III. Déconvolution de signaux piqués

III. Déconvolution de signaux piqués

INTRODUCTION

Problème : augmentation de la résolution

Échographie, contrôle non destructif, ...

défauts ponctuels,

frontières nettes \longleftrightarrow limitation expérimentale : bande passante des instruments

Impossibilité théorique?

 \Downarrow

Déconvolution impusionnelle

Modèle direct

mesures = « train » d'impulsions \star réponse instrumentale + bruit

Applications

• Spectrométrie

Performance of RazorPick on a Raman spectrum (sulfur). The peak model was chosen to be a Lorentzian peak of the same width as the dominant peak in the spectrum. The height of each marker is proportional to the peak significance. The picker was set to pick by amplitude.

• Astronomie

Signaux cherchés : sources célestes (radio, IR ou visibles) Filtre : instrument + atmosphère Bruits : atmosphère, électronique, de photon

III. Déconvolution de signaux piqués

• Contrôle non-destructif et imagerie biomédicale par ultrasons

• Sismique-réflexion en géophysique

III. Déconvolution de signaux piqués

Adoption d'un modèle de dégradation 1D linéaire homogène

Exemple 1

III. Déconvolution de signaux piqués

III. Déconvolution de signaux piqués

III. Déconvolution de signaux piqués

CONSTRUCTION DE JX

$$\widehat{\boldsymbol{x}}^{\mathrm{W}}$$
 minimise $\|\boldsymbol{z} - \mathbf{H}\boldsymbol{x}\|^2 + \alpha \|\boldsymbol{x}\|^2$
maximise $f_{\boldsymbol{B}}(\boldsymbol{z} - \mathbf{H}\boldsymbol{x})f_{\boldsymbol{X}}(\boldsymbol{x})$

- Le cadre gaussien ne convient pas \implies quelle forme pour f_X ?
- De quelle loi les vecteurs d'entrée peuvent-ils provenir?
- Quelles propriétés utiliser pour simplifier le calcul?

III. Déconvolution de signaux piqués

Propriétés choisies pour f_X (1) blancheur : $f_X(x) = \prod_{m=1}^M f_{X_m}(x_m)$ (2) homogénéité : $f_X(x) = \prod_{m=1}^M f_X(x_m)$ (3) « longue queue » : $f_X(x) \xrightarrow{|x| \to \infty} 0$ moins vite que e^{-x^2} (4) (cas positif) : $f_X(x) = 0, \quad \forall x < 0$ (5) stricte log-concavité et caractère C^1 ψ $x \mapsto L(x \mid z) = ||z - Hx||^2 + \alpha \sum_{m=1}^M \phi_X(x_m)$ critère C^1 , strictement convexe

 $\exists ! \, \widehat{x}^{\text{MAP}}, \text{qui s'obtient par optimisation locale} \\ e.g., gradient à pas optimal ou relaxation [Bertsekas 1995]$

III. Déconvolution de signaux piqués

Exemple 2:

III. Déconvolution de signaux piqués

77

Données réelles en CND ($|x|^{1,1}$, forme adaptative) :

III. Déconvolution de signaux piqués

EXEMPLE

Image provenant de Hubble avant correction du miroir

$$H(\boldsymbol{x}) = \sum_{(i,j)} x_{i,j} \ln \left(x_{i,j} / \mu_{i,j} \right) + \text{support } a \text{ priori} : (i,j) \notin S \Rightarrow x_{i,j} = 0$$

variante « continue » processus de Poisson

variante « discrète » processus de Bernoulli

+ amplitudes gaussiennes

III. Déconvolution de signaux piqués

Modèle Bernoulli-Gaussien

 $oldsymbol{x}=(oldsymbol{q},\,oldsymbol{r})$

• \boldsymbol{q} vecteur binaire indépendant $P(q_m = 1) = \lambda$ $P(q_m = 0) = 1 - \lambda$ \rightarrow $P(\boldsymbol{q}) = \lambda^{M_1} (1 - \lambda)^{M_0}, \quad M_0 + M_1 = M$

 λ : « densité d'événements »

• r vecteur gaussien indépendant

Remarques

• Variables cachées : q n'intervient pas dans z = Hr + b

• Paramètres :

paramètre	domaine	interp. physique
λ	[0,1]	densité moyenne de pics
σ	\mathbb{R}_+	écart-type des pics
σ_b	\mathbb{R}_+	écart-type du bruit

Le RSB vaut $\|\boldsymbol{h}\|^2 \lambda \sigma^2 / \sigma_b^2$.

III. Déconvolution de signaux piqués

■ Vraisemblance a posteriori $P(\boldsymbol{x} \mid \boldsymbol{z})$ $\boldsymbol{z} = \boldsymbol{H}\boldsymbol{r} + \boldsymbol{b}$ $\boldsymbol{x} = (\boldsymbol{q}, \boldsymbol{r})$ BG $\boldsymbol{A} = \boldsymbol{P}(\boldsymbol{x} \mid \boldsymbol{z}) \propto f(\boldsymbol{z} \mid \boldsymbol{x}) dP(\boldsymbol{x})$ $f(\boldsymbol{z} \mid \boldsymbol{x}) = f_b(\boldsymbol{z} - \boldsymbol{H}\boldsymbol{r})$ $dP(\boldsymbol{x}) = f(\boldsymbol{r} \mid \boldsymbol{q}) d\boldsymbol{r}P(\boldsymbol{q})$ $\boldsymbol{\swarrow}$ $\boldsymbol{\downarrow}$ densité probabilité gaussienne de Bernoulli

$$L(\boldsymbol{x} | \boldsymbol{z}) \# \sigma_b^{-2} \| \boldsymbol{z} - \mathbf{H} \boldsymbol{r} \|^2 + \sigma^{-2} \boldsymbol{r}^{\mathrm{t}} \mathbf{Q} \boldsymbol{r} + \alpha M_1 \quad \text{avec} \ \mathbf{Q} = \mathrm{diag} [\{] \boldsymbol{q} \}$$

DETECTION - ESTIMATION

Estimation des amplitudes : calcul de \hat{r} $L(r \mid \hat{q}, z) \# \sigma_b^{-2} \|z - Hr\|^2 + \sigma^{-2} r^t Qr$

$$\implies \widehat{\boldsymbol{r}} = \sigma^{-2} \mathbf{Q} \mathbf{H}^{\mathrm{t}} \mathbf{B}^{-1} \boldsymbol{z} \text{ avec } \mathbf{B} = \sigma^{2} \mathbf{H} \mathbf{Q} \mathbf{H}^{\mathrm{t}} + \sigma_{b}^{2} \mathbf{I}$$

Détection des pics : $\widehat{q} = \arg \max_{q} P(q | z)$

critère marginal $P(\boldsymbol{q} | \boldsymbol{z}) \propto P(\boldsymbol{q}) \int f_b(\boldsymbol{z} - \mathbf{H}\boldsymbol{r}) f(\boldsymbol{r} | \boldsymbol{q}) \, \mathrm{d}\boldsymbol{r}$ (int. gaussienne)

$$\Rightarrow K(\boldsymbol{q}) = -\ln P(\boldsymbol{q} \mid \boldsymbol{z}) \# \boldsymbol{z}^{\mathsf{t}} \mathbf{B}^{-1} \boldsymbol{z} - \ln |\mathbf{B}| - 2M_1 \ln \frac{1-\lambda}{\lambda}$$

\$\sim \text{ problème d'optimisation combinatoire}

III. Déconvolution de signaux piqués

Optimisation combinatoire

■ Algos « sous-optimaux » récursifs : $[\hat{q}_1, \ldots, \hat{q}_k] \rightarrow [\hat{q}_1, \ldots, \hat{q}_k, \hat{q}_{k+1}]$ (Structures approchées de type « Kalman + décision en ligne »)

a Algos « sous-optimaux » itératifs : $q^j
ightarrow q^{j+1} \ldots
ightarrow q^J = \widehat{q}$

Méthode de parcours : Single Most Likely Replacement (SMLR) [MENDEL 1983]

$$\begin{array}{ccc} \boldsymbol{q}^{j} & \longrightarrow & \boldsymbol{q}^{j+1} = \left\{ \begin{array}{c} \text{meilleure} \\ \text{séquence} \\ \text{voisine} \end{array} \right\} \longrightarrow \underbrace{K(\boldsymbol{q}^{j+1}) < K(\boldsymbol{q}^{j}) ?}_{\text{oui}} & \stackrel{\text{non}}{\longrightarrow} & \widehat{\boldsymbol{q}} = \boldsymbol{q}^{j} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

RESULTATS

III. Déconvolution de signaux piqués

SIGNAUX PIQUÉS : CONCLUSION

Divers modèles de bruits blancs

Gaussien, Laplace (ou approchant), Bernoulli-gaussien

lois à longues queues

U Complexité de calcul de \hat{x} croissante

- linéaire,
- optimisation convexe,
- optimisation non convexe ou combinatoire.

Sur-problèmes

- estimation des paramètres
- filtre h mal connu

[BERTSEKAS 1995] D. P. BERTSEKAS (1995), Nonlinear programming, Athena Scientific, Belmont, MA, USA.

[MENDEL 1983] J. M. MENDEL (1983), *Optimal Seismic Deconvolution*, Academic Press, New York, NY, USA.