
Scope

● Object-oriented code similarity is the similarity
between syntax, function output, code structure,
architecture.

● Comparing code is useful in a lot of situations (see Use
Cases) and used in education, engineering, research,
etc

● Structure analysis is very effective but difficult due to
its specific aspect.

● The state of the art shows that every software has a
flaw when it comes to overall comparison (not based
on one use case).

● The ultimate goal is to have one tool that can do it all (a
do-it-all tool) achieved by building a collaborative
toolbox, picking the best from existing software to
compare code.

● Going from source code to models.

Insights
● Clones and duplicates increase software tests and

maintenance costs.
● Factoring out duplicates and inconsistencies

management needs duplicates detection that can lean on
similarity calculation.

● Experimentations done on the code of the Benchmarks
according to Use Cases.

● 15 tools identified and 7 tested.

● State of the art: 23 papers studied and spread out into 5
categories: tool comparison, tools, metrics, methods &
approaches, and models.

○ “Plagiarism detection must be integrated into the
toolset and activities of MDE instructors.” [1]

○ “When source code is copied and modified, which
code similarity detection techniques or tools get the
most accurate results?” [3]

Milestone 1 - From code similarity detection...

A SimpleGame Example (code similarity)

Plagiarism detection requires code or model mutation to introduce the malicious copy strategy (future work).

Milestone 2 - … to model similarity
detection

Jarod BLAIN1, Corentin GUILLEVIC1, Alex MOULIN1, Ali BENJILANY2

1Université de Nantes, CNRS, LS2N, F-44000, Nantes, France
2Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes, Rabat, Maroc

1 Etudiants en M1 ALMA- 2 Elève ingénieur

From code similarity detection to model driven
similarity detection: first milestones

Use Cases
Plagiarism

Licensing

Clone detection

Code refactoring & Code reuse

Pattern detection

Software defects,

Malware insertion

References
[1] Salvador Pérez, Manuel Wimmer, and Jordi Cabot. “Efficient plagiarism detection for software

modeling assignments”. In:Computer Science Education30 (Jan. 2020), pp. 1–

29.doi:10.1080/08993408.2020.1711495

[2] Pascal André et al. “JavaCompExt: Extracting Architectural Elements from Java Source

Code”.In:WCRE. Lille, France: IEEE, Oct. 2009, pp. 317–318.doi:10.1109/WCRE.2009.53.

[3] Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. “A comparison of code similarity

analysers”. In:Empirical Software Engineering23.4 (2018), pp. 2464–2519.

[4] Master TER Report 2021 https://uncloud.univ-nantes.fr/index.php/s/k2Ezp4bJ8bki3Sn

Further information
Supervisors: ANDRE Pascal, BRUNELIERE Hugo, TAMZALIT Dalila

Students report: https://uncloud.univ-
nantes.fr/index.php/s/k2Ezp4bJ8bki3Sn

https://www.ls2n.fr/equipe/aelos/

https://www.ls2n.fr/equipe/naomod/

Poster credit - https://colinpurrington.com/tips/poster-design/

Tool Comparison
• Different existing tools compared [4].

• The best (overall) tool is JPlag according

to its results and ease of use.

Model Driven Software Engineering

Benchmarks
Simple programs

Student applications

Lego EV3+android
applications

Git repositories

Plagiarism benchmarks

Best tools
JPLAG

MOSS
...

According to our experimentations,

JPLAG and MOSS are very good in their

comparison results, they both give

accurate detailed and easy to understand

results. JPlag is used in this poster for it’s

easiness and simplicity.

Objectives
● Detect similarities in software applications:

○ source code level
○ model level

● Identify the best tool.
● Produce similarity metrics.
● Provide guidelines

Empirical software engineering

V1

The second Operation
Game() is missing in V1
comparing to V2

● Same results, different entities : (Java → Constructor - KDM
model → MethodUnit - Operation<--> UML).

● Model similarity detection reveals changes made on the
architecture of a program regardless of code details thanks to
the rise in abstraction, while the code similarity detection
returns a global rate of similarity.

● Abstraction requires fine heuristics to obtain high-level
concepts [2].

→ Meanwhile, the upcoming milestones of the research might
come up with a proof of the efficiency of a certain model-based
comparison compared to the others. Much remains to do,
especially in reverse engineering and comparison implementation.

V1

V2

K
d

m
2

U
m

l
 A

TL
 T

ra
n

sf
o

rm
at

io
n

R
IS

E
 IN

 A
B

ST
R

A
C

TI
O

N

V2

UMLCompare

V1

The second Method
Unit Game() is missing
in V1 comparing to V2

V2

EMFCompare

V1 V2

Compare

The second constructor
Game() is missing in V1
comparing to V2

Ja
va

2
K

d
m

 M
o

D
is

co
’s

 T
tr

an
sf

o
rm

at
io

n

Compare both classes

Tw
o

 v
e

rs
io

n
s

o
f

th
e

 s
am

e
 g

am
e

, w
ri

tt
e

n
 b

y
a

d
if

fe
re

n
t

p
e

rs
o

n

Metrics Study

• Similarity ratio = f(software engineering metrics,

similarity metrics).

• Metrics help also for abstraction means.

• We experimented a simplified version to validate

our computation formula.

“A metric is an
information that can be
extracted from code
resulting in a number
(e.g. number of lines)”.

https://uncloud.univ-nantes.fr/index.php/s/k2Ezp4bJ8bki3Sn
https://uncloud.univ-nantes.fr/index.php/s/k2Ezp4bJ8bki3Sn
https://www.ls2n.fr/equipe/aelos/
https://www.ls2n.fr/equipe/naomod/
https://colinpurrington.com/tips/poster-design/

