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Abstract—We propose a method for the reconstruction of sig-
nals and images observedpartially through a linear operator with
a large support(e.g., a Fourier transform on a sparse set). This
inverse problem is ill-posed and we resolve it by incorporating the
prior information that the reconstructed objects are composed
of smooth regions separated by sharp transitions. This feature
is modeled by apiecewise Gaussian(PG) Markov random field
(MRF), known also as theweak-string in one dimension and the
weak-membranein two dimensions. The reconstruction is defined
as the maximum a posteriori estimate.

The prerequisite for the use of such a prior is the success of the
optimization stage. The posterior energy corresponding to a PG
MRF is generally multimodal and its minimization is particularly
problematic. In this context, general forms of simulated anneal-
ing rapidly become intractable when the observation operator
extends over a large support.

In this paper, global optimization is dealt with by extending
the graduated nonconvexity(GNC) algorithm to ill-posed linear
inverse problems. GNC has been pioneered by Blake and Zisser-
man in the field of image segmentation. The resulting algorithm
is mathematically suboptimal but it is seen to be very efficient
in practice. We show that the original GNC does not correctly
apply to ill-posed problems. Our extension is based on a proper
theoretical analysis, which provides further insight into the GNC.
The performance of the proposed algorithm is corroborated by a
synthetic example in the area of diffraction tomography.

Index Terms—Discontinuity recovery, GNC optimization, ill-
posed inverse problems, image reconstruction, MAP estimation,
MRF modeling, tomography.

I. INTRODUCTION

A. Background

M ANY physical experiments seek to map a real-valued
object from only partial observation through an imper-

fect measurement device. For our purposes, we consider the
very common case of a signal or an image(called object
in the following), observed through a linear operator, when
additive white Gaussian noise accounts for
uncertainties ( stands for the identity operator). The discrete
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form of such an observation model is

(1)

The unknown object is defined
on an -point lattice , either one-dimensional (1-D) or two-
dimensional (2-D). Data are assumed real for sake of
clarity; adaptation to the complex case is straightforward.

More specifically, our main concern will be to deal with the
conjunction of the following two acknowledged difficulties
concerning the observation operator

.

(A1) originates from an ill-posed continuous equation, so
it is either ill-conditioned,or singular with ,
or both.

(A2) is not sparse,i.e., itssupport,defined as supp
, is large: each datum results

from the contribution of many elements of the object,
even the entire object. In fact, under the Gaussian
observation model (1), it appears that supp
plays the essential role in the definition of posterior
contributions, rather than supp (see Section III).

Such a conjunction is a major practical issue for image
reconstruction, and also in many areas such as X-ray or
diffraction tomography (see Section VIII) [11], [21], [26],
radio-interferometry, synthetic aperture radar, geophysics [24],
[33], nondestructive evaluation [40], etc. Most of the observa-
tion operators involved in these applications present no special
structure favorable to be exploited numerically.

The reconstructionof from is an ill-posed inverse
problem [10], [37]. Its resolution relies onprior information
about . An important class of real-world objects are com-
posed of nearly homogeneous regions separated by edges:
such are the objects we are seeking to reconstruct. The
pioneering work of Geman and Geman [18] shows that such
objects may be well described bycoupledMarkov random
fields (MRF’s). The object is modeled as a random pair

consisting of anintensity process and an unobserv-
able process of line or label variables. Prior knowledge
about is conveyed by a coupled probability distribution

, where is the coupled
prior energy of and is the partition function. Among
several reasonable choices [2], the optimal reconstruction

is defined as the maximizer of the posterior distribution
or, equivalently, as the minimizer of the posterior
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energy . The first term—the
negative log-likelihood—accounts forfidelity to the data and
its form steers from the additive white Gaussian nature of the
noise, while the secondregularizesits minimization.

The posterior energy is nonconvex in and
has numerous local minima, soglobal optimization is arduous
if not impractical. Provided that supp is a reduced
set, it can be performed using simulated annealing (SA)
stochastic algorithms [18], [25]. Such a situation arises in
image segmentation, whereis diagonal, or in deconvolution
problems, when the blur spreads over a small window.

However, general forms of SA are intractable under (A1)
and (A2) [19], [39] andcoupledMRF’s have been used only
in severalspecialcases. In [12], an MRF with a label field is
used for the reconstruction of objects with axial symmetry
from X-ray tomography data. In this case supp is
“moderate” (supp is a “line” going through object )
and a local minimum is calculated using the iterated con-
ditional modes (ICM) algorithm. Recently, an efficient SA
optimization based on the fast Fourier transform (FFT) was
developed in the special case whenis shift-invariant [19]
and the line process noninteracting. A deterministic suboptimal
initialization-dependent version can be found in [9].

Instead, various methods giving rise toconvexoptimality
criteria are used in the context of (A1) and (A2).Analytic
methods(inverse filtering in signal and image restoration,
or backprojection and backpropagation in tomographic re-
construction, etc.), are computationally inexpensive, but they
break down in the presence of noise [11], [26].Maximum
entropy methods can be very efficient for images with a
spiky appearance over a homogeneous background [13], [27].
Gaussian MRF’sgive rise to linear estimators, but the basic
homogeneous Gaussian MRF’s are well known to allow noise
cancellation only at the expense of oversmoothing the object
[35], [40]. Generalized Gaussian (GG) MRF’s[7] preserve
edges better while maintaining convex energies. In the same
way, other useful MRF’s weight the differences between
neighbors using aHuber functionor a log-coshfunction [20].
A discrepancy measure on neighbors was introduced in [32]
in order to model correlations in positive objects. However,
none of these priors can give rise tomaximum a posteriori
(MAP) estimators truly accounting for the presence of both
homogeneous parts and edges in the object.

In this paper, we focus on pairwise interactionpiecewise
Gaussian MRF’s(PG MRF’s) with anoninteractingBoolean
line process . This is one of the most common and simple
models involving a line process, and it is often used in
image processing for the purposes of segmentation, noise
cancellation, interpolation [25]. In the field of computer vision,
weak strings (in one dimension) and weak membranes (in
two dimensions) [4], [8], [15], [29], [36] are widely spread
models whose energy can be identified to the negative log-
likelihood of PG MRF’s. A broader family of PG MRF’s
with a continuous-valued line process has been introduced by
Geman and Reynolds [17]. Given their duality results and fol-
lowing the lines of the present paper, it is realistic to consider
that “soft edges” can also be dealt with using GNC. Such an
extension is left for future works. A noninteracting line process

allows easy determination of .
The MAP estimate also minimizes the energy

, where is a truncated
quadratic function if is Boolean.

Our motivation to use this model is not only due to its
qualities, but also to the fact that an appealing algorithm
is available for the minimization of when :
the graduated nonconvexity algorithm(GNC), which was
proposed by Blake and Zisserman [4]. It is based on minimum
tracking by local descent along a family ofrelaxedenergies,
the first of which isconvexand the final is . It is a
suboptimal but practically very efficient algorithm.

B. Content of the Paper

Our paper provides an extension and a deepening of the
whole estimation-optimization approach developed by Blake
and Zisserman, in order to cope with (A1) and (A2). The PG
MRF is briefly presented in Section II. The MAP estimator
reads equivalently as the minimizer of the energy of inten-
sities only which is multimodal. The ability of various
global optimization techniques to cope with (A1) and (A2) is
analyzed in Section III.

The original GNC—as pioneered in [4] for the case
—is presented in Section IV. Its extension to arbitrary

needs further analysis and the relevant theoretical develop-
ments are given in Section V. Extending this GNC to arbitrary
well-conditioned observation operators is straightforward.
Such is not the case whenis ill conditioned or singular—the
main difference concerns the obtaining of an initial convex
energy, in which case we propose adoubly relaxed GNC
(Section VI). Several results concerning the evolution of the
solution are stated in Section VII. A criterion to recognize the
ultimate GNC solution is established and a simple stopping
rule is deduced. On the other hand, both solution and relaxation
are closely linked to thescaleof . General recommendations
about the relaxation are then presented.

By way of application, we present adiffraction tomogra-
phy synthetic example. Reconstruction results obtained using
various convex prior energies are compared to those obtained
using a PG MRF (Section VIII). Concluding remarks are given
in Section IX. Most of the proofs of the theorems and lemmas
in the paper are presented in the Appendix.

II. PIECEWISE GAUSSIAN MODEL AND MAP ESTIMATION

A. Coupled Prior

In the following, theory is formulated in 2-D for the four
nearest-neighbor case but its extension to other configurations
such as the 2-D eight nearest-neighbor case, 1-D signals
and three-dimensional (3-D) objects is straightforward. Let

be the integer grid corresponding
to the set of the sites of . We consider the four nearest-
neighborhood system corresponding to the set ofmaximal
second-order cliques: no maximal clique is a subset of a
strictly larger clique, so . A
binary 0-1 line variable is associated with each maximal
clique , in order to control its bonding strength. The
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(a) (b)

Fig. 1. (a) Truncated quadratic function�(t) as defined in (4) for(�; �) = (1; 0:6) (- -) and (�; �) = (1; 1:5) (—). (b) Relaxation of the truncated
quadratic function�c(t) given in (10): c = 0:2 (:), c = 2 (- -) and c = 1 (—).

coupled prior energy only involves the set oftransitions
and the corresponding s [4],

[18], as follows:

where is a potential function and are positive
parameters.

Remark 1: Prior energy does not derive from a nor-
malized probability measure onin , because the partition
function

is finite only for belonging to aboundedset in .
Nevertheless, thea posteriorimeasure is a proper probability
measure provided that is invertible. Otherwise, a further
examination may be necessary in order to verify whether the
MAP estimate is well defined. For instance, thea posteriori
measure is improper and the MAP solution is only defined up
to an arbitrary constant level when (

).

B. Optimal MAP Solution

The optimal solution pair is defined as the minimizer
of

where and , so that we have
. In the following, and

are denoted and . The model parameters play
a crucial role for the quality of the estimation. As regards their
selection, a detailed study is presented in [4] when .
When , a numerical method is proposed in [30] for 1-D
signals. We do not discuss this question in the present paper.

Because the line variables are noninteracting, for each
fixed, the optimal line process

reduces to minimization of each separatelyw.r.t.
[4]:

(2)

where means indicator function: if
and , otherwise. Knowing is equivalent
to knowing whether (pixels belong to the same
homogeneous zone) or (an edge separates them). Each
transition can beclassifiedas

continuous, if ,
discontinuous, if .

(3)

The line variables can be eliminated from the expression of
the MAP estimator

(4)

(5)

(6)

The resultant potential function in (4) is shown in
Fig. 1(a). The MAP energy depends on the intensity
process only, although its minimizer
yields the optimal line process using (2).

III. OPTIMIZATION CHALLENGE

The posterior energy (6) generally exhibits many local
minima and the calculation of the global minimum is a
difficult optimization task. It is often encountered in image
processing where different techniques, either stochastic or
deterministic, are developed. In this section, such methods are
briefly reviewed and possible extensions are discussed.

A. Posterior Neighborhood and Simulated Annealing

Since [18], the most popular algorithm for the minimization
of MRF posterior energies remainssimulated annealing: it is a
stochastic algorithm, providing asymptotic weak convergence
toward the set of the global minima. Let
be a sequence of temperatures, decreasing from an initial
high value to zero. To each temperatureis associated a
Gibbs measure . Let be the
sequence of visits of the sites of. At the th step, and
the object is obtained from by updating only the
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element to the value which is obtained from the posterior
conditional distribution using Gibbs sampling [18], as follows:

(7)

In order to perform a general form of such a SA optimization,
it is necessary to determine the structure of the posterior
neighborhood . Each depends jointly on and on
the support of . In [18], this link has been established for
operators which can be linear or nonlinear but with a shift-
invariant symmetric support (typically, when represents a
blur kernel). For linear operators withirregular supports, the
following theorem states a general formula with no restriction
on ; its proof is given in the Appendix.

Theorem 1—Posterior Neighborhood:Let be the neigh-
bors of in the prior; then the set of neighbors of in the
posterior distribution is given by

such that

such that supp

where is the set of the neighbors ofdue to .
Numerical efficiency of standard SA directly depends on

the evaluation cost of (7) and hence on the size of .
Recently, a new implementation of SA has been proposed
for shift-invariant observation operators and Markovian priors
with a noninteractingline process [19]. It is based on global
updates using FFT’s rather than on local updates, so that its
applicability no more depends on the size of supp . On
the other hand, shift invariance yields a specific block-circulant
structure for matrix , and the new SA form is only relevant
in this context. Unfortunately, most of the reconstruction
problems give rise to spatially variant operators (e.g., when
projection arrays do not circularly surround the object). In
the example treated in Section VIII, is shift-variant and the
interactions in the posterior distribution areglobal: ,

. In such a case, both forms of SA remain intractable.

B. Deterministic Surrogates

Where SA proves to be too costly, several deterministic
suboptimal strategies have been proposed. Let us examine the
main possibilities available for PG MRF’s.

Iterated conditional modes(ICM) [1] locally maximizes
by iterative maximization of (7), but the solution

strongly depends on initialization and scanning order.
Multiresolution or multigrid decompositions can partly cope

the problem, since it is expected that MAP energies present
fewer local minima at coarse scales. So MAP energies are
constructed at an increasing scale, and each energy is locally
minimized in the vicinity of the previously obtained solution
[4], [6].

In [8], a variational calculus-based technique for 1-D sig-
nals is proposed. Since, for distant edges, optimal points for
edge location locally maximize the gradient, an alternating
estimation-detection procedure is proposed. It can be very

unstable in the presence of noise and close edges, and when
is ill-conditioned.
On the other hand, several types of methods resort to the

continuation principle [31], [38]. To our knowledge, all of
them have been proposed in the context of a well-posed,
pointwise observation operator. In themean-field annealing
(MFA) framework [3], [15], [16], [34], the line process is
replaced by its mean at a varying temperature, so

. Local minimization of the resulting sequence of
approximated energies leads to the MFA solution as a local
minimum of . GNC [4] andsimulated tearing[14] are more
directly built on thecontinuationprinciple. We focus now on
GNC.

IV. ORIGINAL GRADUATED NONCONVEXITY:

Except for additional notation, this section is only a brief
summary of [4]. The GNC algorithm was initially proposed
by Blake and Zisserman [4] for the global minimization of

(8)

for the purpose of segmentation or noise cancellation. Global
minimization is substituted for a sequence oflocal mini-
mizations (performed by a descent algorithm) of continuously
differentiablerelaxed energies starting from aconvex
relaxed energy and converging toward the original
energy as follows:

is the relaxation parameter and is an increasing
relaxation sequence.

In the following, denotes any local minimum while is
reserved for global minima. Let be the unique minimizer
of . For each , an intermediate solution
is calculated by minimizing locally, starting from the
previously obtained :

where stands for the attraction valley of.
Whenever unambiguous, we write for . Since the

first term in (8) is already convex and twice continuously
differentiable, can be written in the form

(9)

The concavity of the relaxed prior energy results from
the concavity of each relaxed potential . The latter
can easily be controlled by fitting quadratic splines in the
neighborhood of [see Fig. 1(b)] as follows:

if
if
if

(10)
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Then for and , , so the
concavity of can be reduced arbitrarily. In this way a
new auxiliary state has been introduced into the classification
(3), i.e., w.r.t. the relaxation parameter, a transition is called

continuous, if
undetermined, if
discontinuous, if

(11)

The relaxed energy is convex on when even the
maximum concavity of is compensated by the convexity
of the data-fidelity term. The value at which this occurs
[ convex for ] can be found by checking whether
the Hessian matrix of , denoted , is positive definite

[22]. From such considerations, Blake and Zisserman [4]
are driven to for a signal and for an
image, when .

There is no general mathematical proof of convergence of
the ultimate GNC solution toward the global minimum

for a general nonconvex energy . However, Blake and
Zisserman have analytically shown global convergence for
importantspecial cases. Moreover, its practical convergence
in various situations is corroborated numerically [4], [5].

V. GENERAL CONDITIONS FOR INITIAL CONVEXITY

For an observation operator which is no longer identity,
application of GNC is not very sensitive to (A2), since it only
makes use of standard descent algorithms. On the other hand,
conditions for initial convexity of the relaxed energy

(12)

become more subtle depending on (A1). Whenever is
full-rank, admits convex elements. When is
singular, the data fidelity term is completely flat in affine
subspaces parallel to ker , so the concavity of
cannot be compensated.

Let us examine the full-rank case first. The Hessian matrix
of at reads

(13)

where stands for the Hessian
matrix of any term of energy , by a slight abuse of
notation. Nonzero entries of read

if
if

if (14)

(15)

Let be the difference operator which provides the set
of transitions involved in . More precisely, if is a
signal, is a Toëplitz matrix whose first
row is , while if is an image, is the
concatenation of the operators calculating the sets of vertical
and horizontal transitions. The second-order difference oper-
ator is nonnegative definite: its unique null eigenvalue
corresponds to constant objects .

A. The Maximal Concavity Set

If all transitions of were continuous ,
(e.g., take const.), then . Conversely,

if all transitions were undetermined , then
. Let be the set of suchworst objects

w.r.t. maximal concavity:

such that

(16)

Lemma 1—The Worst Case:Let be as defined in (16).
If is convex for any in , then it is convex for any

in .
Proof: The second derivative of at an arbitrary

point , along an arbitrary direction is

(17)

The regularization part of (17) reads

(18)

where the second sum accounts for (14). On the other hand,
(15) implies

so that (18) also reads

From (14), can only take its value from the set
, so

which provides the desired result.
So we can find an initial convex approximation by

ensuring its convexity in . However, it is important to know
whether this worst situation can really occur in practice.

Lemma 2—Worst Case Occurrences:For each finite, the
set in (16) is not empty.

Proof: For any objects in , all differences fulfill
. The latter interval becomes narrower as

increases, , but , . In one
dimension, a signal such as remains in

. In two dimensions, take an image such as the symmetric
Toëplitz matrix whose first row is .

B. Convexity for a Well-Posed Problem

The following convexity condition generalizes the one given
in [4] for .
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Theorem 2—Convexity in the Invertible Case:Let be
the smallest eigenvalue of and the largest eigen-
value of . Suppose [i.e., rank ].
Then

is convex if (19)

Proof: The proof is based upon the well known result in
differential calculus that —a twice differentiable func-
tion—is convex if and only if its Hessian in
(13) is nonnegative definite [22]; i.e., at each point

and along each direction :

From Lemma 1, it is sufficient to ensure convexity in .
Consider the second derivative at along an arbitrary
direction . From the Rayleigh–Ritz theorem [22],

and , so that

(20)

If , then and
.

Remark 2: Observe that is nearly circulant and recall
that the eigenvalues of a circulant matrix are the magnitudes of
the discrete Fourier transform (DFT) of any row of it. Thus,

for a signal and for an image in the
four-nearest neighbors case [4].

Remark 3—Scale of the Operator:Inequality (19) high-
lights the crucial role of thescaleof the observation operator.
If the relaxed energy corresponding to is convex for ,
then the relaxed energy corresponding to is convex
for .

Remark 4—Necessary Condition:The convexity condition
(19) issufficient. It is alsonecessaryif the maximum concavity
is reachable, i.e., if equality can be reached in (20). The latter
occurs whenever a direction exists, such that

and

i.e., must be simultaneously an eigenvector of for
, and an eigenvector of for . The latter re-

quirement is trivially satisfied when , since any vector
in is an eigenvector of for the eigenvalue one.

C. Ill-Posed Problem

When is singular, (19) is not applicable. The next the-
orem properly treats (A1) although it is a direct consequence
of the previous Theorem 2.

Theorem 3—Singular Operator:If is singular (i.e.,
) and ker is strictly larger than Span ,

then there exists , such that is locally strictly
nonconvex.

Proof: Take , Span and .
Then , which means that
is locally strictly concave in along .

The main consequence of this theorem is that whenever
is singular, convexitycannotbe reached byonly reduc-

ing .

Remark 5—Ill-Conditioned Nonsingular Operator:When
is not singular but is still ill-conditioned, its smallest

eigenvalue is . Hence, the largest satisfying
(19) is ; then has almost flat regions, where
its minimization is extremely difficult and can even fail.
Numerically, the ill-conditioned case should be treated as the
singular case.

VI. GNC FOR AN ILL-POSED PROBLEM

Blake and Zisserman [4] stressed that (standard) GNC
cannot be applied for the processing ofsparse data( is
diagonal with one and zero along its diagonal, so it is singular).
Instead, they recommend that sparse data first be converted to
dense using a “continuous membrane” [ in (4)] before
starting a (standard) GNC (9).

In [28] and [33] GNC was applied—with some apparent
success—to the resolution of ill-posed linear inverse problems,
with no explicit care of initial convexity. The regularizing
function was relaxed according to

. It is straightforward to show that maximum
concavity is , and that initial convexity occurs for

in the invertible case. According
to Theorem 2, convexity can be reached even in the ill-
posed case, provided that is not singular. However, the
resulting value of is very close to zero, which provides an
unacceptable nearly unregularized initial solution (e.g., Fig. 8).

On the other hand, even an “improper” could provide
a unimodal initial relaxed energy since a function can be
unimodal without being convex (Fig. 2). We can guess that for
a given data , the concavity of reduces as decreases
toward zero and that, for some, the relaxed energy becomes
unimodal; for another data this value would be different.
Such an algorithm will be efficient for some data and it will
fail for others.

In order to guarantee the uniqueness of the initial solution
for singular, we construct adoubly relaxed posterior
energy . An auxiliary convex term is appended at the
earliest stage of the GNC optimization and it is relaxed to
zero afterward, as follows:

(21)

(22)

From (10), piecewise concavity of can be easily com-
pensated by , so that is convexif . In
the following, we note .

In order to bring the next stage back to standard GNC, we
first relax from to 0, remaining constant, and
afterward we relax alone:

(fixed), for

(fixed) for

(23)

When is ill-conditioned and nonsingular, (12) is
convex for close to zero. In this case, the early intermediate
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(a) (b)

Fig. 2. Nonconvex function:f(t) = (at � y)2 + �(t), wherea = 0:8, � = 8, � = 2:4. For y = 1, f(t) is unimodal—f 0(t) = 0 has a unique
solution—while for y = 2:5, f(t) is bimodal, i.e.,f 0(t) = 0 admits three solutions.

solutions are very unstable while their calculation is extremely
slow and precision-sensitive [ has almost flat regions]. As
long as the GNC progresses, intermediate solutions become
stable and the ultimate solution is often quite satisfactory. This
fact shows the practical robustness of the GNC approach. Nev-
ertheless, the auxiliary term improves numerical efficiency:
expensive minimizations over almost flat regions are avoided.
Moreover, it generally leads to better reconstructions, as is
shown in Section VIII.

VII. EVOLUTION OF THE SOLUTION

A. Stopping Rule

Let us examine the evolution of a GNC solution, as laid
down in (23), when and evolve very slowly. At the
beginning , and because of the quadratic term,
transitions have small amplitudes. As long asdecreases,
this constraint is suspended and transitions are allowed to get
larger. In the same time, classification regions (11) evolve:
when increases, the undetermined zone gets nar-
rower, since and , so the undetermined region

contains less and less transitions until the solution
becomes entirely classified.

Definition 1—Classified Solution:An intermediate solution
—a local minimum of —is calledclassifiedw.r.t.

if it has no undetermined transitions, i.e., if either
or .

The following two properties show that classification is a
permanent state and that the solution gets classified forfinite
values of (proofs are given in the Appendix).

Proposition 1—Ultimate Solution:Any classified solution
is ultimate in the sense that it remains unchanged if the

GNC continues to run for .
This yields an extremely simplestopping rule: if the cur-

rent intermediate solution does not contain any undetermined
transition, it is ultimate.

In practice, a ultimate solution depends on , , ,
but also on . Different relaxation sequences may
provide different ultimate solutions which are local minima of

. On the other hand, there exists afinite value of for

which any intermediate solution is ultimate, according to the
following result.

Proposition 2—Classification Bound:There exists a finite
value for which all the minima of ,
local and global, are classified.

Since is finite, the algorithm will actually stop within a
finite number of iterations. On the other hand, classification
provides a convenient stopping rule which, according to prac-
tical experiments, applies far beforeis reached, so the latter
needs not be computed.

B. Scale Considerations

The whole relaxation sequence, and not just the bound
, must account for the observation operator and its scale.

Consider (1) and its -scaledcopy ,
where and . In order to yield the same
scale-invariant solution from and , the -scaled estimator

is parameterized by
. It is calculated using an-scaled GNC relaxation

with : ,
.

Theorem 4—Observation Scale:The energies
and have the same local minima

if and only if and
. In fact, when

the theorem applies.
One consequence of practical importance is that the relax-

ation sequence should be coarser for an amplified observation
and finer for an attenuated one . Alternatively,

normalization of (1) also provides the proper scale invariance.

C. Relaxation

The initial convexified potential involved in (22) reads
, where is a sufficient condition of

convexity. Clearly, choosing values of much greater than
would not be judicious. On the other hand,

does not ensure that initial strict convexity be reached. A more
cautious choice is to take , for instance.

As regards the selection of the remaining parameter,
the choice remains free of any mathematical constraint. It
is rather a question of qualitative reasoning and practical
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experience. As a matter of fact, the final solution seems to
be very robust with respect to the value of. Accordingly,

empirically appears
to be sound ( denotes the Frobenius norm of). Two
points are in favor of this choice. On one hand, it accounts
for the scale of observation, according to Theorem 4. On the
other hand, in the case , is the original value
proposed by Blake and Zisserman [4]. In the general case, our
choice stems from the fact that the norm ofis also the sum
of its singular values, so the value 0.25 will be the average
quantity of the distinct values obtained along the proper
directions.

During the very early stages of the GNC, has
only a few local minima and the form of is not
crucial; we relax linearly in several steps. The choice of
the relaxation schedule for is guided by the following
experimental observations.

1) Although a dense relaxation sequence does not guarantee
attainment of the global minimum, it generally leads to
a deeper minimum of than a coarser relaxation.

2) Large transitions are classified during the early stages of
the GNC and they constitute important features of the
object; details are classified later.

3) The number of classification decisions decreases with.

These suggest to use relaxation sequences evolving slowly
in the beginning and faster later. Following [4], we used an
exponential relaxation sequence.

In the general context of linear ill-posed inverse problems,
it seems almost impossible to infer analytical properties of
the extended GNC. Instead, we provide numerical results to
demonstrate its practical robustness and efficiency.

VIII. R ECONSTRUCTIONRESULTS

In transmission diffraction tomography, the cross section of
an object (a cross section of the distribution of the relative
propagation constant in the body) has to be recovered from
some transmitted diffraction field data[26]. In our example,
a 48 48 [Fig. 3(c)] object reflects 12 sets of measures
(projections) obtained by illumination of the object from 12
different directions in the range of radians. Under the
standard Born approximation, the observation model linearly
relates the 1-D Fourier transform of each set of measures to
the 2-D Fourier transform of the object, calculated along a
half-circle in the frequency domain [26]. The repartition of
data points in the Fourier domain [Fig. 3(a)] is very irregular,
so the inverse problem is ill posed, as is demonstrated by
singular value decomposition (SVD) of [Fig. 3(b)].
Noisy measurements have been simulated with signal-to-noise
ratios (SNR’s) of 20 and 10 dB (Fig. 4) using a normalized
observation operator.

It is easy to see that both difficulties (A1) and (A2) arise in
such a context. This explains why nonconvex regularization
has been scarcely resorted to. We compare the reconstructions
obtained with the proposed method to those yielded by dif-
ferent convex regularization methods. In the latter cases, the

(a)

(b)

(c)

Fig. 3. (a) 12� 48 data points in the Fourier domain. (b) Log of the SVD
of ATA. (c) Original image.

solution minimizes MAP energies of the form

(24)
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(a) (b)

Fig. 4. (a) Noisy data with 20 dB SNR: real and imaginary parts. (b) Data with 10 dB SNR: real and imaginary parts.

(a) (b)

Fig. 5. Reconstruction using a Gaussian MRF from the data shown in Fig. 4: (a) 20 dB SNR,
 = 0:08. (b) 10 dB SNR,
 = 0:14.

where is convex. Standard descent algorithms have been
used for the minimization.

Generalized Gaussians(GG’s) [7] are defined by
, where controls smoothing. The prior is a

Gaussian MRF when and it cancels noise at the expense
of over-smoothing the edges (Fig. 5). Subsequently, GG’s with

were introduced, and the 20 dB SNR and 10 dB SNR
data were processed with and , respectively,

(Fig. 6). In the first case, the solution is stable for a smaller
than in the second case, where transitions tend to be smooth.
Sharp transitions are preserved much better with than
with .

The Huber function[23] is quadratic near the origin and
affine beyond it: . It
smoothes small transitions while it adds a constant bias to
large transitions. The solutions at 20 and 10 dB SNR have been
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(a) (b)

Fig. 6. Reconstruction using a GG withp = 1:1 from the data in Fig. 4. (a) 20 dB SNR,
 = 0:03. (b) 10 dB SNR,
 = 0:07.

parameterized by and ,
respectively (Fig. 7). Evidently, the Huber function allows the
reconstruction of slightly sharper transitions than GG’s with

.
In contrast, the PG MRF solution (Fig. 8) provides an excel-

lent reconstruction of both contours and smooth regions. At 20
dB SNR, data were processed using .
Smooth variations in the center of the object are also well
reconstructed. At 10 dB SNR, the solution was calculated
for and homogeneous regions are more
strongly smoothed. In both cases, very similar solutions were
obtained over a set of variations of the model parameters.
The relaxation was and

.
The calculation cost of the initial solution is in fact the cost

of the minimization of a convex energy. The latter is well
known to be closely related to the descent algorithm being
used, the conditioning of and the model parameters .
The subsequent minimizations are only local, and their cost is
much smaller, decreasing with the relaxation.

The initial and the ultimate solutions, obtained usingim-
proper GNC (without auxiliary relaxation) from the 10 dB
SNR data set, are presented in Fig. 9. The initial solution
corresponds to and it is almost unregularized.
Moreover, its calculation involves minimization over almost
flat regions, which considerably increases the calculation cost.
Some artifacts remain in the ultimate solution. This practically

justifies our extended approach, as regards both quality and
computational cost. Yet, the globally correct appearance of
Fig. 8(b), except for a few aberrant pixels, points to a no-
ticeable robustness of the GNC approach w.r.t. initialization.
This solution remains clearly worse w.r.t. to the solution
in Fig. 8(b). The robustness of the GNC, even improperly
applied, is seen to be noticeable.

In comparison, the initial solution of the doubly relaxed
GNC, obtained from the same data set with 10 dB SNR
(Fig. 10), is stable, with edges preserved. This solution is
similar to the reconstructions using the Huber function and
GG with . The intermediate solution corresponding to

is a slightly improved version of the initial one.
Recall that the ultimate solution was presented in Fig. 8(b).

IX. CONCLUDING REMARKS

MAP estimation using PG MRF’s favors the reconstruction
of piecewise homogeneous objects, a challenge faced in a
broad set of practical situations. However, the optimal solution
appears as the global minimum of a multimodal energy.
Following [4] in the field of segmentation, we adopted such
models and we extended the graduated nonconvexity (GNC)
approach to the resolution of general linear ill-posed inverse
problems.

Two specific problems were encountered, namely, i) the
case of a singular or ill-conditioned general form observation
operator, and ii) the case where the support of the operator is
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(a) (b)

Fig. 7. Reconstruction from noisy data (Fig. 4) using a regularization with a Huber function. (a) 20 dB SNR,
 = 0:03; � = 10. (b) 10 dB SNR,

 = 0:05; � = 15.

large. The latter makes the standard SA approach intractable
[39]. To support this fact, a new expression of the posterior
neighborhood system was provided, available for nonsymmet-
rical linear operators.

It was shown that the original GNC algorithm does not
properly apply to ill-posed problems. We dealt with this dif-
ficulty by developing out new theoretical and practical results
concerning GNC. A new modified version was proposed to
cope with the ill-posed case.

Several reconstruction methods were compared in the con-
text of synthetic noisy diffraction tomography data. The suc-
cess of GNC as an edge-recovering method was apparent when
compared to tractable (convex) alternatives.

APPENDIX

Proof of Theorem 1—Posterior Neighborhood:The theo-
rem obviously holds for any prior neighborhood system ()
and is independent of the form of the potential functions.
Within this proof, a potential function on the clique is
simply noted . For the PG MRF, and

.
The posterior law reads

Let be the set of cliques to which the pixelcontributes.
The posterior neighborhood of the pixelis composed of all
the pixels involved in the calculation of the conditional law

. It reads

Furthermore, can be developed as a partial function
of

The indices of the pixels multiplying in the data fidelity term
are included in the last term of this sum. It shows that the pixel

interacts with any other pixel provided that .
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(a) (b)

Fig. 8. Reconstruction from noisy data (Fig. 4) using a PG MRF prior and the proposed GNC algorithm. (a) 20 dB SNR,(�; �) = (0:035; 0:94).
(b) 10 dB SNR,(�; �) = (0:06; 1:97), in which caseE = 117:96.

Proof of Proposition 1—Ultimate Solution:Since is
classified, its transitions verify

either or (25)

According to (10), decreases and increases with :

and (26)

It follows that remains classified w.r.t. .
Let us show that it is also a local minimum of for

.

Since, from (26), for ,
the energy is locally independentof . Since is
a local minimum of , it remains a minimum of
for .

Proof of Proposition 2—Classification Bound:This proof
consists of the determination of for signals (1-D) and for
images (2-D). Indeed, is a limit, independent of the data,
beyond which the relaxed energy becomes strictly

concave over . Since no minimum can lie in a
concave region, there cannot be undetermined transitions for
any . The derivation is performed in two steps. First, the
energies are restated as functions of the transitions
only. Then, a value of is sought such that the relaxed energy
is concave everywhere in the undetermined set .

Signals: Let be the mean of the columns of:
. Let be as defined in Section V-A and

be the extended invertible difference operator which
transforms into the set of transitions and the negative sum
of its elements , as follows:

The relaxed posterior energy can be restated as
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(a) (b)

Fig. 9. Reconstruction using a PG MRF prior using improper GNC (without auxiliary relaxation) in the context of Fig. 8: data in Fig. 4(b) with 10
dB SNR and model parameters(�; �) = (0:06; 1:97). (a) The initial solution is underregularized and extremely slow to compute. (b) The ultimate
solution is clearly a local minimum since its energy isE = 118:12.

, as a partial function of theth transition, , reads

where and are independent of .
At an extremum , the differential satisfies
. In particular, satisfies

If is undetermined, and it can be a minimum
only if

As a conclusion, for any, there remains no undetermined
minimum along theth transition if . Then, the solu-
tion is globally classified for .

Images: Let be an image, . Let
denote a vertical transition and a horizontal transition,
respectively, arranged in the vectorsand . Let be the
vector with the negative sums of the columns ofwhile
the vector with the negative sums of its rows. It is not difficult
to determine the matrices and which furnish

The relaxed posterior energy as a function of the vertical
transitions reads

where and mean, respectively, the subsets of the vertical
and the horizontal cliques; denotes the th element.
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(a) (b)

Fig. 10. Initial images of the reconstruction from 10 dB SNR data (Fig. 4). (a) The first image corresponds to(a0; c0), where�c (t) + a0t
2. It is convex

and already edge preserving. (b) The intermediate solution corresponds to(a = 0; c0).

The relaxed posterior energy as a partial function of is

where is a column of ; and are
deduced analogously. A difference contributes to via
several regularization functions. A transition can be a
minimum if

The upper bound of is, in this case,

An equivalent form expresses as a function of the
horizontal transitions which leads to a similar bound.

Finally, all the transitions of the image are classified for

Proof of Theorem 4—Observation Scale:According to
(21) and (22), the intermediate solutions and

verify, respectively,

These two systems of nonlinear equations have the
same set of solutions, , if and only
if , which reduces to
and . The former furnishes

. The latter can be developed as

if and

if and

if and

which holds if and only if , and
(then and ).
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