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Abstract—\We propose a method for the reconstruction of sig- form of such an observation model is
nals and images observegartially through a linear operator with

a large support(e.g., a Fourier transform on a sparse set). This M

inverse problem is ill-posed and we resolve it by incorporating the y=Azr+n= Z a;z; +n. (1)
prior information that the reconstructed objects are composed i=1

of smooth regions separated by sharp transitions. This feature

is modeled by apiecewise GaussiaifPG) Markov random field The unknown objectr = (1, -, zm]t € R is defined

(MRF), known also as theweakstring in one dimension and the - o, o1 37 oint latticesS, either one-dimensional (1-D) or two-
weakmembranein two dimensions. The reconstruction is defined

. . N
as the maximum a posteriori estimate. dimensional (2-D). Datg € R are assumed real for sake of

The prerequisite for the use of such a prior is the success of the clarity; adaptation to the complex case is straightforward.
optimization stage. The posterior energy corresponding to a PG~ More specifically, our main concern will be to deal with the

MREF is generally multimodal and its minimization is particularly conjunction of the following two acknowledged difficulties

problematic. In this context, general forms of simulated anneal- concerning the observation operater = [ay, -+, ay] €
ing rapidly become intractable when the observation operator RN XM

extends over a large support.
In this paper, global optimization is dealt with by extending (Al) A originates from an ill-posed continuous equation, so

the graduated nonconvexitfGNC) algorithm to ill-posed linear it is eitherill-conditioned, or singular with A/ > N,

inverse problems. GNC has been pioneered by Blake and Zisser- or both

man in the field of image segmentation. The resulting algorithm '

is mathematically suboptimal but it is seen to be very efficient ~ (A2) Alisnotsparsei.e., itssupportdefined as sugpd) =

in practice. We show that the original GNC does not correctly {(@, 4); Ai; # 0}, is large: each datuny; results
apply to ill-posed problems. Our extension is based on a proper from the contribution of many elements of the object,
theoretical analysis, which provides further insight into the GNC. even the entire object. In fact, under the Gaussian

The performance of the proposed algorithm is corroborated by a

synthetic example in the area of diffraction tomography. observation model (1), it appears that S@pﬁ’A)

plays the essential role in the definition of posterior

Index Terms—Discontinuity recovery, GNC optimization, ill- contributions, rather than su@g) (see Section Ill).
posed inverse problems, image reconstruction, MAP estimation, . . . . . . .
Such a conjunction is a major practical issue for image

MRF modeling, tomography. X ’
reconstruction, and also in many areas such as X-ray or
diffraction tomography (see Section VIII) [11], [21], [26],

. INTRODUCTION radio-interferometry, synthetic aperture radar, geophysics [24],
[33], nondestructive evaluation [40], etc. Most of the observa-
tion operators involved in these applications present no special
structure favorable to be exploited numerically.

ANY physical experiments seek to map a real-valued The reconstructionof x from g is an ill-posed inverse
object from only partial observation through an imperproblem [10], [37]. Its resolution relies oprior information

fect measurement device. For our purposes, we consider @&mutz. An important class of real-world objects are com-

very common case of a signal or an imagédcalled object posed of nearly homogeneous regions separated by edges:

in the following), observed through a linear operathrwhen such are the objects we are seeking to reconstruct. The

additive white Gaussian noise ~ A(0, o21) accounts for pioneering work of Geman and Geman [18] shows that such

uncertainties [ stands for the identity operator). The discretebjects may be well described oupled Markov random
fields (MRF's). The object is modeled as a random pair
(x, £) consisting of anntensity procesg and an unobserv-
able proces¢ of line or label variables. Prior knowledge
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energyE(z, £) = || Az — y||> + U(z, £). The first term—the £ allows easy determination df(z) = arg ming[¥(zx, £)].
negative log-likelihood—accounts fdidelity to the data and The MAP estimatez also minimizes the energ¥(z) =
its form steers from the additive white Gaussian nature of thielz — y||? + @(z), where®(z) = W[z, £(x)] is a truncated
noise, while the seconekgularizesits minimization. guadratic function iff is Boolean.

The posterior energy¥(x, ) is nonconvex in(z, £) and Our motivation to use this model is not only due to its
has numerous local minima, gobal optimization is arduous qualities, but also to the fact that an appealing algorithm
if not impractical. Provided that supd?.A4) is a reduced is available for the minimization of(x) when A = I:
set, it can be performed using simulated annealing (S#&je graduated nonconvexity algorithf@GNC), which was
stochastic algorithms [18], [25]. Such a situation arises proposed by Blake and Zisserman [4]. It is based on minimum
image segmentation, whestis diagonal, or in deconvolution tracking by local descent along a family aflaxedenergies,
problems, when the blur spreads over a small window.  the first of which isconvexand the final is€(x). It is a

However, general forms of SA are intractable under (Auboptimal but practically very efficient algorithm.
and (A2) [19], [39] andcoupledMRF’s have been used only
in severalspecialcases. In [12], an MRF with a label field isB. Content of the Paper
used for the reconstruction of objects with axial symmetry
from X-ray tomography data. In this case sgdp.A) is
“moderate” (supp’ is a “line” going through objectz)
and a local minimum is calculated using the iterated co

Our paper provides an extension and a deepening of the
whole estimation-optimization approach developed by Blake
and Zisserman, in order to cope with (A1) and (A2). The PG
VIRF is briefly presented in Section Il. The MAP estimator
Afeads equivalently as the minimizer of the energy of inten-

optimization based on the fast Fourier transform (FFT) V&ies E(x) only which is multimodal The ability of various

developgd in the spema_l case yvhgms sh|ft-|_n\_/ar_|ant [19]_ Iobal optimization techniques to cope with (A1) and (A2) is
and the line process noninteracting. A deterministic suboptm%rfalyzed in Section Il

initialization-dependent version can be found in [9]. The original GNC—as pioneered in [4] for the casé =
_Ins_tead, various_ methods giving rise d:onvexoptimalit_y I—is presented in Section IV. Its extension to arbitrady
criteria are used in the context of (A1) and (Analytic o yq" fyrther analysis and the relevant theoretical develop-

methods(inverse filtering in signal and image restoration, o nis are given in Section V. Extending this GNC to arbitrary

or backp.rOJchon and backprop_agatmq in tomc_)graph|c "Well-conditioned observation operatars is straightforward.
construction, .etc.), are computauona_llly INEXpENSIVE, but th%\ﬁch is not the case whetis ill conditioned or singular—the
break down in the presence of noise [11], [28laximum i Gifference concerns the obtaining of an initial convex

en_tropy methods can be very efficient for images with %nergy, in which case we proposedaubly relaxed GNC
spiky appearance over a homogeneous background [13], [ Qection VI). Several results concerning the evolution of the

Gaussian MRF'sgive rise to linear estimators, but the basiq tion are stated in Section VII. A criterion to recognize the

homogeneous Gaussian MRF's are well known to allow NOIZftimate GNC solution is established and a simple stopping

cancellation only at the expense of oversmoothing the objggie is deduced. On the other hand, both solution and relaxation
[35], [40]. Generalized Gaussian (GG) MRF[S] preserve o cjosely linked to thecaleof .A. General recommendations
edges better while maintaining convex energies. In the sameo it the relaxation are then presented.

way, other useful MRF's weight the differences between By way of application, we present diffraction tomogra-

neighbors using &luber funcuoryo;ang—cosh_funcUon [20]- phy synthetic example. Reconstruction results obtained using
A discrepancy measure on neighbors was introduced in [3gliious convex prior energies are compared to those obtained
in order to model correlations in positive objects. Howeve[rsing a PG MRF (Section VIII). Concluding remarks are given

none of these priors can give rise Maximum a poSterior i gection IX. Most of the proofs of the theorems and lemmas
(MAP) estimators truly accounting for the presence of botf} {1 paper are presented in the Appendix.
homogeneous parts and edges in the object.

In this paper, we focus on pairwise interactipiecewise
Gaussian MRF'YPG MRF’s) with anoninteractingBoolean
line processf. This is one of the most common and simple )
models involving a line process, and it is often used - Coupled Prior
image processing for the purposes of segmentation, noisén the following, theory is formulated in 2-D for the four
cancellation, interpolation [25]. In the field of computer visionpearest-neighbor case but its extension to other configurations
weak strings (in one dimension) and weak membranes §och as the 2-D eight nearest-neighbor case, 1-D signals
two dimensions) [4], [8], [15], [29], [36] are widely spreadand three-dimensional (3-D) objects is straightforward. Let
models whose energy can be identified to the negative lo§-= {S;,7 = 1, ---, M} be the integer grid corresponding
likelihood of PG MRF's. A broader family of PG MRF's to the set of the sites ak. We consider the four nearest-
with a continuous-valued line process has been introduced fgighborhood systenV" corresponding to the set ofiaximal
Geman and Reynolds [17]. Given their duality results and fadecond-order cligue€: no maximal clique is a subset of a
lowing the lines of the present paper, it is realistic to considsetrictly larger clique, saC = {(i, 5)/||S: — S;|3 = 1}. A
that “soft edges” can also be dealt with using GNC. Such d@nary 0-1 line variable; ; is associated with each maximal
extension is left for future works. A noninteracting line procesdique{:, j} € C, in order to control its bonding strength. The

Il. PIECEWISE GAUSSIAN MODEL AND MAP ESTIMATION
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Fig. 1. (a) Truncated quadratic functief(t) as defined in (4) foa, A) = (1, 0.6) (- -) and (e, A) = (1, 1.5) (—). (b) Relaxation of the truncated
quadratic functiong.(t) given in (10):¢ = 0.2 (1), ¢ = 2 (- -) and¢c = oo (—).

coupled prior energy . A only involves the set dfransitions reduces to minimization of each(t;;, ¢; ;) separatelyw.r.t.
{ti,; = xi — /@, §) € C} and the corresponding ;s [4], 4, ; [4]:

[18] as follows: .
Ut) = arg min (¢, £)
te{0,1}
& S\ 1"7 Z Z/ ti W ¢; j)’ \/a
{i,jyecC =1- ]l(|t| < T), T = T (2)

Va5t ) = V(1 -0+, . _ _
’ where 1 means indicator functionl([t| < 7)) = 1 if [¢t| <T

where v 5 is a potential function and(a, A) are positive and 1(Jf| < T) = 0, otherwise. Knowing/ is equivalent

; to knowing whether|t| < T (pixels belong to the same

parameters.
Remark 1: Prior energy¥ . 5 does not derive from a nor- homogeneous zone) ¢ > 7" (an edge separates them). Each
o transition¢ can beclassifiedas

malized probability measure anin IR*, because the partition

function continuous, iflt] < T, 3)
discontinuous, ifit| > 7.
ZXz/Ze‘nA(xe)dx . ) . .
7 The line variables can be eliminated from the expression of
the MAP estimator
H Z e a,A(t7 FERE _7) dl' . 0o
¥ : O(z) =Vlz, Uo)l = D lti), (5)
_ —A [ & ;
= {l;[ec( +e M) de Gec
1,0 ~
£(z) = Elz, £(x)] = | Az — y||* + ©(x). (6)

is finite only for  belonging to aboundedset in R™.
Nevertheless, tha posteriorimeasure is a proper probability
measure provided that? A is invertible. Otherwise, a further
examination may be necessary in order to verify whether t
MAP estimate is well defined. For instance, theosteriori
measure is improper and the MAP solution is only defined up
to an arbitrary constant level whedl =0 (1 € R™, 1 =

The resultant potential functiogp(¢) in (4) is shown in
Fig. 1(a). The MAP energy¥(z) depends on the intensity
rocessz only, although its minimizet; = arg ming £(x)

felds the optimal line procesié{?c) using (2).

I1l. OPTIMIZATION CHALLENGE

[, -, 1. The posterior energ§(x) (6) generally exhibits many local
minima and the calculation of the global minimusnis a
B. Optimal MAP Solution difficult optimization task. It is often encountered in image

processing where different techniques, either stochastic or
deterministic, are developed. In this section, such methods are
briefly reviewed and possible extensions are discussed.

The optimal solution pai(z, ) is defined as the minimizer
of

E(z, £) = ||Az — y||” + Vo, A(z, £) : : . .
A. Posterior Neighborhood and Simulated Annealing

where &« = 202G and A = /20, so that we have Since [18], the most popular algorithm for the minimization
U, iz, €) = 202\IJ&7X(:5, £). In the following, ¥, » and of MRF posterior energies remaissnulated annealingt is a
14, » are denoted andqy. The model parametefs:, ) play stochastic algorithm, providing asymptotic weak convergence
a crucial role for the quality of the estimation. As regards theioward the set of the global minima. Lét;, k=0, 1, ---}
selection, a detailed study is presented in [4] whén= I. be a sequence of temperatures, decreasing from an initial
When.A # I, a numerical method is proposed in [30] for 1-Chigh value to zero. To each temperatureis associated a
signals. We do not discuss this question in the present pap&ibbs measure. (x|y) « exp[—&(x)/7]. Let (ix)i>1 be the

Because the line variables are noninteracting, for eachsequence of visits of the sites 8f At the th step,r = 7;, and
fixed the optimal line proces#(z) = arg ming E(z, £) the objectz*) is obtained fromz*~1) by updating only the



574 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 4, APRIL 1998

element; to the valuet which is obtained from the posteriorunstable in the presence of noise and close edges, and when
conditional distribution using Gibbs sampling [18], as followsA4 is ill-conditioned.
1 On the other hand, several types of methods resort to the
pr[Xi = Sla?](» ) jes\{i}, 4] continuation principle [31], [38]. To our knowledge, all of
—p[X; = (k=1) e AP . 7 them have been proposed in the context of a well-posed,
Pl £|$J (T ENT Y] Q) pointwise observation operator. In thmean-field annealing

In order to perform a general form of such a SA optimizatiohMFA) framework [3], [15], [16], [34], the line process is
it is necessary to determine the structure of the posteri&GPlaced by its mean at a varying temperaiieso ¢, (z) =
neighborhood\™”. EachA”” depends jointly on\; and on U(z, £.)/7. Local minimization of the resulting sequence of
the support ofA. In [18], this link has been established fo@PProximated energies leads to the MFA solution as a local
operators which can be linear or nonlinear but with a shifffinimum of £&. GNC [4] andsimulated tearing14] are more
invariant symmetric support (typically, whed represents a directly built on thecontinuationprinciple. We focus now on
blur kernel). For linear operators wiilregular supports, the
following theorem states a general formula with no restriction
on 4; its proof is given in the Appendix. IV. ORIGINAL GRADUATED NONCONVEXITY: A4 = [
Theorc?m 1—Ppsterior Neighbo;hoocﬂ;eFM be th? .neigh- Except for additional notation, this section is only a brief
bors ofi in the prior; then the seV/;"” of neighbors of; in the summary of [4]. The GNC algorithm was initially proposed

posterior distributionp(zly) is given by by Blake and Zisserman [4] for the global minimization of
NE =N U N, E(x) = |lo — yl* + ¢(x) &)
A ; Ta.
N = {‘{ €3\ {f} such thata? a? # 0} . for the purpose of segmentation or noise cancellation. Global
={j € S\ {¢} such that{s, j} € supg(A~A)} minimization is substituted for a sequence lotal mini-
e ) . mizations (performed by a descent algorithm) of continuously
where ;" is the set of the neighbors éfdue to A. differentiablerelaxed energiet.., o starting from aconvex

Numerical efficiency of standard SA directly depends ofsjaxed energy€.,(z) and converging toward the original
the evaluation cost of (7) and hence on the sizeAof. energy as follows:

Recently, a new implementation of SA has been proposed

for shift-invariant observation operators and Markovian priors Jim &, (x) — E(x).

with a noninteractingline process [19]. It is based on global

updates using FFT’s rather than on local updates, so thatdts> 0 is the relaxation parameter a(e ) >o is an increasing
applicability no more depends on the size of supp.4). On relaxation sequence.

the other hand, shift invariance yields a specific block-circulant In the following, # denotes any local minimum while is
structure for matrix4, and the new SA form is only relevantreserved for global minima. Let“® be the unique minimizer
in this context. Unfortunately, most of the reconstructiof &, (). For eachk > 1, an intermediate solutionz(“)
problems give rise to spatially variant operators (e.g., whé calculated by minimizing., (x) locally, starting from the
projection arrays do not circularly surround the object). IAreviously obtaineds(*—):

the example treated in Section VI is shift-variant and the (k) . P

interactions in the posterior distribution agtobal N = S, rooTas xe,}[ﬁ&_ﬂ] o (®):

Vi € S. In such a case, both forms of SA remain intractable.
where V() stands for the attraction valley af

Whenever unambiguous, we write for ¢;. Since the
first term in (8) is already convex and twice continuously

Where SA proves to be too costly, several deterministirerentiable, &.(z) can be written in the form
suboptimal strategies have been proposed. Let us examine the

main possibilities available for PG MRF's. Ec(z) =1z — y|I* + c(x),

lterated conditional mode¢ICM) [1] locally maximizes d () = Z dolti ;). 9)
p(z|y) by iterative maximization of (7), but the solution (i rec ’
strongly depends on initialization and scanning order.

Multiresolution or multigrid decompositions can partly copd he concavity of the relaxed prior energy.(z) results from
the problem, since it is expected that MAP energies presdf€¢ concavity of each relaxed potentigl.(¢). The latter
fewer local minima at coarse scales. So MAP energies &@n easily be controlled by fitting quadratic splines in the
constructed at an increasing scale, and each energy is locARjghborhood ot:T" [see Fig. 1(b)] as follows:

B. Deterministic Surrogates

minimized in the vicinity of the previously obtained solution ()2 if |t < q
(4], [6]. B =d om L] = r)2, i g < |f] <
In [8], a variational calculusbased technique for 1-D sig- 9e() g zelftl =), :f |th| > |7,| <Te

nals is proposed. Since, for distant edges, optimal points for 2 N (—1/2)
edge location locally maximize the gradient, an alternating ge =T(1+2X°/c) )
estimation-detection procedure is proposed. It can be very re =T(142X2/c)3/2), (10)
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Theng!/(t) = —cfor g. < |t| < r. and¢l!(t) > —c¢, V¢, sothe A. The Maximal Concavity Set

concavity of¢.(x) can be reduced arbitrarily. In this way a |t 411 transitions ofz were continuoust; ;| < ¢,V {i, j} €
new auxiliary state has been introduced into the classificatigr*(e.g. taker = const.), ther®” (z) = DT D. Conversely

(3), i.e., w.r.t. the relaxation parametem transitiort is called it 5| transitions were undetermineg < |t; ;| < 7., then
®”(x) = —cDTD. Let W. be the set of suchvorst objects

continuous, iflt] < g, _ s

undetermined, if g. < [t| < 7., (11) W.r.t. maximal concavity:

discontinuous, ifit| > r.. W, = {z € RM such tha” (z) = —DT D}, ¢ < oo,
The relaxed energ§.(x) is convex onlR™ when even the (16)

maximum concavity o .(x) is compensated by the convexity Lemma 1—The Worst Caséet W. be as defined in (16).

of the data-fidelity term. The valug, at which this occurs : : o
If f , then it f
[E(x) convex fore < ¢o] can be found by checking whetherw %(31\? convex for anys in V.., then it is convex for any

the Hessian matrix of..(z), denoted” (), is positive definite

¥V [22]. From such considerations, Blake and Zisserman |

are driven tocg = 0.5 for a signal andey = 0.25 for an

image, whenA = 1. v Y (z)v = 20T AT Av + 0T @Y (z)v. (17)
There is no general mathematical proof of convergence of

the ultimate GNC solutiorz>>) toward the global minimum The regularization part of (17) reads

# for a general nonconvex energyx). However, Blake and 7., "

Zisserman have analytically sho%vr)l global convergence for” ey =2_ > viv[®l):s

Proof: The second derivative of.(z) at an arbitrary
ﬂ)int x, along an arbitrary directiom is

importantspecial cases. Moreover, its practical convergence es je; . ,
in various situations is corroborated numerically [4], [5]. = Z v [9]i,0 + Z v [®c]i,;  (18)
i€S i,3/{i, 5yec
V. GENERAL CONDITIONS FOR INITIAL CONVEXITY where the second sum accounts for (14). On the other hand,

For an observation operatot which is no longer identity, (15) implies

application of GNC is not very sensitive to (A2), since it only 2061, . — 2 m.o.
makes use of standard descent algorithms. On the other hand, Z vil®elii = Z Yi Z [®2)i.s

conditions for initial convexity of the relaxed energy res res j/{i’(j}fi 2)
_ V3 vj no
.(z) = [z - 9|12 + 2.() 12) == > el
i,5/{i,5}€C
become more subtle depending on (Al). WhenexétA is so that (18) also reads
full-rank, (€.).~o admits convex elements. Whed? A is (18)
singular, the data fidelity term is completely flat in affine v (z)w = _% Z (v; _vj)Q[cpg]i’j_

subspaces parallel to Ket”.4), so the concavity ofb.(x) i3/ syec
cannot be compensated. )

Let us examine the full-rank case first. The Hessian matr%(omQ(M)' [@¢];,; can only take its value from the set
of £.(x) at z reads {=2A%,0, ¢}, so

C C
£'(z) = 2ATA + ®/ () (13) vl —5 Y (vi—v)? = -5 DID
{i,jrec
def .
wher_e F'(x) = {02 F(x)/0x;0z;} stands fo.r the Hessian ,hich provides the desired resuit. A
matrix of any term of ener%w-"(:c), by a slight abuse of g4 e can find an initial convex approximatish(z) by
notation. Nonzero entries ab(x) read ensuring its convexity iy.. However, it is important to know
Y —2X2, if |t <q _ whether this worst situation can really occur in practice.
(e, s {c o q“i i "i <p o T{5, 5} €C (14)  Lemma 2—Worst Case Occurrenceor eache finite, the
, ’ o setW, in (16) is not empty.
[@%]i,: =— Z [@C)i,;, =1, M. (15) Proof: For any objects in W., all differenceg;_; fuffill
/i, i}ec |ti ;| € [ge, re[. The latter interval becomes narrower as
Let D be the difference operator which provides the S%?creasgshmc_@ |T‘i - QCL: OLbl;E\ic’ Qe <MTT< re. In one
of transitions involved in®.(z). More precisely, ifz is a I/Ilfmelrrllstl\c/)vr(]), dain;stle%r;?onssuiak:s% irn[a7g 'e' S’u ch]asr(targaslgfnxetric
i I i - Toepli i h fi e . ' )
signal, D is & (M — 1 x M) Toeplitz matrix whose first Togéplitz matrix whose first row i471, - --, M]7. A

row is [-1, 1, 0, ---, 0], while if £ is an image,D is the
concatenation of the operators calculating the sets of vertical )

and horizontal transitions. The second-order difference op&- Convexity for a Well-Posed Problem

ator DTD is nonnegative definite: its unique null eigenvalue The following convexity condition generalizes the one given
corresponds to constant objeatsx 1. in [4] for A = 1.
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Theorem 2—Convexity in the Invertible Cadeet 11,3, be Remark 5—III-Conditioned Nonsingular Operato¥When
the smallest eigenvalue oA” A and v,., the largest eigen- AT A is not singular but is still ill-conditioned, its smallest
value of DTD. Supposeiiyin > 0 [i.e., ranKA) = M]. eigenvalue ispn;, ~ 0. Hence, the largest, satisfying
Then (19) is ¢y ~ 0; then &, (x) has almost flat regions, where
its minimization is extremely difficult and can even fail.

. ]\4 .
Ee(x) is convexVz € R™, if ¢ < 2imin/Vmax- (19)  Numerically, the ill-conditioned case should be treated as the

Proof: The proof is based upon the well known result ir§|ngular case.
differential calculus tha€.(xz)—a twice differentiable func-
tion—is convexv z € R™ if and only if its Hessiart” (z) in VI. GNC FOR AN ILL-POSED PROBLEM
(13) is nonnegative definitéz € R [22]; i.e., at each point  Blake and Zisserman [4] stressed that (standard) GNC
z and along each direction # 0: cannot be applied for the processing sfarse data(A is
diagonal with one and zero along its diagonal, so it is singular).
Instead, they recommend that sparse data first be converted to
dense using a “continuous membrane’+ oo in (4)] before
starting a (standard) GNC (9).

In [28] and [33] GNC was applied—with some apparent
success—to the resolution of ill-posed linear inverse problems,
with no explicit care of initial convexity. The regularizing

v EX (x)v > (2tmin — Wimax)|[V]|? (20) function ¢(t) = 1(¢ # 0) was relaxed according t9.(t) =
1 — exp(—ct?). It is straightforward to show that maximum
If 2ptmin > CVmax, then v’ &/(z)v > 0,Vz € W. and concavity isdce=3/2, and that initial convexity occurs for
Vv e RY. A ey = € pmin/(2Bvmax) in the invertible case. According

Remark 2: Observe thaD?D is nearly circulant and recall to Theorem 2, convexity can be reached even in the ill-
that the eigenvalues of a circulant matrix are the magnitudesgfsed case, provided that!' 4 is not singular. However, the
the discrete Fourier transform (DFT) of any row of it. Thussesulting value ofc is very close to zero, which provides an
Vmax ~ 4 for a signal andv,.x ~ 8 for an image in the unacceptable nearly unregularized initial solution (e.g., Fig. 8).
four-nearest neighbors case [4]. On the other hand, even an “impropes; could provide

Remark 3—Scale of the Operatomequality (19) high- a unimodal initial relaxed energy since a function can be
lights the crucial role of thecaleof the observation operator. unimodal without being convex (Fig. 2). We can guess that for
If the relaxed energy corresponding # is convex forcy, a given datay, the concavity of®.(x) reduces as decreases
then the relaxed energy corresponding4p = k.4 is convex toward zero and that, for some the relaxed energy becomes
for k2 co. unimodal; for another datg this value would be different.

Remark 4—Necessary Conditioithe convexity condition Such an algorithm will be efficient for some data and it will
(19) issufficient It is alsonecessaryf the maximum concavity fail for others.
is reachable, i.e., if equality can be reached in (20). The latterin order to guarantee the uniqueness of the initial solution
occurs whenever a directiom exists, such that for AT A singular, we construct @oubly relaxed posterior
energy&,, .(x). An auxiliary convex term is appended at the
earliest stage of the GNC optimization and it is relaxed to

i.e., v must be simultaneously an eigenvector 4f A for Ze€ro afterward, as follows:

v & (x)v > 0.

From Lemma 1, it is sufficient to ensure convexity ..
Consider the second derivative &atc W, along an arbitrary
directionv. From the Rayleigh—Ritz theorem [22f AT Av >
pmin|[v||? and v DT Dy < vyax||v]|?, SO that

||~A”||2 = liminH”H2 and ||D”||2 = VmatX”””2

[min, @nd an eigenvector 6PTD for vy, The latter re- Ea o(@) = || Az — 9|2 + @0 (), (21)

quirement is trivially satisfied wheml = I, since any vector ’ B ’ 5 27

in R™ is an eigenvector of for the eigenvalue one. o, (2) = { 2}: [be(ti,5) +ati ;] (22)
i,j}EC

C. lll-Posed Problem From (10), piecewise concavity @f.(¢) can be easily com-

2 : : 1
When AT A is singular, (19) is not applicable. The next thePensated byit*, so that&,, .,(x) is convexif ag > 3co. In

orem properly treats (A1) although it is a direct consequene following, we notec., = &,

of the previous Theorem 2. In order to bring the next stage back to standard GNC, we
Theorem 3—Singular Operatortf .AT.A is singular (i.e., first relax a from ag to 0, ¢ = ¢o remaining constant, and

jmin = 0) and ketATA) is strictly larger than Spgi}, afterward we relax: alone:

then¥ ¢ > 0 there existsr, such thatf.(z) is locally strictly ~ ® ¢ = co (fixed), fo”}(j )aov 0

nonconvex. ) = arg miny, iz ) oy e (F)
Proof: Takew € ker(ATA), v ¢ Spa1} andz € W.. e q =0 (fixed), forc=cg,:--, 0o

Thenv? € (z)v = —cv? DT Dw < 0, which means thaf,.(x) &) = arg Wity o] S (x).

is locally strictly concave iV, alongw. A

) ) . 23

The main consequence of this theorem is that whenever (23)

AT Ais singular, convexitccannotbe reached bynly reduc- When A is ill-conditioned and nonsingula&.(z) (12) is
ing c. convex foreg close to zero. In this case, the early intermediate
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(@) (b)

Fig. 2. Nonconvex functionyf(t) = (at — y)? + &(t), wherea = 0.8, o = 8, A = 2.4. Fory = 1, f(¢) is unimodal—f'(t) = 0 has a unique
solution—while fory = 2.5, f(¢) is bimodal, i.e.,f’(t) = 0 admits three solutions.

solutions are very unstable while their calculation is extremelyhich any intermediate solution is ultimate, according to the

slow and precision-sensitiv€ (x) has almost flat regions]. As following result.

long as the GNC progresses, intermediate solutions becom@roposition 2—Classification BoundThere exists a finite

stable and the ultimate solution is often quite satisfactory. Thiglue c = {(A; A) < oo for which all the minima of&, (),

fact shows the practical robustness of the GNC approach. Né&eal and global, are classified.

ertheless, the auxiliary term improves numerical efficiency: Since is finite, the algorithm will actually stop within a

expensive minimizations over almost flat regions are avoiddihite number of iterations. On the other hand, classification

Moreover, it generally leads to better reconstructions, aspsovides a convenient stopping rule which, according to prac-

shown in Section VIII. tical experiments, applies far befofes reached, so the latter
needs not be computed.

VIl. EVOLUTION OF THE SOLUTION B. Scale Considerations

The whole relaxation sequence, and not just the bound
A. Stopping Rule ¢, must account for the observation operator and its scale.
. : _ .Consider (1) and its-scaledcopy y, = sy = A;x + ng,
Let us examine the evolution of a GNC solution, as lai here A, — sA andm, = sn. In order to yield the same

dovx{n n (23), whena and c evolve very slowly. A.t the scale-invariant solution frong andy,, the s-scaled estimator
beginninge = ¢y, a # 0 and because of the quadratic term, S ) . :

. . s = arg min £(x; as, As, ¥, As) is parameterized by
transitions have small amplitudes. As long @sdecreases, o, ). It is calculated using am-scaled GNC relaxation
this constraint is suspended and transitions are allowed to gef’ ; ' et #@s) — gromin & (; s, A Ay)
larger. In the same time, classification regions (11) evolv%gcs 5 — g @5, 000\ T3 Aoy Aoy Ys As)s

] _ ) = arg min &, (; s, A5, Yy As)-
when ¢ increases, the undetermined zotfy., r.[ gets nar- Theorem 4—Observation Scal@he energies &, .(z)

rower, sinceqciT and 7.=7, so the undetermined region, 4 &4, o.(x) have the same local minim@E©®, £°] =
+[q., rc[ contains less and less transitions until the soluti%(as) ;;(ci)] if and only if (\,, a,) = (s) s?a) and
becomes entirely classified. ' 7 ’

Definition 1—Classified SolutionAn intermediate solution

20 ini i f el i i

:?c h a local rgwmur_n O(;gc(x) 1S cal!edc!?sgflgdw.r.t. ¢ One consequence of practical importance is that the relax-
if it has no undetermined transitions, i.e., if €ither;| < . ation sequence should be coarser for an amplified observation
or |ti,j| = e, V{i, 5} € C. %s > 1) and finer for an attenuated ofe < 1). Alternatively,

The following two properties ShQW that cIaSS|f_|(.;at|on IS Aormalization of (1) also provides the proper scale invariance.
permanent state and that the solution gets classifiedirfite

values ofc (proofs are given in the Appendix).
Proposition 1—Ultimate SolutionAny classified solution
£ is ultimatein the sense that it remains unchanged if the The initial convexified potential involved in (22) reads
GNC continues to run for > £. be, (t) + aot?, Whereag > co/2 is a sufficient condition of
This yields an extremely simplstopping rule if the cur- convexity. Clearly, choosing values af, much greater than
rent intermediate solution does not contain any undeterminagf2 would not be judicious. On the other hand, = ¢¢/2
transition, it is ultimate. does not ensure that initial strict convexity be reached. A more
In practice, a ultimate solutick®) depends o4, y, (o, A), cautious choice is to take, = co/1.9, for instance.
but also on(ax, cx)r>o. Different relaxation sequences may As regards the selection of the remaining parametgr
provide different ultimate solutions which are local minima othe choice remains free of any mathematical constraint. It
E(x). On the other hand, there existsfinite value of ¢ for is rather a question of qualitative reasoning and practical

(as, cs) = (s%a, s*c). In fact, &,, .. (z) = s?&,,.(z) when
the theorem applies.

C. Relaxation
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experience. As a matter of fact, the final solution seems to

be very robust with respect to the value @f Accordingly,

co =~ 0.25]|A||r/|I||F = 0.25||A||r/M empirically appears

to be sound |[.A||» denotes the Frobenius norm gf). Two

points are in favor of this choice. On one hand, it accounts

for the scale of observation, according to Theorem 4. On the

other hand, in the casd = I, ¢p = 0.25 is the original value

proposed by Blake and Zisserman [4]. In the general case, our

choice stems from the fact that the norm.éfis also the sum

of its M singular values, so the value 0.25 will be the average

quantity of theM distinct values obtained along the proper ~0. 5

directions. ‘ horizontal spat. freg.
During the very early stages of the GNE, ., (x) has

only a few local minima and the form ofa)i>0 is not

crucial; we relaxa linearly in several steps. The choice of

the relaxation schedule fot is guided by the following 0

experimental observations. 10}

1) Although a dense relaxation sequence does not guarantee -20
attainment of the global minimum, it generally leads to 30
a deeper minimum of (x) than a coarser relaxation.

2) Large transitions are classified during the early stages of
the GNC and they constitute important features of the
object; details are classified later. |

3) The number of classification decisions decreases avith =76, 500 1000 1500 2000

These suggest to use relaxation sequences evolving slowly (@
in the beginning and faster later. Following [4], we used an
exponential relaxation sequence.

In the general context of linear ill-posed inverse problems,
it seems almost impossible to infer analytical properties of
the extended GNC. Instead, we provide numerical results to
demonstrate its practical robustness and efficiency.

0.5

vertical spat. freq.
=)

VIIl. RECONSTRUCTIONRESULTS

In transmission diffraction tomography, the cross section of
an objectz (a cross section of the distribution of the relative
propagation constant in the body) has to be recovered from
some transmitted diffraction field dagg[26]. In our example,

a 48 x 48 [Fig. 3(c)] object reflects 12 sets of measures
(projections) obtained by illumination of the object from 12
different directions in the range @8, 2] radians. Under the
standard Born approximation, the observation model linearly
relates the 1-D Fourier transform of each set of measures to
the 2-D Fourier transform of the object, calculated along a
half-circle in the frequency domain [26]. The repartition of
data points in the Fourier domain [Fig. 3(a)] is very irregular,
so the inverse problem is ill posed, as is demonstrated by
singular value decomposition (SVD) a#i”.4 [Fig. 3(b)].
Noisy measurements have been simulated with signal-to-noise

ratios (SNR’s) of 20 and 10 dB (Fig. 4) using a normalized ©
observation operator. Fig. 3. (a) 12x 48 data points in the Fourier domain. (b) Log of the SVD

7 e dd
It is easy to see that both difficulties (A1) and (A2) arise iI(‘)lf A" A. (e) Original image.

such a context. This explains why nonconvex regularizati%rgjlu,[ion:Ac minimizes MAP energieg(z) of the form
has been scarcely resorted to. We compare the reconstructions
obtained with the proposed method to those yielded by dif- G(x) = Az —y|> +7 ) $(Dcx) (24)
ferent convex regularization methods. In the latter cases, the cec
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@ (b)
Fig. 4. (a) Noisy data with 20 dB SNR: real and imaginary parts. (b) Data with 10 dB SNR: real and imaginary parts.

@ (b)
Fig. 5. Reconstruction using a Gaussian MRF from the data shown in Fig. 4: (a) 20 dBySNR),08. (b) 10 dB SNR;y = 0.14.

where(t) is convex Standard descent algorithms have bed(frig. 6). In the first case, the solution is stable for a smaller

used for the minimization. than in the second case, where transitions tend to be smooth.
Generalized Gaussian&G's) [7] are defined by)(t) = Sharp transitions are preserved much better with 1.1 than

[t|P, wherel < p < 2 controls smoothing. The prior is awith p = 2.

Gaussian MRF whep = 2 and it cancels noise at the expense The Huber function[23] is quadratic near the origin and

of over-smoothing the edges (Fig. 5). Subsequently, GG’s widlffine beyond it:4(t) = 2 — (Jt| — §)%1(|t| > §). It

p = 1.1 were introduced, and the 20 dB SNR and 10 dB SNBmoothes small transitions while it adds a constant bias to

data were processed with= 0.03 and~ = 0.07, respectively, large transitions. The solutions at 20 and 10 dB SNR have been
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@ (b)
Fig. 6. Reconstruction using a GG with= 1.1 from the data in Fig. 4. (a) 20 dB SNR, = 0.03. (b) 10 dB SNR;y = 0.07.

parameterized by, 6) = (0.03, 10) and(v, §) = (0.05, 15), justifies our extended approach, as regards both quality and
respectively (Fig. 7). Evidently, the Huber function allows theomputational cost. Yet, the globally correct appearance of
reconstruction of slightly sharper transitions than GG’s witRig. 8(b), except for a few aberrant pixels, points to a no-
p = 1.1. ticeable robustness of the GNC approach w.r.t. initialization.
In contrast, the PG MRF solution (Fig. 8) provides an excelFhis solution remains clearly worse w.r.t. to the solution
lent reconstruction of both contours and smooth regions. At #0 Fig. 8(b). The robustness of the GNC, even improperly
dB SNR, data were processed usifig ) = (0.035, 0.94). applied, is seen to be noticeable.
Smooth variations in the center of the object are also well In comparison, the initial solution of the doubly relaxed
reconstructed. At 10 dB SNR, the solution was calculatéeNC, obtained from the same data set with 10 dB SNR
for (a, \) = (0.06, 1.97) and homogeneous regions are moré-ig. 10), is stable, with edges preserved. This solution is
strongly smoothed. In both cases, very similar solutions weséhilar to the reconstructions using the Huber function and
obtained over a set of variations of the model parametef@G With p = 1.1. The intermediate solution corresponding to

The relaxation wagao, a1, a2) = (0.13,0.7,0) and¢;, = (@ =0, co) is a slightly improved version of the initial one.

0.25¢02k | > 0. Recall that the ultimate solution was presented in Fig. 8(b).
The calculation cost of the initial solution is in fact the cost

of the minimization of a convex energy. The latter is well IX. CONCLUDING REMARKS

known to be closely related to the descent algorithm beingMAP estimation using PG MRF's favors the reconstruction
used, the conditioning oft and the model parametefs, A). of piecewise homogeneous objects, a challenge faced in a
The subsequent minimizations are only local, and their costigoad set of practical situations. However, the optimal solution
much smaller, decreasing with the relaxation. appears as the global minimum of a multimodal energy.
The initial and the ultimate solutions, obtained using Following [4] in the field of segmentation, we adopted such
proper GNC (without auxiliary relaxation) from the 10 dBmodels and we extended the graduated nonconvexity (GNC)
SNR data set, are presented in Fig. 9. The initial soluticgpproach to the resolution of general linear ill-posed inverse
corresponds tay = 1072 and it is almost unregularized. problems.
Moreover, its calculation involves minimization over almost Two specific problems were encountered, namely, i) the
flat regions, which considerably increases the calculation costise of a singular or ill-conditioned general form observation
Some artifacts remain in the ultimate solution. This practicallyperator, and ii) the case where the support of the operator is
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() (b)

Fig. 7. Reconstruction from noisy data (Fig. 4) using a regularization with a Huber function. (a) 20 dB~SNR0.03, § = 10. (b) 10 dB SNR,
v = 0.05,6 = 15.

large. The latter makes the standard SA approach intractab& C; be the set of cliques to which the pixelcontributes.
[39]. To support this fact, a new expression of the posteridihe posterior neighborhood of the pixels composed of all
neighborhood system was provided, available for nonsymméte pixels; involved in the calculation of the conditional law

rical linear operators. plxilz;, 5 € S\ {4}, y). It reads
It was shown that the original GNC algorithm does not plzile;, § € S\ {i}, v)

properly apply to ill-posed problems. We dealt with this dif- e ’

ficulty by developing out new theoretical and practical results - p(zly)

concerning GNC. A new modified version was proposed to p(zj, 5 € S\{i}ly)

cope with the ill-posed case. y
Several reconstruction methods were compared in the con- xexp |— Y do(z) — Az —y|?|.

cce;

text of synthetic noisy diffraction tomography data. The suc-
cess of GNC as an edge-recovering method was apparent wharthermore||.4z —y||> can be developed as a partial function

compared to tractable (convex) alternatives. of z;
2
APPENDIX Az =yl =D wnar —y
kcs
Proof of Theorem 1—Posterior Neighborhootdhe theo- 62 T
rem obviously holds for any prior neighborhood systex) ( = llgll” + Z wray, (Trar — 2y)
and is independent of the form of the potential functions. kes
Within this proof, a potential function on the cliqué is + Z a:ja]T Z Trak
simply noted ¢c(x). For the PG MRF,C = {i, j} and JES\{i} keS\{i, j}
pc(x) = P(ti, ;) + z;ar Z T
! AL kAL -
The posterior law reads Kesvii)
The indices of the pixels multiplying; in the data fidelity term
plaly) xexp | = > ¢c(w) — || Az —y|*|. are included in the last term of this sum. It shows that the pixel

cec i interacts with any other pixet provided thata! a;, # 0.
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1.

(@)

Fig. 8. Reconstruction from noisy data (Fig. 4) using a PG MRF prior and the proposed GNC algorithm. (a) 20 dBaSMNR,=

(b) 10 dB SNR,(a, A) = (0.06, 1.97), in which case = 117.96.

Proof of Proposition 1—Ultimate SolutionSince ¢ is
classified, its transitions verify

elther|t(5)| < g Of |t(5)| > e, v{i,jtecC. (25
According to (10),r. decreases ang. increases withc:
ge < gc andrg > 7, Ve & (26)

It follows that #(¢) remains classified w.r.¥ ¢ > &.

Let us show that it is also a local minimum éf(x) for
c > &

(&) = |42 —ylP + D {MESPPUIES] < o
{i,jrec
+ad[[f) 2y, e>&

Since, from (26)]l[|t(5)| < g = ]l[|t(5)| < ge] for ¢ > ¢,
the energy€.(&(€)) is locally independenof ¢. Sincez(®) is
a local minimum of& (), it remains a minimum of.(x)
for ¢ > ¢.

Proof of Proposition 2—Classification Boundthis proof
consists of the determination @f for signals (1-D) and for

images (2-D). Indeed; is a limit, independent of the data,

beyond which the relaxed energ§.(x) becomes strictly

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 4, APRIL 1998

(b)
(0.035, 0.94).

concave overt[q., r.[*. Since no minimum can lie in a
concave region, there cannot be undetermined transitions for
any ¢ > ¢. The derivation is performed in two steps. First, the
energiesé, .(z) are restated as functions of the transitions
only. Then, a value of is sought such that the relaxed energy
is concave everywhere in the undetermined=sgt., [
Slgnals Let s, be the mean of the columns of: s, =
(1/M)Z L a;. Let D be as defined in Section V-A ang
be theM x M extended invertible difference operator which
transformse into the set of transitions and the negative sum
of its elementss, as follows:

‘ M
= L}, t = Dz, SI—ZQZZ‘.
=1

The relaxed posterior energy can be restated as

2 M-1

i) =7t = |4} -9 + 2w

A=AQ7 " =[ay, -

, @],

diIiSA— E a;, %
j=1

I].,---,M—]., (~LJ\4I—SA.
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(@ (b)

Fig. 9. Reconstruction using a PG MRF prior using improper GNC (without auxiliary relaxation) in the context of Fig. 8: data in Fig. 4(b) with 10
dB SNR and model paramete(sr, A) = (0.06, 1.97). (a) The initial solution is underregularized and extremely slow to compute. (b) The ultimate
solution is clearly a local minimum since its energy §s = 118.12.

F.(t), as a partial function of théh transition,t;, reads As a conclusion, for any, there remains no undetermined
o I, minimum along théth transition ifc > 2|a;||?. Then, the solu-
Fe(tis ty, j # 4 8) =t7]ail|” + 6P + Qi + ¢e(ti), tion is globally classified foe > ¢(A) = 2 maxy<;<ar |||
Images: Let z be an(m x n) image,mn = M. Let#] ;
Pi=Pilty, j #1,5) =2a | Y a;t; +aus—y denote a vertical transition ant} ; a horizontal transition,
J#i respectively, arranged in the vectdtsandt”. Let s* be the
2 vector with the negative sums of the columnsaofvhile s*
the vector with the negative sums of its rows. It is not difficult
i HeD 1, s ajt; +ans—y . > - . .
Q= Qulty, 71 ; ! M to determine the matrice§” and Q™ which furnish
. v h
+ Z d)c(tj) |:t :| be = 2)'1;.1;7 |:th:| — Qh.’l,', th — Dh.’[,'.
JF#T sY S
whereP; and Q; are independent of;. The relaxed posterior energy as a function of the vertical

At an extremurr(i, §), the differential SatiSfiepfc(i, §) = transitions reads
07. In particular,#; satisfies

v v tv v
0. Fe sy <[ L] o] + X e
or (B 8) = 2@l + Pald, 5 # 4, 3) + 9l(E) = 0. s 0 5t
If #; is undeterminedy!/(¢;) = —c and it can be a minimum + Z be <{Dh Q)” [tﬁ } )
only if (i rect 1)y
P (£ 3) =2||a;||*> —c>0. whereC? andC" mean, respectively, the subsets of the vertical

ot and the horizontal cliques;];, ; denotes the, j}th element.
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@

(b)

Fig. 10. Initial images of the reconstruction from 10 dB SNR data (Fig. 4). (a) The first image correspgnds ¢g), whereg., (t) + aot?. It is convex
and already edge preserving. (b) The intermediate solution correspor(ds %o 0, co).

The relaxed posterior energy as a partial functiort}of is
(Foi :tf%deJHQ +t P+ Qo)

m J
+ Z Z ¢[$l,p+l_$l,p

I=i+1 p=j—1

-1
+ Z (ﬂé,p—i—l - tz,p)]
k=1
where a; ; is a column of A(Q")~!; Py, and Q7 ; are
deduced analogously. A differen¢g ; contributes taf. via
several regularization functions. A transitidﬁ ; can be a
minimum if

P F,
= (2Mar I - e+ >0 9L]) > 0.
57
The upper bound af is, in this case¢ < 2||a; ;||* +4A\*(m —
i).
An equivalent form expresseg,. as a function of the

horizontal transitions which leads to a similar bound.
Finally, all the transitions of the image are classified for

C(A; X)) =284 +4)\2(m+n),
Ca = max[|@; ;11 {i, j} € C”, & ;|17 {4, j} €C].

Proof of Theorem 4—Observation Scaldccording to
(21) and (22), the intermediate solutions®, £(¥)] and
[£(2s), ()] verify, respectively,

20 AT A+ DO, () =2¢y" A,
220t ATA+ DO, .. (x) =s*2yT A

These two systems of nonlinear equations have the
same set of solutionsy (A, y, o, A, a, s), if and only

if D®,, . (z) = s*D®,, .(x), which reduces ta,t? = s?at?

and ¢, (t; as,As) = s2¢.(t; o, A). The former furnishes

as = s2a. The latter can be developed as

(Ast)? = s2(At)2, if |t| < q.andt| < q.,

oy — e[t = ge.)?, if ¢. <t| <r.and
=8 a— et = a)’], g, St <re,

as = s2a, if |t| > r. and|t]| > r.,

which holds if and only ifA, = s\, s = s?a ande, = s%¢
(theng., = q. andr., = 7.).
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