
Specifying the Android Permission System

A Z approach

Mohammed El Amin TEBIB Pascal ANDRE

July 22, 2021

This document present a �rst attempt to specify with the Z notation the permission access control
of Android using Z. The case study is not detailed here. The proof obligations will be explored using
the Z/Eves tool.

1 Speci�cation principles and method

Developping android applications is based on Java programing language using the android software
developpement kit (SDK). Once developed, Android applications are compiled into Dalvik byte-
code, then be packaged through a app store such as Google Play. The android permission model
signi�cantly evolved since the 4 version released on 2016.

The goal of this section is to specify the main concepts of an Android application and the per-
mission management. We formalize the concepts through a formal Z description presented in Sec-
tion 2.1. This formal presentation is followed by a security meta model that will be used in Section
2.2 to extract the security features from the android application under analysis.

2 Formal speci�cation

The goal of this section is to �gure out the main concepts composing an Android application and
to formalize these concepts in order to set the properties we ought to verify in Section 3 and check
on Android apps by implementing the rules in OCL. We assume the reader being not familiar to
the Z notation [9]. First, we de�ne the Z schema for data and state modelling.

2.1 App Part speci�cation

We consider Android applications made of Components that communicate via Intents. The following
Z basic types assume the existence of abstract sets (the values are not known)

[COMPONENT ,APPLICATION , INTENT]

Basically, components are categorized into two families : 1) foreground components such as activ-
ities and 2) background components such as Service, Broadcast Receivers, and Content Providers.

� Activity Act . An activity is the starting point of an Android application (like the main class
in Java). During its execution, it represents the graphical interface that the user will interact
with to perform di�erent tasks.

� Service Serv . Services are used to handle background processing.

1

� Broadcast Receiver BrC . Communications between applications and OS are managed by
Broadcast Receiver, it could also be used to manage communications between components
of the same application. The messages transmitted between components in an Android appli-
cation are called Intents.

� Content Provider CProv : It manages the data layer of an Android application, and shares
between applications a content that is previously de�ned. The access to this content is secure
and well controlled.

Based on their role during the communication. We distinguish two kinds of Components : (1) Active
Component CompAct that can send and receive communication requests such as: Act , BcR, and
Serv and (2) Passive Components CompPas, which can only receive communication requests like
CProv . Some components can be exported (expComp).

SComponents
Components : PCOMPONENT
CompAct ,CompPas : PCOMPONENT
FgComp,BgComp : PCOMPONENT
Serv ,Act ,BcR,CProv : PCOMPONENT
expComp : PCOMPONENT

〈CompAct ,CompPas〉 partition Components ∧
〈FgComp,BgComp〉 partition Components

CProv ⊆ CompPas ∧ Serv ⊆ CompAct ∧
Act ⊆ CompAct ∧ BcR ⊆ CompAct ∧ expComp ⊆ Components

Serv ∩ Act = ∅ ∧ Serv ∩ BcR = ∅ ∧ Act ∩ BcR = ∅

A partition 〈A,B〉 partition AB means A ∪ B = AB ∧ A ∩ B = ∅ ∧ A ⊆ AB ∧ B ⊆ AB

Intents are the main Android concepts to perform inter-app communications, when the interacting
components share the same application context and intra-app communications to allow the inter-
action between components of di�erent applications. Intents are said to be implicit (IntentImpl)
when the callee is not speci�ed once the intent is broadcast or explicit (IntentExpl) when the callee
is explicitly speci�ed.

SIntents
Intents : P INTENT
implIntent , explIntent : P INTENT

implIntent ⊆ Intents ∧ explIntent ⊆ Intents

implIntent ∩ explIntent = ∅

Next schema provides relations between applications, components and intents. Applications are
made of components (cApp), which can be part of several applications, and intents (iApp). Com-
ponents can be source or target of intents (csrcInt , ctargInt).

2

AndroidApps
SComponents
SIntents
Applications : PAPPLICATION
cApp : Applications ↔ Components
iApp : Applications ↔ Intents
csrcInt : Intents ↔ Components
ctargInt : Intents ↔ Components
interactions : CompAct ↔ Components

dom ctargInt ⊆ dom csrcInt

∀ i : INTENT | i ∈ dom ctargInt •
(∀ c : COMPONENT | c ∈ ctargInt(| {i} |) •

c /∈ csrcInt(| {i} |))

R : A ↔ B means that R is a binary relation between sets A and B . The domain dom
(resp. range ran) of R is the subset of A (resp. B) which is involved by the relation R and
domR ⊆ A (resp. ranR ⊆ B). The expression R(| subA |) denotes the set of images of subA
a subset of a (subA ⊆ A) by the relation R.

The predicate dom ctargInt ⊆ dom csrcInt means that each communication must have a sender.
The second predicates means that the receiver cannot be the sender.

The �rst two lines SComponents and SIntents are Z inclusions of the (named) schema
declarations. Inclusion enables complex de�nitions in a modular way. It can be seen as a
kind of inheritance in object orientation.

We use Z shortcut notations to simplify the predicate part of the Z schemas. For example,
interactions : CompAct ↔ Components is equivalent to

interactions : COMPONENT ↔ COMPONENT

dom interactions ⊆ CompAct ∧
ran interactions ⊆ Components

2.2 Security & Permission Part speci�cation

The sensitive data transmitted between apps and components via intents are protected through
Permissions. The Android permission system veri�es if the app or the service is allowed to access
the requested functionality. This decision is de�ned by the developers at coding stage.
In Android applications, Permissions are declared in the manifest.xml con�guration �le, and

required at di�erent stages: (1) system APIs interactions, (2) database access, (3) message passing
system via intents, (4) invocation of speci�c protected methods in public APIs and (5) content
provider data access. They also have di�erent protection levels:

� A normalPerm permission is the default value. It de�nes a permission with low risk to the sys-
tem or other applications. Permissions with protection level normal are automatically granted

3

without requiring user con�rmation

� A dangPerm (dangerous) permission gives access to user data or some form of control over the
device. e.g: SMS, Camera, Location...

� A sigPerm (signature) permission is only granted to applications that are signed with the same
key as the application that declared the permission.

� A sosPerm Signature or system permissions are similar to signature permissions, but are also
granted to packages in the Android system image.

In the following Z schema, we enrich the AndroidApps schema with permissions according to the
above textual description.
The Z basic types assumes the existence of an abstract set of permissions and the free type

provides an enumeration of permission categories.

[PERMISSION]
Category ::= normal | dang | sig | sos

Permissions are declared per application (permApp), components (permComp) and intents (permIntent).
Component permissions are declared by components (cpermDec) and required by active components
(cpermReq). Passive components provide read and write access permissions (rpermDec,wpermDec).

AndroidPerm
AndroidApps
Permissions : PPERMISSION
decPermLevel : PERMISSION 7→ Category
permLevel : PERMISSION → Category
permApp : Applications ↔ Permissions
permComp : Components ↔ Permissions
permIntent : Intents ↔ Permissions
cpermDec : Components ↔ Permissions
cpermReq : CompAct ↔ Permissions
rpermDec : CompPas ↔ Permissions
wpermDec : CompPas ↔ Permissions

dom decPermLevel ⊆ Permissions ∧ dom permLevel ⊆ Permissions

permLevel = (Permission → {normal})⊕ decPermLevel

ran permApp ∪ ran permComp = Permissions ∧
ran permIntent ⊆ Permissions

permComp = cpermDec ∪ cpermReq

(rpermDec ∪ wpermDec) = (CompPas C cpermDec)

Each permission belongs to one Category by permLevel (→ is a total function). This category
can be explicitly de�ned by decPermLevel (it is optional since 7→ is a partial function) and only the
considered permissions have one dom permLevel ⊆ Permissions. If no category is explicitly given,
the level is normal ((Permission → {normal})⊕ decPermLevel).
All considered Permissions are associated to applications or components by (permApp∪ran permComp =

Permissions). Intents permissions are related to them by permIntent ⊆ Permissions.

4

Component permissions are declared or required (permComp = cpermDec ∪ cpermReq) but only
active components require permissions. Passive components provide read and write access per-
missions (rpermDec,wpermDec) of the declared permissions of passive components ((rpermDec ∪
wpermDec) = (CompPas C cpermDec)).

Recall R : A↔ B is a binary relation between A and B . The expression subACR denotes
the restriction of R to a sub domain subA (subA ⊆ A); it results in the set of couples
(a, b) ∈ R such that a ∈ subA.

The above formal description of the speci�cation system covers a minimal number of concepts
that should be extended in a future work. However, it is su�cient to formally specify security
properties as described in the next section.

3 Properties

In this section we present the speci�cation of security properties in the context of the abstract
Model presented in Section ??. This is de�nitely not an exhaustive set of properties but an excerpt
to illustrate our approach. The veri�cation of these properties will help developer to identify the
potential permission violation at an early stage of development. We de�ne static security properties
in Section 3.1 and discuss dynamic ones in Section 3.2. The properties are presented as theorems
but must be stored as invariants to be checked by Z-EVES. We provide both representations.

3.1 Static Security Properties

In this work we focus on static security features including the component invocation, content access,
permission naming. Referring to standards such as CIA (Con�dentiality, Integrity, Availability) or
AAA (Authorization, Authentication, Accounting) [3]. We target con�dentiality and authorization
properties. We refer mainly to the experimentation study of Jha et al. [7] that investigated the
mistakes committed by developers.

3.1.1 Potential violation related to permission naming

Potential violation is related to a well known security issue so called Naming Con�icts, which was
always indicated as common mistake committed by developers and classi�ed as unintentional case
due to omission or ignorance reasons [7].

De�nition 3.1 (Type Con�ict (P1)) A type con�ict occurs when the same permission is clas-
si�ed twice in the same application, even by default classi�cation.

This issue was pointed out by [5] following a formal analysis of the android system based on
High Level Petri Nets 1. Since the release of version 6 of Android, Normal permissions are granted
automatically during the installation time, whereas dangerous ones are granted dynamically during
the execution time after a checking process. Having a permission perm which is declared as a normal
and dangerous in the same application could lead to private data ex-�ltration. when an application
could have a direct access to such resource protected by a dangerous level permission without users
awareness and approval.

1https://www.techfak.uni-bielefeld.de/ mchen/BioPNML/Intro/pnfaq.html

5

theorem P1
∀AndroidPerm •

permLevel B {normal} ∩ permLevel B {dang} = ∅

P1
AndroidPerm

permLevel B {normal} ∩ permLevel B {dang} = ∅

This is proved by the invariant preservation since permLevel is a function.

3.1.2 Component Invocation

This property aims to check the correctness of components invocation in order to protect sensitive
data manipulated by a component. As a component could perform sensitive actions, it should be
protected against unauthorized accesses.

De�nition 3.2 (Permission Consistency of Component Invocation (P2)) Two interacting
components must have compatible permissions. Every required permission of a called component
must be ful�lled by the caller component.

theorem P2
∀AndroidPerm; ca, cp : COMPONENT •
∀(ca, cp) ∈ interactions •

cpermReq(| {co} |) ⊆ cpermDec(| {ca} |)

P2
AndroidPerm
ca, cp : COMPONENT

(ca, cp) ∈ interactions ⇒ cpermReq(| {cp} |) ⊆ cpermDec(| {ca} |)

3.1.3 Unprotected components - Privilege escalation

As a component can perform sensitive actions, it should be protected against unauthorized access.
Exported components could be accessed by other applications including malicious apps. Referring
again [7], a signi�cant number of non protected exported components was found in on-line Android
open source projects (19039 components overall 8749 application).

De�nition 3.3 (Unprotected components - Privilege escalation (P3)) An exported compo-
nent must declare permissions to be protected.

theorem P3
∀AndroidPerm • cpermDec(| expComp |) 6= ∅

P3
AndroidPerm

cpermDec(| expComp |) 6= ∅

6

3.1.4 Permission Over-privilege

Application over-privileged issue is widely studied by the research community. It occurs when the
application declares more permission than those really used. The main reason of this issue comes
from developers as they are responsible to declare these permissions and manipulate them. To evade
this issue, we have to formally ensure that all the declared permissions in the manifest �le are used
in the app code.

De�nition 3.4 (Permissions Over-privilege (P4)) At any time, a component cannot use an
undeclared permission. All declared permission should be used at some time.

This is time-bound property usually written using temporal logic. We simplify here by asserting
it as an invariant of an execution schema.

We do not care about the caller components here, just on which permission of one component
has been called (used).

Suppose a set of executions and for each execution we assume permUse the set of permissions that
are used for each component (this set can be �lled dynamically during executions or just simulations
if we want to prove the property or monitor the implemented Android permission system).

RunExecution
AndroidPerm
cpermUse : PComponents ↔ Permissions

∀ exec : Components ↔ Permissions | exec ∈ cpermUse • exec ⊆ cpermDec

In this invariant, for each execution exec of permUse, the permission used are declared: each
member of exec is a subset of the declared permissions. Only declared permissions are invocable.
For each permission used for one component, this permission has been declared by the component
(∀ c 7→ p ∈ exec • c 7→ p ∈ cpermDec).

Considering now all (possible) executions, we state that all declared permissions should be used
at least once.

theorem P4
∀RunExecution •

⋃
cpermUse = cpermDec

P4
RunExecution⋃
cpermUse = cpermDec

In this invariant theorem, the whole set of permUse is computed by the multi-set union for all
executions; it must be equal to permDec, meaning that all declared permissions can be invoked. A
similar reasoning can apply to application and intents.

7

3.1.5 Implicit Intent Protection

In a previous experience conducted by Xu et al. [10] it has been shown that 80% of Android
applications extracted from F-Droid2 use implicit intent, leading to a common vulnerability called
activity hijacking. That is why, it is preferable for developers to use explicit intents especially when
the intent use sensitive data. However, if it is not possible to use the explicit type, the developers
must have strong permissions to protect the data in the intent.

De�nition 3.5 (Implicit Intent Protection (P5)) Implicit intents should be protected by a per-
mission having dangerous protection level.

In the following assertion, the level of implicit intent permisssion is dangerous (dang).

theorem P5
∀AndroidPerm •

permlevel(| (permIntent(| implIntent |)) |) = {dang}

where permIntent(| implIntent |) is the set of permissions of the implicit intents.

P5
AndroidPerm

permlevel(| (permIntent(| implIntent |)) |) = {dang}

We presented in this section, �ve security properties formalized using the Z notation. To perform
veri�cations, we use the Z/EVES System [8]. It enables not only syntax and type checking veri�ca-
tion, but also the proof of operation assertions (pre/post conditions vs the state schema invariants)
and theorems. The e�ective veri�cations are not provided here but the formalisation is an input
for the implementation. These properties will be translated in Section 5 into the formal constraint
language OCL to implement a support IDE solution allowing their automatic veri�cation.

3.2 Dynamic Security Properties

The 5 security properties speci�ed above analyse static features related to the structure of a single
application during development. We don't focus on dynamic analysis like many related research
studies [2, 4, 1] that explore the dynamic behaviour coming from the interaction between di�erent
applications at the system environment level, and that with the goal to �nd permission related
security �aws in the Android permission framework. There it becomes very important to verify such
properties related to (1) the modelling of the application execution, (2) studying events related to
the application install, (3) uninstall, and (4) the dynamic permission granting and revoking between
applications. But that does not mean that dynamic analysis is not useful for our case. Dynamic
analysis would be very helpful to verify some properties for developers to improve the accuracy of
over-privilege application property. Based on our static analysis we could only 1) determine the
requested permissions declared in the manifest con�guration �le, 2) generate permissions used (PUs)
by the application through inspecting the permission related APIs, 3) inspect methods involving
sending and receiving intents, (4) and methods involving the management of content provider.
Whereas dynamic analysis could assist in 1) handling the dynamic loading of classes from embedded
.jar and .apk �les, 2) handling Java refection which is used by more than 57% (2013) of Android

2https://f-droid.org/fr/

8

apps [6] which provides a program the ability to inspect classes, methods, interfaces and �elds at
runtime without knowing the names of the classes and methods in prior. which helps to enrich the
Uperm set.
We presented in this section our Z speci�cation of security properties in the context of the abstract
Model presented in Section ??. In the next Section, we describe the design and the implementation
of the proposed model based approach enabling the veri�cation of these properties.

4 Z-EVES veri�cation

Several syntactic modi�cations have to be done to be accepted as a correct syntax in Z-Eves.

� Type shortcuts are not allowed (see note 3).

� Power sets must be �nite.

� Declarations of free types must be separate from basic types.

� etc.

We rewrited Z speci�cations by respecting these conventions (androidPerm.zed �le). Fig. 1 shows
en screen shot of the speci�cation state.

5 Details of PermDroid Design and Implementation

We formalised in Section 3 �ve speci�c security related permissions issues coming from: permissions
naming violations, unprotected components, components invocation, over-privileged permission use,
and unprotected implicit intents. To assist developers (especially third party ones) to automatically
prevent these issues in their implementations, We propose in this section a model-based approach
(See Fig. 3) that takes as a centric element the security meta-model of Fig. 2 which is equivalent to
the formal model presented in Section 2 with some additional technical aspects.
We started by extracting the application model from a real Android application following a

MDRE process. The resulted model will help to summarize only the security aspects related to
permissions as a target model instead of checking the whole application code, which is di�cult and
time consuming. The security model is obtained through a model (Android application) to model

(representing the security aspects) transformation process. The followed steps and the proposed
approach are presented in Fig. 3

5.1 Proposed Approach: Main Steps

As presented in Fig. 3, our approach is based on three steps: (1) A reverse engineering step to
perform our security study on the model level instead of the source code level. (2) A model to
model transformation step to get out the security model allowing to (3) perform in the 3rd step,
the analysis of the security properties that we speci�ed using Z then implemented using OCL3.
Reverse Engineering Phase (Model Discovery). We mean by reverse engineering here, having
abstract models with XMI notation that exactly conform to the real source code of the application.
Due to the several facilities that it proposes, we used MoDisco tool [?] to perform the reverse
engineering process. Basically, MoDisco4 provides an extensible framework to develop model-driven
tools to support use-cases of existing software modernization. It provides a graphical representation

3https://projects.eclipse.org/projects/modeling.mdt.ocl
4https://wiki.eclipse.org/MoDisco

9

Figure 1: Z-Eves GUI screenshot

of the program Abstract Syntax Tree AST5 which makes the corresponding models it generates

5https://www.vogella.com/tutorials/EclipseJDT/article.html

10

Figure 2: Android Permission Security MetaModel

Figure 3: PermDroid Architecture

correct and perfectly conform to the source code. In addition, MoDisco supports this process for
Java and XML based applications which is relevant to study Android applications. For this aim,
we started in phase 1 (orange part) of Fig. 3 by the manifest.xml con�guration �le. We created a
script with Java using Modisco o�ered interfaces that takes as input the manifest �le and generates
as output the xmi corresponding model. (Fig. 4 shows an example of the manifest model generated
for an Android open-source application published in github6).

The same steps are followed to generate the corresponding models for Java classes.

Model Transformation Phase. Once both Java and Manifest corresponding models are gen-
erated during the �rst step, we apply to them a M2M transformation process using ATL7 tool

6https://github.com/Telegram-FOSS-Team/Telegram-FOSS
7https://www.eclipse.org/atl/

11

Figure 4: Example of a generated manifest model

which is based on the OCL formal language. ATL could be used in Eclipse but it also provides the
possibility to run its transformations on VM mode. This solution is �exible and makes it easier to
integrate PermDroid tool into other development IDE for Android applications, like IntellIJ and
Android Studio8. As a result of the model transformation process, we obtain the Android security
model used for analysis phase. A schematic view showing the whole model-driven chain is presented
in phase 2 of Fig. 3.
The transformation engine we implemented is composed from a set of rules. Each one serves to
read a speci�c part from the source model "Java or manifest models" (like the manifest "MM!Root"
element in Fig. 5) and write the corresponding element (like the "MM1!Application" element in
Fig. 5) in the target model following a well de�ned semantic. Fig. 5 show the main rule of the
transformation script that aims to generate an instance of application element structure presented
in the meta-model of Fig. 3 from the root xml element of the manifest �le.

Security Properties Analysis Phase. For the analysis phase, we implemented using ATL a
set of rules called helpers (like methods in Java but with a formal constraint format) to implement
the security properties we speci�ed in Section 3. To make clear the idea of how using OCL for the
analysis phase. We present in the following a simple part of the implemented helpers, but we do
not put the whole rules due to a presentation and formatting issue.

he lpe r de f : permiss ion_name_conf l ict () :
Boolean =
i f ((thisModule . normalPermiss ions => i n t e r s e c t i o n (thisModule . dengerousPermiss ions)

)=> isEmpty ()
)

8https://plugins.jetbrains.com/androidstudio

12

Figure 5: M2M Transformation engine: The Main Rule

then true
e l s e f a l s e
end i f ;

The permission name con�ict() is an example of helper that is used to implement the permission
property (P1). It parses the instance security model representing the Android application under
analysis, to inspect if there is such permission with normal protection level that is also declared for
a second time as dangerous permission.

he lpe r de f : MM! Imp l i c i t :
have_dangerous_permissions (

pe rmi s s i ons : Sequence (MM! Permiss ion)
) : Boolean =

i f (pe rmi s s i ons . f o rA l l (perm |
perm . p ro t e c t i onLeve l = ' Dangerous '))

then true
e l s e f a l s e
end i f ;

h e lpe r de f :
imp l i c i t_ in t en t_pro t e c t i on (

i n t en t : MM! Imp l i c i t
) :
Boolean =

i f (i n t en t . have_dengerous_permissions (
in t en . pe rmi s s i ons

)
)

then true ; e l s e f a l s e ; e nd i f ;

In the same line, both have dangerous permission() and implicit intent protection() helper imple-
ment the property (P5) to be applicable to each "Implicit Intent" element. If the return type is
true the tool PermDroid will proceed to notify the developer. We give an example at the end of
Section 6.

13

6 Details of Experimentation details

To experiment the ongoing work on PermDroid tool, we selected on a simple open source appli-
cation called Telegram extracted from F Droid9, a famous repository for Android open source
applications. It represents a messaging app with a main focus on speed and security. We add some
modi�cations to the application in order to design the security �aws we want to raise at the analysis
phase. The goal is to validate the followed steps in our approach such as: model discovery with
MoDisco, modelling , and analysis phases; and that based on a simple case study.

Reverse Engineering Phase (Model Discovery). As mentioned before, the �rst step of Per-
mDroid processing is the model discovery step, where the tool will have as an input the Android
application code �les (manifest.xml and Java classes) and provides as an output the models rep-
resenting them. Fig. 6 presents xmi the generated model representing the manifest con�guration
�le of Telegram application. As can be seen MoDisco provides an abstract representation of the

Figure 6: Modisco discoverer for Telegram application

manifest �le. It exposes the root instance that represents the composite element by which we can
access children items such us: components, intents, permissions and their attributes.

Modelling Phase. Once the corresponding Telegram demo app models are generated, Per-
mDroid launch the m2m transformation process to generate the application security model displayed
in Fig. 7 where types speci�ed on our security meta-model are presented on the left side, and the
existing instances for each type are presented on the right side. Based on these representation, we
notice that the demo app is composed only from background components: 15 services, 18 broadcast
receivers and 3 content providers

9https://f-droid.org/app/org.telegram.messenger

14

Figure 7: Generated Security Model of Telegram demo application

Analysis Results. The �nal step of the tool is to launch the ATL script implementing the formu-
lated security properties. Fig. 8 shows the analysis result raised by PermDroid tool. The analysis

Figure 8: Analysis Results of Telegram demo app

report raises the unsatisfaction of the security propety related to naming con�icts. It indicated that
perm1="android.permission.BIND TELECOM CONNECTION SERVICE" with Nrml perm is
duplicated in: "Content Provider":"$applicationId.noti�cation image provider" with: "DANGER-
OUS" protection level. Note that all this steps including: reverse engineering, modelling and analysis
will be executed on the background by the PermDroid tool.

15

References

[1] Gustavo Betarte, Juan Campo, Maximiliano Cristiá, Felipe Gorostiaga, Carlos Luna, and
Camila Sanz. Towards formal model-based analysis and testing of android's security mech-
anisms. In 2017 XLIII Latin American Computer Conference (CLEI), pages 1�10. IEEE, 2017.

[2] Gustavo Betarte, Juan Campo, Carlos Luna, and Agustín Romano. Formal analysis of android's
permission-based security model. Scienti�c Annals of Computer Science, 26(1), 2016.

[3] W.J. Buchanan. Introduction to Security and Network Forensics. Taylor & Francis, 2011.

[4] Elli Fragkaki, Lujo Bauer, Limin Jia, and David Swasey. Modeling and enhancing android's
permission system. In European Symposium on Research in Computer Security, pages 1�18.
Springer, 2012.

[5] Xudong He. Modeling and analyzing the android permission framework using high level petri
nets. In 2017 IEEE International Conference on Software Quality, Reliability and Security
(QRS), pages 232�239. IEEE, 2017.

[6] Johannes Ho�mann, Martin Ussath, Thorsten Holz, and Michael Spreitzenbarth. Slicing droids:
program slicing for smali code. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing, pages 1844�1851, 2013.

[7] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. Developer mistakes in writing android
manifests: An empirical study of con�guration errors. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), pages 25�36. IEEE, 2017.

[8] Mark Saaltink. The Z/EVES system. In Jonathan P. Bowen, Michael G. Hinchey, and David
Till, editors, ZUM '97: The Z Formal Speci�cation Notation, 10th International Conference of
Z Users, Reading, UK, April 3-4, 1997, Proceedings, volume 1212 of Lecture Notes in Computer
Science, pages 72�85. Springer, 1997.

[9] J. Michael Spivey. Z Notation - a reference manual (2. ed.). Prentice Hall International Series
in Computer Science. Prentice Hall, 1992.

[10] Guosheng Xu, Shengwei Xu, Chuan Gao, Bo Wang, and Guoai Xu. Perhelper: Helping devel-
opers make better decisions on permission uses in android apps. Applied Sciences, 9(18):3699,
2019.

16

