req, int〉 of disjoint sets where
sub ⊆ N P (resp. cal ⊆ NR, req ⊆ NR, int ⊆ N P) contains the provided
services names (resp. the ones required from the caller, from any component or
from the component itself) in the scope of s.

4 and by extension a service of a component c : C

4

Andre et al.

• lW = 〈lT, lV, ltype, lInv, lInit〉 is the local state space where lT is a set of types,
lV a set of local variables, ltype : lV → lT the function mapping local variables to
types, lInv a local state invariant defined on lV (mostly lInv = true) and lInit
the initialisation of the variables of lV .

• The behaviour B of a service s is an extended labelled transition system (eLTS) with
state and transitions. The necessary details are given on the example of Section 3.
The full background is provided online in references [7,6].

The state space lW local to a service is used only in the service behaviour B but
not used in the assertions.

Virtual state spaces. A required service is an abstraction of a service provided by
another component. Since that component is unknown when specifying the required
service, it may be necessary to describe this “imaginary” component. We introduce
the notion of a virtual state space vW in order to abstract the service context. For
a provided service this virtual context is always empty.

Observability vs. service state space. Let s be a service of a component type C.
The distinction between observable and non-observable variables of the component
state space is revisited 5 according to the following table:

Service Variables Invariant
state space Observable part Non-observable part Observable part Non-observable part
Provided s V O V InvO Inv

Required s vV V vInv Inv

The pre-/post-conditions of s must respect the well-formedness rules related to
the observable, non-observable and virtual contexts according to the following table:

Service pre-condition post-condition
Assertions Observable Non-observable Observable Non-observable
scope PreO PreNO PostO PostNO

Provided s V O ∪ param none V O ∪ param ∪ { result } V ∪ param ∪ { result }
Required s vV ∪ param V ∪ param vV ∪ param ∪ { result } none

Figure 1 summarises (in the context of a composition as described in Section 2.4)
the relations between state spaces, observability and contracts. The boxes denote
components (a, b) and compositions (c). The grey (resp. white) "funnel" denote
provided (resp. required) services.

prov
B

a : A

prov
A

preO

post NOpost Oreq
A

C_VO V

int
A

req
B

preO

post O

vV

b : B
C_VO V

prov
B

vmap
req

A

c : C

Observability

Function call

Service call

Assembly
link
Promotion
link

pre
NO

Mapping

Fig. 1. State variables scope and assertion scope

5 it is not a partition here because of the supplementary variables in param and result

5

Andre et al.

The observable pre-/post-conditions of service provA (resp. reqB) refer to the
observable state V O of a (resp. the virtual state vV of reqB). These conditions will
be used to check the contracts implicitly supported by the assembly links and the
composition links. In particular the virtual state vV of reqB should map with a sub-
set of V of a. Non-observable pre-conditions (resp. post-conditions) are meaningless
for a provided service (resp. required service) because they prevent safe assembly
and promotion contracts. The non-observable pre-condition of service reqB gives
call conditions on the (caller) component state variablesV of b. The non-observable
post-condition of service provA refer locally to the whole state V of a and should
establish the non-observable part of the invariant of a.

2.4 Assembly and Composition

An assembly is a set of components that are linked (horizontal composition) through
their services. An assembly is one element of an assembly type. An assembly link
associates a required service to a provided one. Considering the rich interface of a
Kmelia service (see 2.3), we need an explicit matching mechanism, to link properly
the 6-tuples defining given service interfaces; therefore, additionally to signatures
and dependency (via sublinks) mapping we now define context and message map-
pings. When needed, message or service parameters re-ordering must be handled
through adaptation mechanisms [5].

Assembly context and message mapping. Consider a required service sr of a
component cr of type CR linked to a provided service sp of another component cp
of type CP . The virtual state space variables (vVsr) of sr must be “instantiated”
using the observable variables of sp (V O

CP) by a mapping (total) function vmap :
vVsr → exp(V O

CP) where exp(X) denotes an expression over the variables of X.
Each message name of sr is mapped to a message name of sp by a mapping (total)
function mmap : mnamesr → mnamesp.

A composition is the encapsulation of an assembly into a component (the compos-
ite) where some features (variables and services) of the nested components can be
promoted at the composite level. Promotion links are used to promote services. The
mappings and rules are similar to the ones of assembly, they are not detailed here.

State variables promotion. An observable variable vo ∈ V O
C from a compo-

nent c : C can be promoted as a variable vp ∈ VCP of a composite component
cp : CP . Formally, there are a function prom : VCP → V O

C which establishes the
variable promotion, i.e. a bridge between the variable names. In the Kmelia syntax,
(vp, vo) ∈ prom, is written vp FROM c.vo. The promoted variables retain their types
(type(vp) = type(vo)) and are accessed (read-only at the composite level) in their
effective contexts using a service of the sub-component that defines the variables.
This guarantees the encapsulation principle.

Now Kmelia services are equipped with expressive means (pre-/post-conditions,
observability, virtual context) to describe contracts. Section 3 illustrates them on
a working example. They are used to check services and assemblies correctness as
described in Section 4.

6

Andre et al.

3 A Working Example

The example is a simplified Stock Management application including a vending main
service. This process manages product references (catalog) and product storage
(stock). Administrators have specific rights, they can add or remove references
under some consistency business rules such as: a new reference must not be in the
catalog or a removable reference must have an empty stock level.

Function call

Service call

Assembly
link
Promotion
link

vending
authorisation

sm : StockManager

delete
Reference

store

order

authorisation

getNew
Reference

display
 ...

newReference

ask_code

increase
Item

remove
Item

decrease
Item

addItem
code

ve : Vendor

vending

StockSystem

Fig. 2. Simplified Assembly of the Stock Case Study

The system is designed as a reusable component type StockSystem. It encapsu-
lates an assembly of two components: sm:StockManager and ve:Vendor. The former
is the core business component to manage references and storage. The latter is the
system access interface. The main vending service is promoted at the StockSystem
level. In this paper we focus only on the addItem and newReference services. Ac-
cording to the vending service, a user may add a new item in the stock management
using the required service addItem of the Vendor component.
r equ i r ed addItem () : I n t e g e r
I n t e r f a c e

subprov ides : { code }
V i r t ua l Va r i ab l e s

c a t a l o g F u l l : Boolean ;
cata logEmpty : Boolean // p o s s i b l y c a t a l o g S i z e

V i r t ua l I n v a r i a n t not (cata logEmpty and c a t a l o g F u l l)
Pre not c a t a l o g F u l l
//No LTS
Post (Re s u l t <> noRe f e r ence) i m p l i e s (not cata logEmpty)

End

The required service addItem is fulfilled with the provided service newReference
which gets a new reference and performs the update of the system if there is an
available new reference (see the listing 2). The links and sublinks are explicitly
defined in the composition part of a composite component, as detailed in the listing 3.

The nested services represent the service dependency DI. For example, the
required service addItem provides a special code subservice 6 . Similarly the provided
service newReference requires a ask_code service from its caller (see the calrequires
declaration in the interface of newReference in the listing 1).

Inside the components, the different arrows represent various kind of calls: func-
tion call (with no side effects), service call (according to the service dependency).

6 In Kmelia, a subservice of a service s, is a service that belongs to the interface (subprovides) of s.

7

Andre et al.

The newReference service calls the display function (declared in the predefined Kmelia
library), a service getNewReference required internally (from the same component)
and the ask_code service required to its caller.

Data types in Kmelia. The data types are explicitly defined in a TYPES clause
or in the shared libraries (predefined or user-defined). As an example, the following
library (named Stocklib) declares some specific types, functions and constants.
TYPES

Product I tem : : s t r u c t { i d : I n t e g e r ; desc : S t r i n g ; qu an t i t y : I n t e g e r } ;
CONSTANTS

maxRef : I n t e g e r := 100 ;
emptySt r i ng : S t r i n g := "" ;
noRe f e r ence : I n t e g e r := −1 ;
noQuant i ty : I n t e g e r := −1

These data types in this part are quite concrete; more abstract data types are in the
process to be included in the predefined library.

A Kmelia component and observable state. The listing 1 is an extract from
the Kmelia specification of the StockManager component. The state of StockManager
declares among the other variables, the observable variable catalog which can be
used for context mapping in the assembly links but also in promoted variables for
composite components. Two arrays (plabels and pstock) are used to stock the labels
of current references and their available quantity. The invariant states that: the
catalog has an upper bound; all references in the catalog have a label and a quantity;
the unknown references have no entries in the two arrays pstock and plabels . The
assertions in Kmelia are possibly named predicates; the labels in front of the invariant
lines are names used in this specification.

Listing 1: Kmelia specification StockManager State
COMPONENT StockManager
INTERFACE

prov ides : { newRefe rence , r emoveRe fe rence , s t o r e I t em , o rd e r I t em }
r e qu i r e s : { a u t h o r i s a t i o n }

USES {STOCKLIB}
TYPES

Re f e r en c e : : range 1 . . maxRef
VARIABLES

vendorCodes : setOf I n t e g e r ; // a u t h o r i s e d a dm i n i s t r a t o r s
obs c a t a l o g : setOf Re f e r en c e ; // product i d = i n d e x o f the a r r a y s
p l a b e l s : ar ray [R e f e r en c e] o f S t r i n g ; // produc t d e s c r i p t i o n
ps tock : ar ray [R e f e r en c e] o f I n t e g e r // produc t q u an t i t y

INVARIANT
obs @borned : s i z e (c a t a l o g) <= maxRef ,
@re f e r e n c ed : f o r a l l r e f : Re f e r en c e | i n c l u d e s (c a t a l o g , r e f) i m p l i e s

(p l a b e l s [r e f] <> emptySt r i ng and ps tock [r e f] <> noQuant i ty) ,
@no t r e f e r e n c ed : f o r a l l r e f : Re f e r en c e | e x c l u d e s (c a t a l o g , r e f) i m p l i e s

(p l a b e l s [r e f] = emptySt r i ng and ps tock [r e f] = noQuant i ty)
INITIALIZATION

c a t a l o g := emptySet ;
vendorCodes := emptySet ; // f i l l e d by a r e q u i r e d s e r v i c e
p l a b e l s:= a r r a y I n i t (p l a b e l s , emptySt r i ng) ; // c o n s i s t e n t w i th . .
ps tock := a r r a y I n i t (p s tock , noQuant i ty) ; // . . empty c a t a l o g

A Kmelia service with its assertions. The listing 2 gives the specification of
the provided service newReference. It provides a new reference if its running goes
well. The pre-condition is that the catalog does not reach its maximal size. The
post-condition is decomposed into several observable/non-observable named parts.

8

Andre et al.

It states that we may have a result ranging in 1. .maxRef or no reference at all, in
the latter case the catalog remains unchanged.

Listing 2: Kmelia specification Provided Service with assertions
prov ided newRefe rence () : I n t e g e r // Re su l t = Produc t Id or noRe f e r ence
I n t e r f a c e

c a l r e q u i r e s : {ask_code} #r e q u i r e d from the c a l l e r
i n t r e q u i r e s : { getNewReference }

Pre
obs s i z e (c a t a l o g) < maxRef #the c a t a l o g i s not f u l l

Var i ab l e s # l o c a l to the s e r v i c e
c : I n t e g e r ; # c : i n pu t code g i v en by the u s e r
r e s : Re f e r en c e ;
d : S t r i n g ; # produc t d e s c r i p t i o n

I n i t i a l i z a t i o n
r e s := noQuant i ty ;

Behavior
I n i t i # the i n i t i a l s t a t e
F ina l f # a f i n a l s t a t e
{ i −− c := __CALLER ! ! ask_code () −−> e1 ,

ge t s the password on the ask_code (s e r v i c e) channe l
e1 −− [not (c i n vendorCodes)]

d i s p l a y (" add ing a r e f e r e n c e i s not a l l owed ") −−> end ,
e1 −− [c i n vendorCodes] __CALLER ? msg(d) −−> e2 ,

ge t s the p roduc t d e s c r i p t i o n
e2 −− [d = emptySt r i ng]

d i s p l a y (" add ing an EmptySet d e s c r i p t i o n i s not a l l owed ") −−> end ,
e2 −− [d <> emptySt r i ng] r e s := __SELF ! ! getNewReference () −−> e4 ,
e4 −− { c a t a l o g := i n c l u d i n g (c a t a l o g , r e s) ; //add new r e f e r e n c e

ps tock [r e s] := 0 ; // d e f a u l t s t o ck i s n u l l
p l a b e l s [r e s] := d // produc t d e s c r i p t i o n i s the one p r o v i d ed

}−−> end ,
end −− __CALLER ! ! newRefe rence (r e s) −−> f

the c a l l e r i s i n fo rmed from the Re s u l t and the s e r v i c e ends .
}
Post
obs @resu l tRange : ((Re s u l t >= 1 and Re su l t <= maxRef) or (Re s u l t = noRe f e r ence)) ,
obs @r e s u l tVa l u e : (Re s u l t <> noRe f e r ence) i m p l i e s (no t I n (o l d (c a t a l o g) , Re su l t)

and c a t a l o g = add (o l d (c a t a l o g) , Re su l t)) ,
obs @no r e su l tVa l u e : (Re s u l t = noRe f e r ence) i m p l i e s Unchanged{ c a t a l o g } ,
@refAndQuant i ty : (Re s u l t <> noRe f e r ence) i m p l i e s

(p s tock [R e s u l t] = 0 and p l a b e l s [R e s u l t] <> emptySt r i ng and
(f o r a l l i : Re f e r en c e | (i <> Re su l t) i m p l i e s

(p s tock [i] = o l d (p s tock) [i] and p l a b e l s [i] = o l d (p l a b e l s) [i]))) ,
@NorefAndQuant ity : (Re s u l t = noRe f e r ence) i m p l i e s Unchanged{ ps tock , p l a b e l s }

The behaviour of a service defines a list of transitions e1 −−label−−> e2 where
e1 and e2 are state names. A transition label is a guarded combination of actions
[guard] action∗. An action is either an elementary action from A (expression) or
a communication action (service interaction). The syntax of a communication ac-
tion is channel(! | ? | ?? | !!) message(param∗) where the channel denotes a reference
in the service dependency DI, the single char operators are message interactions
(send/receive) and the double char operators are service interactions (call, result).
The channel _CALLER stands for the caller service, _SELF stands for a service of
the same component (internal call), _rs stands for a required service. In this article
we will not consider further the behaviour.

Context and message mappings. The context and message mappings (see 2.4)
are specified in assembly links. In the listing 3, variables of the virtual context
of addItem are associated with an expression on the variables of the context of
newReference i.e. the observable state variables of the component sm. In this exam-
ple, there are no message mapping because only the standard msg message (declared
in the predefined Kmelia library) is used.

9

Andre et al.

Listing 3: Kmelia specification StockSystem
COMPONENT StockSystem
INTERFACE

prov ides : { vend ing }
r e qu i r e s : { a u t h o r i s a t i o n }

COMPOSITION
Assembly

Components
sm : StockManager ;
ve : Vendor

Links // ////////// assemb ly l i n k s //////////
l r e f : p−r sm . newRefe rence , ve . addItem

con t e x t mapping
ve . cata logEmpty == empty (sm . c a t a l o g) ,
ve . c a t a l o g F u l l == s i z e (sm . c a t a l o g) = MaxInt

s u b l i n k s : { l c od e }
l c od e : r−p sm . ask_code , ve . code
. . .

End // assemb ly
Promotion

L inks // ////////// promot ion l i n k s //////////
l v end : p−p ve . vend ing , SELF . vend ing
l a u t : r−r sm . a u t h o r i s a t i o n , SELF . a u t h o r i s a t i o n

END_COMPOSITION

In the next section, we show how this Kmelia specification is analysed using our
COSTO 7 tool and a specific verification approach using the B method and tools.

4 Formal Analysis and Experimentations

Components, assemblies and compositions should be analysed according to various
facets. Tables 1 and 2 give an overview of the verification requirements that we
consider to validate a Kmelia specification. Some of them were achieved before, in
particular the behavioural compatibility of services and components, treated in [7]:
it was achieved using model-checking techniques provided by existing tools (Loto-
s/CADP 8 and MEC 9); the involved parts of the Kmelia specifications were auto-
matically translated into the input languages of these tools and checked.

In this section, we address aspects related to data type checking and assertion
checking; the main goal is to analyse parts of a Kmelia specification using its new
features such as the assertions. Formal verification tools are necessary to check
assertions consistency. Our approach consists in reusing existing tools such as the
B tools and especially the Rodin 10 framework. We design a systematic verification
method that enables us to reuse the proof obligations generated by the B tools for
our specific purpose.

Event-B and Rodin framework. Rodin is a framework made of several tools
dedicated to the specification and proof of Event-B models. Event-B [1] extends the
classical B method [2] with specific constructions and usage; it is intended to the
modelling of general purpose systems and for reasoning on them. Proof obligations
(POs) are generated to ensure the consistency of the considered model, i.e. the
preservation of the INVARIANT by the EVENTS. Other POs ensure that a refined
model is consistent, i.e. the abstract INVARIANT is preserved and the refined events

7 COmponent Study TOolkit dedicated to the Kmelia language
8 http://www.inrialpes.fr/vasy/cadp/
9 http://altarica.labri.fr/wiki/tools:mec_4
10http://rodin-b-sharp.sourceforge.net

10

http://www.inrialpes.fr/vasy/cadp/
http://altarica.labri.fr/wiki/tools:mec_4
http://rodin-b-sharp.sourceforge.net

Andre et al.

Analysis Status

Static rules: Scope + name resolution + type-checking done
Observability rules in progress (see 2.3)
Component interface consistency done
Services dependency consistency:
DI well-formed vs. I and D (component) done
DI vs. B (eLTS)
Simple constraint checking (parameters, query, protocol, . . .) in progress
Local eLTS checking (deadlocks, guard, subprovides, . . .) in progress
Invariant consistency vs. pre/post conditions:
provided services : InvO ∧ PreO ⇒ PostO ∧ InvO experimental (a)

Inv ∧ Pre⇒ PostNO ∧ Inv experimental (b)
required services : vInv ∧ PreO ⇒ PostO ∧ vInv experimental (c)
Consistency between service assertions and eLTS: not yet
eLTS vs. Post the post condition should be established
required service R calls vs. PreR the context must ensure the precondition
(local+virtual)
eLTS vs. subprovided service SP annotations PreSP the context must
ensure the precondition (local)

Table 1
Formal analysis of a simple Kmelia component

Analysis State

Static rules: Scope + name resolution + type-checking done
Observability rules: promoted variables done
Link/sublink consistency: assembly and composition done [7]
signature matching
service dependency matching (subprovides, callrequires)
context mapping (cm function) and observability rules
message mapping
Assembly Link Contract correctness:
cm(PreO

R)⇒ PreO
P experimental (d)

PostOP ⇒ cm(PostOR) experimental (e)
Provided Promotion Link Contract correctness: PP is at the composite
level
cm(PreO

P P)⇒ PreO
P experimental (f)

PostOP ⇒ cm(PostOPP) experimental (g)
Required Promotion Link Contract correctness: RR is at the composite
level
cm(PreO

R)⇒ PreO
RR experimental (h)

PostORR ⇒ cm(PostOR) experimental (i)
eLTS (behaviour) compatibility done [7]

Table 2
Formal analysis of a Kmelia assembly and compositions

do not contradict their abstract counterparts.
POs can be discharged automatically or interactively, using the Rodin provers.

Verifying Kmelia specifications using Event-B. The main idea is, first to con-
sider a part of the Kmelia specification involved in the property to be verified (a
service, a component, a link of an assembly, an assembly, etc), then to build from
this part of the specification, a set of (Event-)B models in such a way that the POs
generated for them correspond to the specific obligations we needed to check the
Kmelia specification assertions. Using B to validate components assembly contracts

11

Andre et al.

has been investigated in [15,18].
We systematically 11 build some Event-B models, with an appropriate structure

as explained below, to check some of the proof obligations presented in Tables 1
and 2. The Event-B models are currently built by hand.

(i) For each component and its provided services, we generate an Event-B model.
The proof of the consistency of this model ensures the proof of the rules (a)
and (b) for the invariant consistency at the Kmelia level.

(ii) For each required service (and its “virtual context”) we have to generate an
Event-B model. Its B consistency establishes the rule (c).

(iii) For each assembly link between a required service req and a provided one prov,
we give an Event-B model of the observable part of prov, which refines the
Event-B model of the required service req previously checked.
• the consistency proof of the Event-B model ensures the rule (a) for the in-
variant consistency at the Kmelia level;

• the refinement proof establishes both the rules (d) and (e) for the Kmelia
assembly correctness.

Fig. 3. Rodin

We are not going to deal in this article with the details of the translation pro-
cedure 12 . Kmelia invariant and pre-condition translations are quite systematic,
whereas the post-condition concept does not exist into the B language. There-
fore we abstract the post-condition by using an ANY substitution that satisfies
the post-condition (once translated) as proposed in the context of UML/OCL to B

11applying defined rules which are not yet fully automatised
12The specifications and results are available in http://www.lina.sciences.univ-nantes.fr/coloss/
projects/kmelia/index_en.php

12

http://www.lina.sciences.univ-nantes.fr/coloss/projects/kmelia/index_en.php
http://www.lina.sciences.univ-nantes.fr/coloss/projects/kmelia/index_en.php

Andre et al.

translations [19]. Figure 3 depicts the Event-B translation into Rodin of the service
newReference of StockManager.

Experimental results. Applying our method on the case study presented in Sec-
tion 3, we obtain the Event-B models structured as depicted in Fig 4. These models
are studied within Rodin; it tooks a few hours to write and check the models.
We can verify the Kmelia components StockManager and Vendor before checking
the assembly StockSystem. The Event-B model StockManager is used to prove the
preservation of the invariant assertions by the provided services. The refinement
v_addItem_sm_newReference is used to check the assembly link between the ser-
vices newReference and addItem. The Table 3 gives an idea about the number of
POs that are to be discharged to ensure the correctness of the Kmelia specification.

Studying the example within Rodin revealed some errors in our initial Kmelia
specification. For example, the post-condition of newReference was wrong; one of
the associated POs could not be discharged. After the feedback in our Kmelia spec-
ifications, the error was corrected.

MODEL
 StockManager_
 ask_code
EVENTS
 ask_code

REFINEMENT
 sm_ask_code_
 v_code
EVENTS
 code_obs

SEES

REFINEMENT
 v_addItem_
 sm_newReference
VARIABLES
 catalog
EVENTS
 newReference_obs

CONTEXT
 StockLib
CONSTANTS
 References
 MaxRef
 NullInt
 NoQuantity
 NoReference

...

...

from Kmelia
StockManager
component

from Kmelia
Vendor component

MODEL
 StockManager
VARIABLES
 vendorCodes
 catalog
 plabels
 pstock
EVENTS
 newReference
 deleteReference
 store
 order
 getNewReference

MODEL
 Vendor
VARIABLES
 orders
 vendorid
EVENTS
 vending
 code

MODEL
 Vendor_
 addItem
VARIABLES
 catalogFull
 catalogEmpty
EVENTS
 addItem

SEES

REFINES REFINES

Fig. 4. Event-B Models

Auto. Manual Total

StockManager 16 3 19

Vendor_addItem 2 1 3

v_addItem_sm
_newReference

22 1 23

Table 3
Rodin Proof obligations

In a general manner, the assertions associated to Kmelia services help us to ensure
the correctness of the assembly link by considering the required-provided relationship
as a refinement from the required service to the provided one. When the assertions
are wrong, the proofs fail, which means the assembly link is wrong.

5 Discussion and Conclusion

In this article we have presented enrichments to the Kmelia abstract component
model: a data language for Kmelia expressions and predicates; visibility features for
component state in the context of composite components; contracts in the compo-
sition of services. The formal specification and analysis of the model are revisited
accordingly. The syntactic analysis of Kmelia is effective in the COSTO tool that
supports the Kmelia model. We have proposed a method to perform the necessary
assertions verification using B tools: the contracts are checked through preliminary
experimentations using the Rodin framework. We have illustrated the contribution
with an example which is specified in Kmelia, translated manually and verified using
Rodin.

13

Andre et al.

Discussion. Our work is more related to abstract and formal component models
like SOFA or Wright, rather than to the concrete models like CORBA, EJB or
.NET. The Java/A [9] or ArchJava [3] models do not allow the use of contracts. We
have already emphasized (see Section 1) the fact that most of the abstract models
deal mainly with the dynamic part of the components. Some of them [16,23] take
datatypes and contracts into account but not the dynamic aspects. Some other
ones [11,13] delay the data part to the implementation level.

In [14] may/must constraints are associated to the interactions defined in the
component interfaces to define behavioural contracts between client and suppliers.
In Kmelia, the distinction between a supplier constraint and the client is done from
a methodological point of view rather than a syntactic rule. The use of B to check
component contracts has been studied in [15,18] in the context of UML components.

Fractal [17] proposes different approaches based on the separation of concerns:
the common structural features are defined in Fractal ADL [21] ; dynamic behaviours
are implemented by Vercors [8] or Fractal/SOFA [12] and the use of assertions are
studied in ConFract [16]. In ConFract contracts are independent entities which are
associated to several participants, not to services and links as in our case; their
contracts support a rely/guarantee mechanism with respect to the (vertical) com-
position of components.

In [10] a component (a component type in Kmelia) is a model in the sense of
the algebraic specifications. Dynamic behaviours are associated to components but
not to services, which are simple operations. The component provided and required
interfaces are type specifications and composing component is based on interface (or
type) refinement. In Kmelia components are assembled on their services; therefore
the main issue is not to refine types as in [10] but rather to check contracts as in [25].
More specifically our case is more related to the plugin matching of [25].

Perspectives. Several aspects remain to be dealt with regarding assertions and
the related properties, composition and correctness of component assemblies. First,
we need to implement the full chain of assertion verification especially the translation
KmlToB which is necessary to automatically derive the necessary Event-B models
to check the assertions and the assemblies. Second, we will integrate high level
concepts and relations for data types. In particular, we plan to integrate some kind
of objects and inheritance in the type system but also component types. Assertions
in this context are more difficult to specify and to verify.

Another challenging point is the support for interoperability with other compo-
nent models. We assume that in real component applications, a component assembly
is built on components written in various specification languages. When connect-
ing services (or operations) we can at least check the matching of signatures. If
the specification language of the corresponding services or components accepts con-
tracts (resp. service composition, service behaviour) we can provide corresponding
verification means.

References

[1] J.-R. Abrial and S. Hallerstede. Refinement, Decomposition, and Instantiation of Discrete Models:
Application to Event-B. Fundamenta Informaticae, 77(1-2):1–28, 2007.

14

Andre et al.

[2] Jean-Raymond Abrial. The B-Book Assigning Programs to Meanings. Cambridge University Press,
1996. ISBN 0-521-49619-5.

[3] Jonathan Aldrich, Craig Chambers, and David Notkin. Archjava: connecting software architecture
to implementation. In ICSE ’02: Proceedings of the 24th International Conference on Software
Engineering, pages 187–197, New York, NY, USA, 2002. ACM.

[4] Robert Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon, School of
Computer Science, January 1997. Issued as CMU Technical Report CMU-CS-97-144.

[5] Pascal André, Gilles Ardourel, and Christian Attiogbé. Adaptation for hierarchical components and
services. Electron. Notes Theor. Comput. Sci., 189:5–20, 2007.

[6] Pascal André, Gilles Ardourel, and Christian Attiogbé. Defining Component Protocols with Service
Composition: Illustration with the Kmelia Model. In 6th International Symposium on Software
Composition, SC’07, volume 4829 of LNCS. Springer, 2007. http://www.lina.sciences.univ-nantes.
fr/coloss/projects/kmelia/index_en.php.

[7] Christian Attiogbé, Pascal André, and Gilles Ardourel. Checking Component Composability. In 5th
International Symposium on Software Composition, SC’06, volume 4089 of LNCS. Springer, 2006.
http://www.lina.sciences.univ-nantes.fr/coloss/projects/kmelia/index_en.php.

[8] Tomás Barros, Antonio Cansado, Eric Madelaine, and Marcela Rivera. Model-checking distributed
components: The vercors platform. Electron. Notes Theor. Comput. Sci., 182:3–16, 2007.

[9] Hubert Baumeister, Florian Hacklinger, Rolf Hennicker, Alexander Knapp, and Martin Wirsing. A
component model for architectural programming. Electr. Notes Theor. Comput. Sci., 160:75–96, 2006.

[10] Michel Bidoit and Rolf Hennicker. An algebraic semantics for contract-based software components. In
Proceedings of the 12th International Conference on Algebraic Methodology and Software Technology
(AMAST’08), volume 5140 of LNCS, pages 216–231. Springer, July 2008.

[11] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The Fractal Component Model
and Its Support in Java. Software Practice and Experience, 36(11-12), 2006.

[12] Tomáš Bureš, Martin Děcký, Petr Hnětynka, Jan Kofroň, Pavel Parízek, František Plášil, Tomáš Poch,
Ondřej Šerý, and Petr Tůma. CoCoME in SOFA, volume 5153, pages 388–417. Springer-Verlag, 2008.

[13] Carlos Canal, Lidia Fuentes, Ernesto Pimentel, JosÃľ M. Troya, and Antonio Vallecillo. Adding Roles
to CORBA Objects. IEEE Trans. Softw. Eng., 29(3):242–260, 2003.

[14] Cyril Carrez, Alessandro Fantechi, and Elie Najm. Behavioural contracts for a sound composition
of components. In Hartmut König, Monika Heiner, and Adam Wolisz, editors, FORTE 2003, IFIP
TC6/WG 6.1), volume 2767 of LNCS, pages 111–126. Springer-Verlag, September 2003.

[15] S. Chouali, M. Heisel, and J. Souquières. Proving component interoperability with B refinement.
Electronic Notes in Theoretical Computer Science, 160:157–172, 2006.

[16] Philippe Collet, Jacques Malenfant, Alain Ozanne, and Nicolas Rivierre. Composite contract
enforcement in hierarchical component systems. In Software Composition, 6th International
Symposium (SC 2007), volume 4829, pages 18–33, 2007.

[17] Thierry Coupaye and Jean-Bernard Stefani. Fractal component-based software engineering. In Object-
Oriented Technology, ECOOP 2006, pages 117–129. Springer, 2006.

[18] A. Lanoix and J. Souquières. A trustworthy assembly of components using the B refinement. e-
Informatica Software Engineering Journal (ISEJ), 2(1):9–28, 2008.

[19] Hung Ledang and Jeanine Souquières. Integration of uml and b specification techniques: Systematic
transformation from ocl expressions into b. In 9th Asia-Pacific Software Engineering Conference
(APSEC 2002). IEEE Computer Society, 2002.

[20] B. Meyer. Object-Oriented Software Construction. Professional Technical Reference. Prentice Hall,
2nd edition, 1997. http://www.eiffel.com/doc/oosc/.

[21] ObjectWeb Consortium. Fractal adl. [Online]. Available: http://fractal.ow2.org/fractaladl/index.html.
[Accessed: Jun. 17, 2009], 2009.

[22] Sebastian Pavel, Jacques Noye, Pascal Poizat, and Jean-Claude Royer. Java Implementation of a
Component Model with Explicit Symbolic Protocols. In 4th International Symposium on Software
Composition, SC’05, volume 3628 of LNCS. Springer, 2005.

[23] H. Schmidt. Trustworthy components-compositionality and prediction. J. Syst. Softw., 65(3):215–225,
2003.

[24] D.M. Yellin and R.E. Strom. Protocol Specifications and Component Adaptors. ACM Transactions
on Programming Languages and Systems, 19(2):292–333, 1997.

[25] A. M. Zaremski and J. M. Wing. Specification matching of software components. ACM Transaction
on Software Engeniering Methodolology, 6(4):333–369, 1997.

15

http://www.lina.sciences.univ-nantes.fr/coloss/projects/kmelia/index_en.php
http://www.lina.sciences.univ-nantes.fr/coloss/projects/kmelia/index_en.php
http://www.lina.sciences.univ-nantes.fr/coloss/projects/kmelia/index_en.php
http://www.eiffel.com/doc/oosc/

	Introduction
	The Kmelia Model and its new Features
	Data types and expressions
	Components
	Services
	Assembly and Composition

	A Working Example
	Formal Analysis and Experimentations
	Discussion and Conclusion
	References

