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Markov Modeling for Bayesian Restoration
of Two-Dimensional Layered Structures

Jérome Idier and Yves Goussard

Abstract— Bayesian estimation of two-dimensional stratified

structures is described. The major point addressed here is the
derivation of a statistical prior model that adequately describes
such layered media. This problem is of interest in application
domains such as seismic exploration, nondestructive testing, and
medical imaging, where the data are generally processed in one
dimension only. In order to take local interactions into account,
a Markovian description is used. The model is derived so as
. to fulfill a set of constraints which summarize physical and
geometrical characteristics of the problem as well as practical
requirements. The approach adopted is reminiscent of the work of
Pickard. The resulting class of Markov random fields presents a
unilateral structure on a nonrectangular lattice and a hierarchical
organization which involves a line process. In addition, it is
shown to be an extension of one-dimensional models already
used in the application domains previously mentioned. After an
investigation of the properties of the model, its practical interest
is demonstrated by an application to seismic deconvolution.
Simulation results show significant improvements with respect
to the usual one-dimensional methods.

Index Terms— Markov random fields, unilateral processes,

' Pickard random fields, Bayesian estimation, modeling of stratified
media.

I. INTRODUCTION

N RECENT YEARS, the use of Markov random fields

(MRF’s) has raised considerable attention in the area of
image processing [1]-{4]. This interest stems from the fact
that MRF’s provide a general framework for specifying local
interactions, and can adequately model the inhomogeneous
structures encountered in many real world images. Several
Bayesian methods using MRF’s as priors have been pro-
posed for performing such tasks as reconstruction, restoration,
deconvolution, and segmentation of images.

Specification of adequate priors is also important in other
application fields such as geophysics, nondestructive testing,
and medical ultrasonic imaging. In these domains, a two-
dimensional (2-D) signal which often represents a stratified
structure has to be estimated. Accounting for the stratification
presents important difficulties and, to our knowledge, no
fully satisfactory answer has been given to this problem yet.
Existing estimation methods fall into two categories. The ones
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which rely on empirical 2-D treatments such as [5] or [6], and
the ones in which the 2-D stratified field is considered as a
juxtaposition of one-dimensional (1-D) signals perpendicular
to the general orientation of the layers. Methods of the
first kind present the disadvantage of questionable theoretical
properties. Among methods of the second kind, Mende¢l e al.
[71, [8], followed by others [9]}-[11], proposed and investigated
the properties of a Bayesian approach to seismic deconvolution
based upon a Bernoulli-Gaussian (B-G) description of 1-D
signals; interesting results were obtained. However, in this
approach, the 1-D signals are processed independently from
one another and these methods do not account for one of the
.major characteristic of a 2-D stratified field, i.e., continuity
of the layers or, equivalently, correlation between the 1-D
signals. This illustrates the inherent limits of 1-D methods
in 2-D problems and underlines the need for an adequate and
theoretically sound prior model of 2-D layered structures.

As the continuity of the layers is essentially a local charac-
teristic, Markov representations appear to be good candidates
for specifying this 2-D prior. The simplest MRF’s, e.g.,
homogeneous first- or second-order MRF’s, cannot provide an
adequate answer since they do not capture an essential property
of 2-D stratified fields, i.e., the presence of discontinuities
at the layer boundaries. To account for this characteristic,
it seems natural to introduce a line process as suggested by
Geman and Geman [2]. However, direct application of the
techniques described in [2] is not appropriate since the model
"should also fulfill some additional statistical properties con-
nected to the general orientation of the layers, their thickness
distribution, etc. Therefore, derivation of a specific MRF seems
necessary to model 2-D stratified fields adequately.

The goal of the paper is to propose such a model, to
investigate its theoretical properties, and to demonstrate its
practicality through simulations and application to seismic
deconvolution. This model is made up of two parts which
are organized in a hierarchical manner. The higher level is
rather general as it controls the geometrical characteristics of
the 2-D field, i.e., the location and shape of the layers. It
will be referred to as the layer boundary model. lts salient
characteristics are the presence of hidden transition variables
which allow an explicit modeling of the boundaries while
preserving a simple structure with a small neighborhood size;
and a unilateral structure on a nonrectangular lattice which
simplifies simulation of the field and implementation of the
estimation method. The lower level of the model specifies
the distribution of attributes of the layers, such as the value
of physical quantities, textures, etc., and is therefore more
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application-specific. The resulting MRF constitutes a 2-D
extension of the 1-D B-G model already used with some
success for seismic deconvolution.

Section II is dedicated to the derivation of the layer bound-
ary model and to the investigation of its theoretical properties.
A precise statement of the problem is given in Section II-
A, and Section II-B contains some background material on
Markov-type random fields which will be useful later. Hidden
transition variables are introduced in Section II-C, so as to
build a compound unilateral MRF (UMREF). In Section II-D,
it is shown that the UMRF can be characterized by a local
probability measure on simple cells of a nonrectangular lattice.
This measure is further specified in Section II-E so as to fulfill
global constraints; this yields a parsimonious parametrization
of the probability measure. Section II-F provides a physical
interpretation of the parameters, and additional properties of
the UMREF are investigated in Section II-G.

In Section III, an application to Bayesian multichannel
seismic deconvolution is presented. The problem is briefly de-
scribed in Section III-A, and the main characteristics of usual
1-D approaches are outlined in Section III-B. In Section III-C,
the 2-D Markov model studied in Section II is completed so as
to incorporate amplitude information. The resulting model is
used as priors in a maximum a posteriori (MAP) deconvolution
procedure described in Section III-D. Section III-E contains
simulation results which illustrate the performances and the
practicality of the approach.

Finally, conclusions and perspectives for future work are
presented in Section IV.

II. CONSTRUCTION OF THE LAYER BOUNDARY MODEL

This part of the model accounts for the geometric char-
acteristic of the 2-D stratified field. It stands for the shape
of the boundaries, regardless of the content of .the layers,
since the latter induces no definite information on the former.
The resulting binary structure is reminiscent of line processes
used for image restoration and segmentation [2], [4], though
it fulfills several specific properties such as being a UMREF,
whereas general line processes may not even be MRF’s [4].

Very important to the derivation of the model is the infor-
mation about the general direction of the layers. Indeed, the
whole construction relies on the fact that the most layers are
only slightly bent. Rigorously speaking, we mean that all but
a few must only bend into less than ninety degrees from an
average direction (without loss of generality, it is assumed
horizontal in the sequel). In practice, for a wide range of
application domains, such an assumption is merely valid as an
understood consequence of stratification. On the other hand,
the incorporation of discontinuities in Section II-C-3 allows
scarce abruptly bent layers or vertical boundary lines.

A. Problem Statement and Basic Constraints

" Assume that the 2-D layered field is sampled on a finite
rectangular grid A° = {(4,j): 1 <i < I;1<j < JhL
Integer variables ¢ and j index the vertical and horizontal
directions respectively (see Fig. 1). To each site (i, j) €
A°, one associates a binary 0-1 location variable Q;; that

1357
(1,1 j
[TT1
| Layer 1|
i Il,a)ller 3—
_L?yler2
iy . I

Fig. 1. Discrete binary representation of layer boundaries: Black squares
denote the presence of a layer boundary on the corresponding site.

indicates whether a boundary is absent or present on the
corresponding site. It shall remain implicit that vertical and
horizontal sampling periods have been chosen small enough
so that the boundaries can be represented as unbroken chains
of nonzero location variables.

In the statistical approach adopted here, Q@ = {Qs;: (4, j) €
A°} is considered as a random field, and specifying a model
for Q is equivalent to defining a probability measure P(Q = q)
for every possible realization g of Q. In order to account for
the specific characteristics of layered media, three structural
constraints are introduced on P:

1) Each binary column should follow a Bernoulli distribu-
tion.

2) P should be insensitive to reverting horizontal or vertical
indexation. .

3) P should incorporate local spatial dependencies to en-
sure lateral continuity between layer boundary sites.

According to constraint 1), each column Q; should contain
independent identically distributed (i.i.d.) Bernoulli random
variables Q;;: :

I
PQ; =q;) = [[PQii=a) -
=1
= (1= A)E,

where I; is the number of ones in g;, standing for layer
boundary sites, and A controls the sparsity of layer boundaries
along the vertical direction. Constraint 1) indicates that the
model should yield a true extension of 1-D Bernoulli models
which were fruitful in the area of seismic deconvolution
[8]. Such an extension motivated part of the study. Note
that a Berhoulli model for boundary sites corresponds to a
geometrical thickness distribution of the layers, which also
arises from other 1-D seismic models [12}.

Constraint 2) is introduced in order to preserve physical
symmetries intrinsic to the layered structure. More precisely,
the indexation order of the sites is arbitrary, i.e., it is not con-
nected to any physical orientation of the layers. Consequently,
the model should not be sensitive to the indexation order.

Constraint 3) simply reflects the basic requirement of cor-
relation between adjacent columns so as to favor roughly
horizontal and unbroken boundaries.
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In addition to structural constraints 1)-3), a fourth practical
constraint is introduced so as to cope with the numerical
requirements of many applications:

4) P should have a simple enough structure so as to yield

numerically tractable estimation.

B. Markovian Modeling

Markovian modeling is specifically suited to account for
local spatial dependencies as stated in 3). Numbers of Markov-
type random fields have been introduced during the past two
. decades, and an exhaustive overview can be found in [13]. The
most general class of Markovian processes on finite lattices is
formed by Markov random fields (MRF’s), from which almost
every other family derives as particular case or subclass. In
the following, we only give the general definition of MRF’s

on finite lattices and present developments directly connected -

with our problem. References are given for a more extenswe
comprehension of Markovian modeling.

1) Markov Random Fields: Henceforth, whenever unam-
biguous, probability distribution P(X = z | Y = ¢) will
‘be noted P(z | y), where X (resp. Y) and z (resp. y) denote
any random variable and one of its realizations.

A MREF is a stochastic process X = {X,,, 1 < n < N}
whose labelling corresponds to an arbitrary enumeration of a
ﬁmte set of sites A = {3,, 1 < n < N}. Random variables
X1,+++, X are not necessarily sampled from a common state
space. In the general theory as found in Kinderman and Snell
[14], Besag [15], or Geman and Geman [2], A does not need
to be a subset of Z2, nor hold any other structural prerequisite.

A neighborhood system A" 2 {Nn, 1 < n < N} is defined
as follows:

Vn,N, CA and s, ¢ N,;

VYm,Vn, s, € N,, & s, € N,,.

Elements of N, are called the neighbors of site s,,. Some-
times, this designation appears to be compatible with some
preexistent spatial distribution of the sites, but such a corre-
spondence is only optional. X is a MRF with respect to the
neighborhood system ), if and only if, for any site s,, and for
any joint realizations £ = (z1,---,zx) such that P(z) > 0,
P(xn le,”'azn—l, zn+1a"')'1;N)

= P(%y | Tm, 8m € Ny). (1a)
Rigorously, a minimality condition must be added on each
N, otherwise N would not be unique:

Minimality Condmon For any subset R of N,, such that
R # N,

. P(Zy | Zm, 3m € R) # P(zy, | T, 8m € Ny) (1b)
for at least one z, otherwise R could be substltuted for N, as
the set of neighbors of site s,,.

Note that the neighborhood system A defines the graph
(A N) of the neighborhood relation, so that neighbors are
pairs of mutually related sites. Any set of sites which either
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consists of a single site or else in which every pair of distinct
sites are neighbors is called a cligue.

Characteristic property (1) provides an easy way to check
whether a random field is a MRF and, if it is, to determine
its neighborhood system. On the other hand, (1) does not
guarantee that specification of local conditional probability
measures P(z, | £m, 8w € N,) yields a consistent joint
probability measure. Indeed, this crucial problem of inferring
global statistical properties from local conditional ones has
been studied in detail by Besag [15]. It appears that severe
restrictions must be imposed on the functional forms of the
conditional probability distributions P(z,, | Tm, sm € N,)
to yield a mathematically consistent joint probability measure.
In this respect, an important result has been established by
Hammersley and Clifford (see [15]). The Hammersley-Clifford
theorem states that every MRF for which P(z) > 0 for every
realization £ (positivity condition), is equivalent to a Gibbs
random field (GRF). Since Gibbs distributions can be explicitly
expressed using local functions (namely, Gibbs potentials), the
Markov-Gibbs equivalence provides the most general way of
specifying local conditional probability measures which are
consistent with a valid- MRF structure, under the positivity
condition. Further discussion and proofs can be found in [15].

2) Unilateral MRF’s: In spite of its fruitfulness, the
Markov-Gibbs equivalence should not be regarded as the only
way of defining a MRF from local characteristics, as some
perfectly valid MRF’s may not fulfill the positivity condition.
Pickard [16] proposed an alternative approach based upon a
unilateral specification of local probability distributions. To
begin with, note that any arbitrary enumeration of the sites
in A allows one to factor the joint probability measure of X
according to :

v N
P(z) = Pz)) [[pl@n | 21,

n=2

,.’L'z,._l).

If, for some enumeration, each conditional probability P(z, |
Z1,-++,Tn—1) only depends on a restricted subset P, of
predecessors of current site 's,, then it is straightforward to
show that X is a MRF with restricted sets of neighbors
and with maximal cliques P, U {3,} (maximal cliques are
those which are not subsets of any strictly larger ones).
MRF’s which can be defined in this manner are called uni-
lateral MRF’s (UMRF’s). They form a subclass of general
MRF’s, which can be thought as the most natural extension
of Markov chains to multidimensional lattices [16]. Unlike
general MRF’s, UMRF’s yield a recursive representation of
their probability distribution:

N
P(z) = P(z1) [[ P(zn | Zm) 5m € Pn).

n=2

This formulation allows easy simulations and does not require
the positivity condition. Moreover, it has been shown by
Goutsias [17] that, under certain conditions which guarantee
translation invariance, the only isotropic GRF’s on rectangular
lattices are a special case of UMRF’s, namely the Curious
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Lattice Process introduced by Pickard in [18] and renamed
Pickard random field (PRF).

On the other hand, unilaterality requires a sequential enu-
meration of the sites, which may not arise naturally. For
instance, in order to perform model-based recursive image
processing, UMRF’s have often been related to lexicographic
enumerations on 2-D rectangular lattices or to the idea of
quarter-plane casuality borrowed from 2-D recursive filtering.
. The former gave rise to nonsymmetric half-plane models [3],
[13] and the latter yielded Markov mesh processes [19]-[21].
As mentioned by Besag [1] and Geman and Geman [2],
such models can be considered as useful approximations of
more complex MRF’s, even if the resulting neighborhoods are
irregular. Unilateral approximation of GRF’s is specifically
addressed by Goutsias in [22].

However, unilaterality does not necessarily involve such
enumeration schemes. The approach taken in this paper pro-
vides an original alternative example. In Section II-C, hidden
variables forming a line process (in Geman and Geman’s
terminology) are introduced between the sites of the initial
rectangular grid A°. Then the resulting compound lattice A,
which is not rectangular any more, provides an enumeration of
the sites which is natural given the problem statement. Hence,
a unilateral approach can be adopted in conformity with the
work of Pickard [16].

C. Introducing Transition Variables T;;

Definition of @ requires the specification of the joint prob-
ability measure P(Q = q), for any I x J binary matrix gq.
Usual values of T and J (256 at least) obviously preclude any
global specification of P(Q = q). Adequate factoring must
be sought instead, in order to define the random field @ from
tractable short-range interactions which fulfill the constraints
specified in Section II-A. As mentioned in the Introduction,
Geman and Geman [2] showed that hidden variables such
as the line process can effectively model local interactions
which occur at discontinuities. Here, it is not appropriate to
directly use the models proposed in [2], as constraints 1) and
4) could hardly be fulfilled. However, in order to indicate
whether two adjacent nonzero location variables belong to the
same layer boundary, it is possible to introduce another kind of
hidden binary transition variables T;; placed between location
variables Q;;: T;; is set to 1 when the two adjacent location
variables belong to the same boundary, and to 0, otherwise.
Since the field is stratified in the horizontal direction, it is
sufficient to define transition sites between pairs of location
sites which are either diagonally or horizontally adjacent (see
Fig. 2).

Let A/, A=, and A\ denote the sets of diagonally ascending,
horizontal, and diagonally descending transition sites. The set

of transition variables T = {Tz/;} A VAT a- U {Ti\j} A\

constitutes a random field on the nonrectangular lattice A/ U
A~ UA), and it will be referred to as the transition field.
The major interest of these hidden transition variables is
the possibility of specifying interactions between location
variables in a local manner. On the other hand, characterization
of the compound field {T', Q} on A = A°UA/ UA~ U A\is
required in order to fully define the layer boundary model.
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Fig. 2. Introducing transition variables T;;: Transition variables are placed
between pairs of location sites which are either diagonally or horizontally
adjacent. They are meant to indicate whether. two adjacent nonzero location
variables belong to the same layer boundary.

D. Markov Random Field {T, Q}

1) Unilateral Characterization: 'We now turn to the unilat-
eral joint characterization of {T', @} on lattice A instead of Q@
on A° alone. In [16], Pickard starts the derivation of the so-
called Curious Lattice Process by suggesting that it is possible
to construct unilateral processes from probability measures
on generic cliques. On an I x J rectangular lattice, Pickard
considers a measure 7 on the basic cell (5 B) and introduces
the probability distribution P of a unilateral process X in the
following factored form.

I J
p(@) = 7(@1,) [[r(@a | mir,0) [ [ (@15 | 215-1)
i=2 j=2
I J

H HT(-Tij | Ti—1j, Tij—1, Tic1j-1)-

i=2 j=2
Then Pickard investigates the structural conditions to be im-
posed on measure 7 so that the restriction of P to any clique
(X,‘j, .X'_]_j, X,'j_l, Xi—lj—l) is invariant and identical to
T.

Similarly, we are looking for a factored form of P(t, q),
which corresponds to a unilateral enumeration of the sites and
in which each factor can be derived from a measure on basic
cells. This can be achieved from three mere assumptions:

Assumption H1): Columns of {T', Q}, ie., {g1, 1, @2, *»
t;_1,q;}, form a first-order vector Markov chain, so that
P(t, q) factors according to :

J-1

P(t, q) = P(ql)HP(tj | g;)P(g;41 | t5)-
i=1

@

Higher order chains could be considered in order to in-
corporate more complex local interactions, such as a smooth
curvature on boundaries. This raises the question of the trade-
off between model accuracy and complexity. The approach
taken in the paper remains valid for higher order vector
Markov chains, as we have checked that second-order models
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Fig. 3. Generic cells on lattice A: The unilateral joint characterization of
{T, Q} is based on the decomposition of P(t, q) as a product of local
probabilities on these cells.

which meet Constraints 1)-3) do exist. But while there is
no theoretical obstacle (but no theoretical stake “either) in
developing higher-order models, the computational burden
quickly becomes very heavy. For instance, 32 parameters are
needed to specify second-order models, as opposed to 4 for
first-order ones (see Section II-G). Hence we feel that the
potential performance improvements are outbalanced by the
additional computational complexity, and we will not pursue
further in this direction.

Assumption H2): Each conditional probability in (2) further
* factors into the following product of local probabilities

I
P(t; | 4;) = [[P(t];, t5. 2} | ai), (32)

i=1

I
P(gj1 |t) = HP(‘Iij+1 lt{+1jv e t) 1), (3b)

i=1

and the initial term P(q,) is factored as

P(q,) = HP (gi2)- @

i=1

At horizontal grid boundaries, some transition variables are
not defined and adjustments are required for (3) to be correct.
Here a free boundary assumption is made, which means that
all undefined variables are simply omitted.

Equation (3) corresponds to intuitive short-range interac-
tions between transition variables and location variables. It
actually confers a crucial role to the two generic cells depicted
in Fig. 3. Each cell comprises four sites, one from each of

the elementary lattices A°, A/, A~, and A\. It is shown in

Section II-D-2 that these cells are the maximal cliques of the
MRF {T, Q}.

Assumption H3): We choose to make all probability mea-
sures appearing in (3) and (4) derive from an arbitrary unique
probability measure 7(g, t/, ¢, t\) defined on both generic
cells:

P(tij t;, tq | qlJ) - T(tg]’
P(gij+1 |t.-+1,, t5, t)

lp]’

tt_]’ tl] | q"-])’ (sa)
11) - T(q1]+1 |t1+1]’ 150 tz—l]) (Sb)
P(ga) £ 7(qn). (50)

In (5) and henceforth, the same generic symbol 7 in-
“differently denotes all conditional or marginal probabilities
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deducible from 7(q, t/, t~, t\) by projection (i.e., application
of Bayes’ theorem) or summation. For instance, we shall write

(g, t7)  Tuarat/,t7, 1))
7(q) Zt/,t—,t\'r(qv t/,t=, 1\)’

where the sums extend over all the possible realizations of the
corresponding variables. As in [16], H3) imposes an invariant
functional form to the local conditional probability measures -
which appear in (3) and (4). Defining a single measure
7 on both generic cells simply accournts for the symmetry
requirement of constraint 2).

Using (2)~(5), we obtain the following factored form of the
joint probability measure of {T', @}:

Tt 19 =

P, q) = Hf(q,l)r[{r(tl,, A )l )

i=1
ts, t)_l,)}»

(6a)

Equation (6a) can be rewritten in a simpler form, in which the
free boundary assumption remains implicit:

cr(qu | 0t | £ 6 _y;)

-1
: HT(t;/J, t,,_], t1] ' Qz])T(qU+1 | tz+1ja
=2

J I
P(t, ) =[] Sor(¢s;, 5, ) 1 aif)

j=1 i=1

“7(ij |t{+1j—1? L1 ta'\—lj—l)‘ (6b)

It should be stressed that for any valid probability measure
7, (6) defines a true MRF with a unilateral structure. The form
of its neighborhood system is examined in the next subsection.

A remark should be made about the enumeration of the sites
associated with the unilateral structure of the field {T', Q}.
Whereas the Curious Lattice Process is defined on a rect-
angular lattice with a lexicographic enumeration of the sites
(all other orderings available for Markov mesh models are
also possible), the compound UMRF {T', Q} is built on the
more complex lattice A in which the sites are ordered column
by column. The order is arbitrary within each column, but
the trans:tlon variables must be associated three by three
(T,/J, T,J, - are kept together). -

2) Netghborhood Structure: From (6), it is straightforward
to check that the UMRF {T, Q} fulfills MRF characteristic
property (1). In Appendix A, it is shown that the sets of
neighbors of interior sites (4, 7) in A°, A/, A~, and A\ take
the respective forms (see also Fig. 4)

=T, T,;,T,\,,T/H, .

Tj-1 Tilajoab,
" = {QtJ’ z] ’ :]’ Qi-1j+1 T:—lga l.—2_7}’
{Qma 1]’ .]7 QU‘H-’ Tz+lgv u}’
= {QtJv nv 1] 71 Qit1j41, T¢/+2]1 T;+1J}

Y

and that the corresponding bilateral conditional probabilities
can, respectively, be expressed as (8) (see (8) at the bottom
of the page) where b = 1 — b for any 0-1 binary variable b.
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Fig. 4. Sets of neighbors: Graphic representation of the sets of neighbors
Ng;, N/;, N;, and N); defined by (7). The central site is shaded in black,
and its neighbors are not shaded.

* Moreover, it is easy to check from (7) or from Fig. 4 that the
generic cells depicted in Fig. 3 are indeed the maximal cliques
of MRF {T, Q}.

E. Defining the Measure T

Introduction of hidden variables T;; has allowed the con-
struction of a UMRF {T', Q} for any probability measure 7
on generic cells. Now 7 should be defined so as to incorporate
desired features into this unilateral scheme, in accordance
with constraints 1)-4). The practical constraint of numerical
tractability (constraint 4)) cannot be satisfactorily studied at
this point, and it will be dealt with more specifically in Section
III when the problem of multichannel seismic deconvolution
is addressed. However, it should already be stressed that the
unilateral structure of {T', @} is a valuable property with
respect to constraint 4). Therefore, this subsection is dedicated
to the characterization of 7 in accordance with structural
constraints 1)-3).

As shown in the sequel, fulfillment of constraints 1) and 2) is
a consequence of the invariance of the restriction of probability
measure P(t, g) to maximal cliques of the UMRF {T, Q}.
By means of a theorem, we first prove that this invariance
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Section II-D, the joint probability measure P of {T, Q}
was derived from the probability measure 7 on basic cells,
according to (6). Inversely, from (6), it is possible to establish
the expression of the restriction of P to any maximal clique
{Q, T/, T~, T\}, by summation over the possible combina-
tions of all the other variables on A. Now, a natural question
arises: is this measure independent from the position of the
selected clique and, if so, is it identical to the generic measure
7? The answer is given by the following theorem.

Theorem 1: The restriction of P to maximal cliques of
UMREF {T, Q} is invariant, if and only if measure 7 fulfills the
following separability condition: for any triplet of transition
variables (t/, ¢, t\),

r(t/, t, t\) = 7@t/ )r(t7)r(t\). )

If measure 7 fulfills condition (9), it is said separable.
Proof: See Appendix B.

Remark: Theorem 1 clearly indicates that, even though the

UMRF {T',Q} is completely defined from a single measure
7, not all possible forms of 7 yield the invariance of P on
maximal cliques.
2) Sufficient Conditions for Fulfillment of Constraints 1) and
2):" Fulfillment of constraints 1) and 2) is a consequence of
the separability condition introduced above. More precisely,
we have the following two corollaries of Theorem 1.

Corollary 1 (Constraint 1)): If measure T is separable, then
each column Q; of A° follows a Bernoulli distribution whose
characteristic parameter is

A=r(g=1). (10)

Furthermore each column T]-/ , Tj ,and Tj\ defined on elemen-
tary lattices A/, A=, and A\, respectively, follows a Bernoutli
distribution. Their respective characteristic parameters  are
given by

property holds, if a1.1d only if measure 7 presents a separable W = T(t/ =1)
form. Then, constraints 1) and 2) are fulfilled as consequences pm =1t =1). (11)
c:)f the separability property. Finally additional constrain.ts are p\ =7t =1)
imposed on the separable form of 7 so as to fulfill constraint 3). ’ '
1) Invariance of the Restriction of P to Maximal Cliques: In Proof: See Appendix B.
- : -1
Pai; | N%) = |1 7(Tj t{jiti_j’t}j)T(qij’t'{+1j—17tij—l’t}—lj—l)T(qij)]
13 i3/ = — - —
L T(qijvtz[j?tiﬁ t)j)T(Qij’ tz(+1j-1’tij—l’t}—lj—l)T(qij)
' Pl | NL) = -1+ T(Qij,z.(j,ti_j:t,'\j)T(fli—lj+1:E{jvti__1j7t}-n)"'(t{jaii—_uat}—zj)]
i | Vij) = » — _ 7 .-
L 7(gij, t{j’ tijvt}j)T(Qi—lj+lvt{j)ti-1j9t}—2j)'r(t{j)ti—lj’t}—2j)
P(t; | N7 = —1 " T(Qijvtz(jvzi_jat}j)T(qij+1’t{+1j’z;j’tz\—lj)T(t{j’t:jvt}—lj) ]
17 ij _ _ - _
L T(qij7t{jatij7t}j)T(qij+17t'{+1jrtijat}—lj)T(t{+1j’ tij’tz\—lj)
. o ‘ - A NS
P(t) [NY) = 1+ 7(gig» thys > B)T(@iv1+1s Mooy tongs BT (thaay tiias tij)] ®)
i | Vi) = _ Z -
[ i, th 50 )7 (@141, 420 tiaayn T (g0 topnjo By
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Corollary 2 (Constraint 2)): If measure 7 is separable, the
joint probability distribution of {T', Q} is left unchanged by
simultaneous reversion of horizontal and vertical indices. In
addition, if 7 presents a horizontal symmetry, i.e.,

(g, t/7 i, t\) =7(q, t\, i, t/)'

then P(, q) is left unchanged by independent reversion of
horizontal or vertical indices. .

Proof: If T is separable, a new functional form of the
joint probability distribution of {T', Q} is straightforward to
derive from (6). Under implicit free boundary assumption, it
can be expressed as

J I
Pt 9= ]I
j=li=1
. (45 t{j’ tijs t}j)"'(qt‘jv t{+1j—1’ tij—1 t'}—lj—l)
7(as) (e (£5)7(83y)

(12)

It is readily seen on (12) that the conclusions of Corollary 2
hold.

In order to facilitate further derivations, it is convenient to
get an exact form of (12), where the free boundary assumption
becomes explicit. First, let us define left and right cliques as
follows: '

A _
= Ty, Ti\—lj-l} n{T, @},

T;, T3} {T, Q}.

ij

C:j {Qija Ti/+1j—1a
C; £ {Qi;, T 13)

i5?
It is now easy to get an exact expression of (12) of the form
of (14) (see (14) at the bottom of the page).

3) Spatial Interactions (Constraint 3)): Since measure T
rules the interactions between neighboring location and
transition variables, further constraints must be added on
T to make these interactions compatible with the physical
properties of layered media. In this respect, we impose two
basic rules of dependency:

Tt/ =0,t"=0,t\=0|¢g=0)=1, (152)

Tg=1|t/ =0, =0,8'=0)=¢ (e 1). (15b)

Equation (15a) precludes any isolated transition variable to
be set: transition variables can be set only if they link two
location variables which are set to one, according to Section
II-C. Note that (15a) breaks the positivity condition, which
does not generate any difficulty with the unilateral approach
adopted here. ‘

Equation (15b) is somewhat similar to (15a). In order to
obtain a perfect symmetry between (15a) and (15b), € would

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 4, JULY 1993

have to be set to zero that would forbid discontinuities along
layer boundaries. Actually, such a constraint would be too
restrictive, since local breaks may appear in a layered structure
(for instance, geological faults in seismic exploration). More-
over, it is generally desirable to keep a degree of freedom when
modeling real-world structures, so as to deal with unaccounted
phenomena. Therefore, ¢ is set to a value small with respect
to 1.

F. Markov-Bernoulli Random Fields

In the previous section, constraints were imposed on mea-
sure 7 so as to fulfill the prerequisites stated in Section TI-A.
The resulting model will be referred to as a Markov—Bernoulli
random field (MBRF) due to characteristic property 1). In
the .course of imposing the constraints, physically meaningful
parameters (X, 4/, u~, u\, €) were introduced naturally.
We now show that any separable measure 7 can be fully
characterized by the set of parameters (u/ , BT, p\, €).

Using Bayes’ theorem and the separability property, 7 can
be expressed as

(g t/, t=, ) =7(q| ¢/, t7, W )r (¢ )r (V).  (16)

The first term on the right side of (16) can be deduced from
(15b) when ¢/ = ¢t~ = ¢\ = 0, or from (15a), otherwise. It
is a function of € only. Corollary 1 shows that the three other
terms are Bernoulli distributions with respective parameters
u/ , u~,and g\, hence the result. Then it follows from (12)
that (u/, u=, i\, €) is a complete parameterization of any
MBRF.

Each parameter among (u/, p~, p\, €) can be given an
intuitive interpretation: w/, u—, and p\ are the probabilities
of occurrence of upward, horizontal, and downward transi-
tion variables; ¢ represents the probability of occurrence of
discontinuities along boundaries between layers. The resulting
probability of occurrence of boundary sites along a vertical
direction is readily given by '

A=7(g=1)
=1-(1-p)1-p)1=-p)(1 =)

Fig. 5 shows a 51 x 65 realization of a2 MBREF, for y/ =
p\ = 0.02, p” 0.06, and ¢ = 0.001. The resulting
value of X is 0.1. This realization was obtained by recursive
pseudo-random sampling using the factored form of the joint
probability distribution given by (6). For sake of clarity, only
the location process is represented in Fig. 5. By construction,
this field fulfills constraints 1)-3), and it appears to represent
a horizontally layered structure adequately.

Now that MBRF’s models have been completely specified
as a subclass of MRF’s with only four parameters, one
might question whether more degrees of freedom should

P(tvq) =

HC",J,#@T(C%)HC;#@T(C%)

I, yeao @)1, jyeas T(t{j)H(i, Hea-TE i, j)eA\T(t>j)

(14)
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Fig. 5. . 51 x 65 realization of a MBREF, obtained by recursive pseudo-random
sampling from the parameters values p/ = p\ = 0.02, g~ = 0.06, and
€ = 0.001. Only the location process is represented. Each column follows a
Bernoulli distribution with parameter A = 1—(1—p/)(1—p~)(1—p\)(1—¢)
= 0.1.

have been kept in the model so as to increase its flexibility.
This question pertains to a general difficulty in Bayesian
-estimation, i.e., how to set the trade-off between complexity
(and pertinence) of the prior model on one hand and theoretical
behavior and practicality of the corresponding estimator on the
other hand. In this study, our choices were clearly stated in
Constraints 1)-4). However, several possibilities for relaxing
these constraints and obtaining a more flexible model can
be briefly mentioned. First of all, we would not recommend
nonseparable measures 7, because valuable properties such
as explicit statistics for columns and single variables would
be lost. This seems a high price to pay for an increased
flexibility which may be difficult to utilize in practice. As
already mentioned, a more interesting possibility is to consider
a second-order Markov chain instead of a first-order one in
H1). Such an extension preserves the essential properties of
MBRF’s, including the invariance of the probability measure
P on maximal cliques. To a certain extent, it is also possible
to make P location dependent and yet controllable, by letting
some parameters (e.g., A) vary between columns, provided
that basic properties 1) and 2) remain valid. For instance, any
change within (u/, u~, g\, €) that keeps A constant still meets
1) and 2); it is also possible to change the value of ) by letting
€ vary while (u/, p~, p\) are kept constant.

G. Additional Properties of MBRF’s

This section deals with some interesting additional char-
acteristics of MBRF’s. These properties naturally arise from
the particular structure of these fields and were not stated
as prerequisites. First, we address the extension of MBRF’s
to the infinite lattice Ao, associated to A° = Z2, which is
a problem of theoretical as well as practical interest. The
difficulties that one encounters in considering general MRF’s
on infinite lattices are well described by Derin and Kelly in
[13]). Here, we prove in Section II-G-1 that MBRFs can be
constructed on A,. Then in Section II-G-2, the structure of
random field @ is studied marginally from T'. In particular,

_ it is rigorously shown that @ is not a MRF (i.e., not with a
local neighborhood system), which a posteriori justifies the
introduction of tramsition process T'.
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1) Extension to Infinite Lattices: In this subsection, any
random field X built on lattice A will be noted X 5 in order
to distinguish between random fields with identical structure
though defined on different lattices. First, we introduce the
definition of mutual compatzbtltty, which generalizes the one
given in [17].

Definition 1: Let A be a finite set, and A any subset of A
Let X and X 4 be two random fields, respectively built on
lattices A and A. X 5 and X 4 are mutually compatible, if and
only if the restriction of X, to A is identical to X 4, i.e.,
under a compact form where the measured field is implicit:

PA(A) = P4(A). a7

Then, valid brandom fields on infinite lattices are defined using
the following theorem. '

Theorem 2: Let X4,,--+,X4a,,- - denote random fields
defined on a growing series of finite lattices Ay C .-+ C
A, C ---. Assume that the series Ay, -+, A,, - converge to
an infinite lattice Aoo. If any pair (XA, X4,,,) is mutually-

compatible, then X o a lim,, X A, defines a valid random
field on infinite lattice Ao. In addition, the restriction of X o
to any A, is X4, .

Proof: The assumptions of Theorem 2 allow direct appli-
cation of the Kolmogorov extension theorem to countable sets
[23]. The same argument has already been used by Plckard
(16].

Mutual compatibility is not only a point of theoretical inter-
est. In many applications, and particularly in image restoration,
the observations represent a small part of a larger structure.
Their size is only defined by the imaging process which is not
intrinsic to the structure itself. Therefore, the statistical prop-
erties of the prior model should not depend upon the size of
the observed data, and in particular, the mutual compatibility
property should be fulfilled for lattices which represent the
possibly observed data sets.

Unfortunately, mutual compatibility is not fulfilled by most
MRF’s. In general, when restricted to a subset, they loose their
Markovian property because all sites located on the subset
boundaries get connected in the resulting graph [13]. Pickard
random fields (see Section II-B) are a notable exception to
this rule, and they have been shown by Goutsias [17] to be
the only MRF’s built on rectangular lattices which fulfill the
mutual compatibility property.

Focusing on MBRF’s again, it is easy to check that random
fields {T, Q}a built from rectangular lattices A° are not
mutually compatible because of edge effects at horizontal
boundaries of A. However, some other finite subsets of A
allow the construction of MBRF’s which are mutually compat-
ible with any larger MBREF, so as direct application of Theorem
2 provides the extension to {T', @}c. Such subsets will be
referred to as compatible subsets (CSS’s). In the sequel, they
are shown to be fully characterized through an equivalence
theorem between compatibility and convexity, the latter notion
being defined from the neighborhood system of MBRF’s.
But- before stating the equivalence theorem, we give some
preliminary definitions.
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Definition 2: For any variable X on A, sets of left
neighbors N*(X) and right neighbors N™(X) are defined as
follows:

NI(Q'J)—{ i+15-1) T.; lvTi\—lj—l}’
NY(T)) & NY(T;) & N(T) 2 (Qu),
N'(Qm 2T/, T;, T},
N™(T/y1;_1) & N™(T5_,) £ N'(T)y;_,) 2 {Qii}.(18)

Note the obv1ous mutual implication for any pair of variables
X,Y on A,

X eN (Y)Y eN(X).

Definition 3: An admissible path L(X Y) of length N
is a finite series of variables (X1,---,Xn) on Ay such
as X; = X,Xy =Y, and Xpy1 € N'(X,) for any
n=1---,N-1.

Simple examples based upon specific choices of X and
Y show that neither the existence nor the uniqueness of
L(X,Y) are guaranteed. Nonetheless, the length N of the
path characterizes the relative position of X and Y, in the
sense that all admissible paths between X and Y have the
same length.

" Definition 4: A ﬁmte subset A is convex if and only if,
for any pair of variables X,Y on A, any admissible path
L(X,Y) = (Xl, -, Xn) fully belongs to A, ie., X, € A

"forn=1,.---,N.

Theorem 3: A finite subset A is a CSS, if and only if it
is convex.

Proof: See Appendix C.

In fact, we conjecture that Theorem 3 and Appendix C
are generalized to other unilateral Markov fields. The case of
PRF’s is of special interest; partial characterization of CSS’s
can be found in [17] under the name of primary sublattices.
Here, we conjecture the complete characterization for PRF’s
as follows.

Conjecture: A finite subset A is a CSS for PRF’s, if and
only if it is both connex and convex; connexity refers to the
first-order neighborhood system of PRF’s; convexity is given
by Definition 4, admissible paths being horizontal paths and
vertical paths. Of course, any finite rectangular set is both
connex and convex, as well as the primary sublattices defined
in [17).

Extension of MBRF’s to the infinite lattloe A is now
straightforward since Theorem 2 can be applied to any growing
series of convex lattices Aj,---,A,, - provided that the
series converge to Ao For instance, all triangular subsets A

A={(3,7):0<ja—-j<Ja and |ig—i|<ja—7j}

are convex and the family extends to A, for any i4 when

ja and Jj take infinite values, which proves the existence of
{T, Q}c. Restriction of {T', Q}~ to CSS’s remains in the
class of MBRF’s, but this does not hold for rectangular lattices.
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2) Random Fields Q and T: In this subsection, we first
study the structure of random field Q marginally from T'. The
question is to determine whether the probability distribution of
Q presents a factored expression similar to the one derived for
P(t, g), in which case introduction of the transition random
field T would have been superfluous. Here, we show that @
can be viewed as a vector Markov chain, but is not a MRF
with a local neighborhood system. Then the properties of T’
marginally from Q are investigated, and the transition field T’
is shown to be a MRF with a local neighborhood system and
a unilateral structure.

a) Random field Q: First, we show that the first-order-
vector Markov chain structure of {T', Q} also holds for @
alone. Expression (2) can be rewritten as

J-1

P(t,q) = P(G1)HP(‘Ij+1v t; | q;)
i=1

and summing each conditional term on the right side of (28)
with respect to ¢; immediately yields

J-1
P(g) = P(@) [[ P(@+1 1 9), 19)
j=1 _

which proves the result.

We now turn to the characterization of the neighborhood
system of random field Q. For any site (7, j) of A°, define
Q7 = Q\{Qy} and ¢7 = q\{g:;} from any possible
realization q of Q. The point is to determine which variables
the functional form P(g;; | g*/) actually depends upon. Using
the vector Markov chain structure (19), one can immediately
establish that

P(g;11 | 3;)P(; Iqj—l)]—l 20
P(dj+1 l'lj)P('Ij Iqj—l) @

P(gi; |¢7) = [1+

where g; differs from g; only at location (3, j) by g;; = 1—¢j-
Equation (20) shows that P(g;; | ¢*/) is a function of the
transition probabilities P(g;.; | g;) only and, therefore, the
neighborhood system of @ is local only if these transition
probabilities can be factored into locally dependent terms. In
general, it is not possible to derive such a factorization and an
" example in which the set of neighbors of site (¢, j) can take
an arbitrarily large size is presented in Appendix D. Thus, Q is
not a MRF with a local neighborhood system and introduction
of transition field T' does provide considerable simplification,
as conjectured in Section II-C.
b) Random field T: The UMRF property is straightfor-
ward to establish for T'. First define o as -

G'(t{, i t}v té? ty, tz)

a Zr(q’ tla tl ) 1)T(q7 t27 t2 ) t2)
(9)

q

Then, since each factor on the right side of (12) is a function
of only one location variable g¢;;, summation of P(t, q)
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over q immediately yields the expression of the probability
distribution of T in the following factored form:

/ - / - \
P(t) _ H H tz]’ tl]’ tz]’ tz+1] 1 tz] 1 t'i—lj—l).
j=1i=1 (t )T(tz]) ( )
(21)

The MRF characteristic property (1), the neighborhood system
and the unilateral structure of random field T can be imme-
diately deduced from (21). Therefore, T retains every basic
characteristics of the MBRF {T, Q}.

These results underline the hierarchical structure of com-
pound random field {T', @}: while the distribution of @ is
naturally defined jointly with (or conditionally to) T, T can
easily be handled apart from Q. The fruitfulness of hierarchical
constructions has already been stressed by Geman and Geman
(see [2, pt. IV]). The MBRF-based method for multichannel
deconvolution presented in the next section further illustrates
the interest of the approach.

III. APPLICATION TO 2-D SEISMIC DECONVOLUTION

In this section, application to Bayesian multichannel seis-
mic deconvolution is considered. The stratified structure of
the unknown data is modeled a priori as a MBRF. This
representation is completed so as to incorporate amplitude
information, and the resulting model is used as priors in
a maximum a posteriori (MAP) deconvolution procedure. A
suboptimal recursive detection-estimation algorithm is derived,
and simulation results are presented in order to illustrate the
performances and the practicality of the approach.

A. Seismic Exploration

In the field of seismic exploration, as well as in other
areas of applied physics such as nondestructive evaluation or
biomedical ultrasonic imaging, one of the major issues is to
estimate the shape and nature of homogeneous layers in a
stratified structure from acoustic measurements performed at
different points of its surface (see Fig. 6).

Here, the original three-dimensional problem is approx-
imated by a 2-D one, and it is assumed without loss of
generality that the general orientation of the layers is horizon-
tal. Therefore, the 2-D field of interest represents a vertical
section of the unknown propagation medium.

In the application domains considered here, the bound-
ary where the measurements are performed is parallel to
the general orientation of the layers, and under reasonable
assumptions, the observations can be considered as the noise-
corrupted convolution product of two signals: the wavelet
and the ‘reflectivity. The wavelet is a 1-D vertical signal
that represents the incident waveshape that scatters through
the propagation medium. The reflectivity characterizes the
propagation medium; it is a 2-D field defined as the vertical
logarithm derivative of the acoustic impedance. Since the
wavelet is a 1-D vertical signal, its convolution product with
the 2-D reflectivity can be decomposed into independent 1-D
convolution products, so that each column z; of the observed
data is a function of the corresponding vertical reflectivity
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Fig. 6. Seismic exploration: The problem is to characterize a layered
structure from acoustic measurements performed at its surface.

sequence r; as
z; = h * r; + n,,

where h and n; denote the known time-invariant wavelet and
the white Gaussian observation noise respectively. In addition,
under the assumption that the layers are homogeneous, the
incident wave only reflects at the boundaries between layers
and 1-D vertical reflectivity sequences r; appear as sparse
spike trains.

B. Main Characteristics and Limitations of the B-G Approach

A common approach to the estimation of 2-D reflectivity
sections is based upon the previous remark and only involves
1-D processing: the columns of the reflectivity are estimated
independently from one another, via 1-D deconvolution of
the corresponding columns of the observed data. A Bayesian
approach to such single-channel deconvolution has been suc-
cessfully pioneered by Kormylo and Mendel [7], [8], followed
by others [9]-{11], [24]. It is based on Bernoulli-Gaussian
(B-G) prior modeling of the reflectivity pulse trains: 1-D
Bernoulli sequences @ locate the spikes (i.., reflectors, which
correspond to layer boundary sites), while the amplitudes R;
of the spikes are assumed Gaussian. The B-G model of each
reflectivity column X; = (Q;, R;) can be expressed as:

Q; and R; both contain independent random
variables, respectively Q;; and R;; (1 <i < 1)

. . PQi;=1)=
Q;;: Bernoulli random variable { P% Q;; _ Og =1

P(R;j | Qij = q): Zero-mean Gaussian random
variable with variance go2.

The parameters (), 0?) which characterize the B-G sequence,
as well as the variance of the observation noise, are assumed
to be known. Restoration of z; can be performed through
maximization of the a posteriori likelihood P(z; | 2;) [7],



1366

[11]. However, it has been empirically shown [8], [11] that
the following detection-estimation procedure is preferable:

(1) Detection of the reflectors: :
q; = a.rgma.xqu(qj | z5), (22a)

(2) Amplitude estimation:
#; = argmaxy P(r; | 2;, 4;). (22b)

P(g; | z;) can be evaluated easily, but its maximization (step
1, (22a)) is a combinatorial exploration problem which can
hardly be solved exactly in real-world conditions. However,
several efficient algorithms have been proposed to perform
the detection step in a suboptimal or near-optimal manner
[71-11]. Step 2 (22b) is simpler as P(r; | g;) is Gaussian, and
as all phenomena are linear; thus, r; is obtained in closed-form
and its computatation can easily be carried out using stan-
dard—linear—estimation algorithms such as Kalman filters
[8], [11]. However, the B-G approach is suboptimal in a 2-D
setting, since the lateral continuity of the layered reflectivity
section is not accounted for.

C. Markov-B—G Model

To make up for the inherent deficiency of single-channel
approaches such as B-G deconvolution, we propose a mul-
tichannel approach based on MBRF prior modeling of the
geometric characteristics of the unknown reflectivity section.
In order to define the a priori model completely, the distri-
bution of the amplitude of the spikes (which are located on
the boundary sites) must be specified. This should be done

in accordance with the specific characteristics of the problem

at hand. Here, it is desirable that 1) for physical reasons, the
amplitudes of spikes located on the same boundary be strongly
correlated; 2) the 2-D model be a true extension of the B-G
representation which showed its efficiency in a 1-D setting;
3) the complete model {T, Q, R} still be a UMRF so as to
fulfill constraint 4) defined in Section II. Therefore, the whole
2-D prior model is hierarchically defined as follows:

J .
P(r|t,q) = P(r1 | a) [[ P(r; | g5, ti-1, gj_1, 7i-1),

j=2
(23)

where every conditional probability on the right side factors
into a product of I locally dependent terms

I
P(r; | g; tj1, mj-1) = [[ P(ri; | giss 4110 tij—1s

i=1
\
t)_1j-10 Ti+1i-1, Tij—1s Ti—1j-1) (24)

with implicit modifications for j = 1,4 = 1, and ¢ = I
in accordance with the free boundary assumption. Now the
conditional probabilities appearing on the right side of (24)
are defined as follows.
1) If qij; = 0, then Tij = 0.
2) If one (and only one) transition variable is set among
t{+1j_1, t;—1,and t;_;;_,, then the reflector ry; is said
to have a unique predecessor Tiyq;j-1 (—1 < di < 1),
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in which case r;; is sampled from a first-order AR
DIOCESS: Ti; = GTiydij—1 + Ny - Ny is Gaussian with
zero-mean and variance (1 — a®)o? and a is adjustable
between 0 and 1 to control the degree of correlation
between spikes along the same boundary.

If r;; has either more than one predecessor or no
predecessor at all, it is sampled from the Gaussian

distribution with zero-mean and variance o2.

It is very easy to check that such specifications yield B-G
distributed reflectivity columns, while also providing suited
lateral correlation. Using (23) and (24) in conjunction with (2)
and (3), the joint probability P(t, ¢, r) = P(r | ¢, ¢)P(%, q)
can be fully factored. Therefore, the resulting compound
random field X = {T, Q, R} is still a UMRF. We call it
a Markov-Bernoulli-Gaussian (M-B-G) field.’

3)

D. Bayesian Multichannel Deconvolution using
M-B-G Priors

We now use the M—-B-G model defined above as priors
for MAP estimation of a 2-D reflectivity section. Let X =
{T, Q, R} be a M-B—G field. Since X can still be interpreted
as a vector Markov chain, the most efficient way to implement
an optimal MAP estimator is to use a .Viterbi algorithm
[25]. Unfortunately such a procedure is intractable, due to
the huge size of the corresponding state space. Instead, we
propose a scheme similar to the one used for single-channel
deconvolution: £, --,%  are computed recursively in a two-
step suboptimal MAP procedure:

1) Detection step: .
tj-1,8;) = argmaxg, . g P(tj-1, ¢; | 2, @;_1, F5-1),
(252)

2) Estimation step:
#; = argmaxy P(r; | 2, tj-1, @;, #5-1), (25b)

for j = 2,--+,J. .

The first step (25a) locates the reflectors in column Z;. To
do so, estimation of the previous column £;_; = (§;_,, #j-1)
is taken into account, via the introduction of the transition
column ¢;_;. Because of the unilateral structure of the M-B-G
model, the probability to be maximized in (25a) is factorable
into locally dependent terms. This detection step remains a
combinatorial problem which has about the same level of com-
plexity as (22a), and similar deterministic search algorithms

- can be used to compute a suboptimal solution [27].

The estimation step (25b) is also very similar to the B-G
case (22b), since P(r; | £;_1, q;, rj—1) is Gaussian, and since
all phenomena are linear. Therefore, estimation of r; can be
carried out optimally using standard least-square algorithms
or Kalman filters. :

Implementation of (25) is very similar to (22), and it requires
neither more memory nor processing time; the algorithm
itself is given in [27]. Note that the procedure is not self-
starting: evaluation of £, must be carried out using a B-G
deconvolution algorithm. Finally, it should be mentioned that
the B~G approach of Section III-B appears as a degenerate
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case of M—-B—G deconvolution, for which lateral correlation is
ignored by choosing an underlying MBRF with parameters

W=p =0
€= ’

E. Simulation Results

Many tests have already been carried out in the field of
seismic exploration, but also in nondestructive testing and in
medical ultrasonic imaging. The simulation results of Fig. 7
provide a comparison between the B~G method described in
Section I1I-B and the M-B~G approach proposed here.

Fig. 7(a) shows the synthetic reflectivity section, sampled on
65 columns of 51 points. Conventionally, reflectivity pulses
are represented as triangles of variable height, and positive
areas of signals are shaded in black so as to enhance the
figure. The wavelet depicted in Fig. 7(b) is sampled on 17
points. It presents all the characteristics of actual seismic

wavelets: nonminimum phase and poor spectral content, which
" makes the solution of the seismic deconvolution problem
quite difficult. In Fig. 7(c), the convolution product has been
computed as explained in Section II-A, and white observation
noise has been added. The signal-to-noise ratio (SNR), defined
as the ratio of the mean power of the noiseless observations
to the noise variance, was set to 10 dB.

The results obtained with the B-G deconvolution method
are shown in Fig. 7(d). The parameter values were chosen
empirically as follows:

SNR = 10 dB
A=0.1

The reflectivity section is roughly restored, but many details
are lost: thin layers or weak reflectors are hardly detected;
some columns are strongly distorted by artefacts such as false
alarms or doubled detection.

Fig. 7(e) depicts the M-B—G estimate, obtained for the fol-
lowing values of parameters, which were.chosen empirically:

SNR = 6 dB
w =p\=0029, p~ =0.045,e=0=> A =0.1. (26)
a = 0.999

Compared to Fig. 7(d), the accuracy of the estimates is greatly
improved. Differences between Fig. 7(¢) and the original
reflectivity section (Fig. 7(a)) are actually negligible. Even
small details, such as the double junctions in columns 24 and
55, are restored properly. This result illustrates the superiority
of the multichannel M—B-G approach which accounts for
lateral correlation, over the usual single-channel B-G approach
in which 1-D columns are processed independently from one
another. It should be stressed that the computational cost of
both methods is about the same.

Finally, M—B-G restorations of the same reflectivity section
(Fig. 7(a)) for observation noise levels corresponding to SNR
values of 7, 5, and 2 dB are shown in Fig. 8(a)~(c), respec-
tively. The values of the parameters were the same as in (26),
except that the SNR is decreased accordingly (respectively, 3,
1, and —2 dB). Compared to Fig. 7(€), the quality of the results
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is only slightly altered in Fig. 8(a) and (b), whereas it becomes
very poor in Fig. 8(c). In our opinion, this sharp degradation
of the performance of the method should be attributed to
the implementation of the MAP estimator rather than to
the prior model itself. As mentioned in Section III-D, the
algorithm proposed for M—-B—G deconvolution is suboptimal.
More precisely, it performs recursive estimation of reflectivity
columns, and decisions are taken without delay nor possibility
of reversion. In difficult conditions such as a SNR of 2 dB,
the drawback of such a recursive decision-directed procedure
is that a single error can jeopardize the whole estimation by
beirig repeated and amplified from the erroneous column to the
next. In this respect, global (i.e., nonrecursive) optimization
algorithms are  more robust and yield further improvements,
but at the expense of very high computational costs [28]. For
more precise indications about the performances of M-B-G
deconvolution, the reader is referred to [27] and [28], where
comprehensive simulation and real data processing results are
presented.

IV. CONCLUSION

In this paper, we addressed the problem of modeling 2-D
layered media. Restoration of such structures is a general issue
in many application fields such as seismic exploration, nonde-
structive evaluation or biomedical ultrasonic imaging. In these

" domains, standard approaches are usually one-dimensional,

which means that they cannot take lateral continuity of strat-
ified media into account. The object of this paper was to
design an adequate and theoretically sound statistical model
of 2-D layered structures and to use it as priors for maximum
a posteriori estimation, especially in the case of seismic
exploration.

To do so, we introduced and studied Markov—Bernoulli
random fields (MBRF’s). This original subclass of MRF’s
combines a compound structure including a line process [2]
and a unilateral approach which is reminiscent of the work
of Pickard on curious lattice processes [16]. A theoretical
study was conducted in order to investigate specific properties
of MBRF’s. The resulting model provides a very general
framework to Bayesian restoration of 2-D stratified media.

Then application to Bayesian multichannel seismic decon-
volution was considered. We proposed a true extension of
Bernoulli-Gaussian single-channel deconvolution [8], based
on MBRF prior modeling of the 2-D layered media to be
estimated. The practicability and the efficiency of the new
Markov-Bernoulli-Gaussian approach were illustrated by a
synthetic seismic example.

Future extensions include the derivation of other types of
algorithms for Bayesian estimation based on the same MBRF
model. Finally, the problem of estimating the parameters of
the model should also be addressed.

APPENDIX A ‘
MRF CHARACTERISTIC PROPERTY OF {T, Q}

Let us first consider the case of lattice A°. For any interior
site (4, j) of A°, define @7 = Q\{Q;;} and ¢” = q\{g;;}
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Fig. 7. Comparison of single-channel and multichannel deconvolution. (a) Synthetic reflectivity used for the simulations. (b) Seismic
wavelet (i.e., vertical blur function). (c) Observation sequences obtained by convolution between the reflectivity columns (a) and
the wavelet (b), and addition of white noise (SNR=10 dB). (d) Single-channel B-G deconvolution using the algorithm presented in
Section HI-B. (¢) Multichannel M—B—G deconvolution based on MBRF modeling (Section II-D). .

for any possible realization ¢ of Q. In order to characterize of P(g;; | N‘i’j), one must determine which variables the

the set of neighbors N7; of site (i, j) and the expression functional P(g:; | ¢, ¢*/) depends upon. Application of Bayes’
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degradation of the performance for SNR=2 dB, which may be attributed to the suboptimal recursive implementation of the MAP estimator.

rule to P(t, q) yields

Ptq) [ . PED)]"
P, 49) [” ) q>] &b

where g differs from ¢ only at location (i, j) by g;; =
1 — gi;. Quantity P(t, g)/P(¢, q) which appears in (A.1) can
be developed using (6b). Almost all factors cancel out between
numerator and denominator, and the resulting expression only
contains terms which explicitly depend upon g;;. We have

P(t, 9
P(t, q)
_ T(t{], i }1 IE,)T(@;, |t1/.+1j——17 -1 t>—1j'_1)

(t{_p t,_,a ij | q,,)‘r(q,, | t1+13 1 t; 1 t}—lj—-l)

P(gij | ¢, ¢7) =

which mmedmtcly yields the form of N; given in (7) and the
expression of P(g;; | N;) given in (8) The case of interior
sites of A/, A~, and A\ can be treated in a similar manner.
The case of sﬁes at the boundaries of A does not present

further difficulties, except that one is required to consider the
fully written form of P(t, g) given by (6a) instead of (6b). By
doing so, one shows that the sets of neighbors of such sites
are simply those given in (7), once the undefined sites have
been removed.

APPENDIX B
PROOF OF THEOREM 1-AND COROLLARY 1
_ Let us first define the following properties.
PO) The restriction of P to maximal cliques of UMRF
{T, Q} is invariant and equal to 7.
P1) 7 fulfills the following property: for any triplet
of 0-1 binary variables (#/,t~,¢\), 7(t/,t",t\) =
(@t )r(t)r(t)).
P2(5)) P(QJ) = Hz:lT(qﬂ)
PS(J)) P(q]1 J) - T(qu’ tl]? tl])T(qIJ9 tlji tI])H;—-2
(QIjv 1/,]7 ij) t;]) / \
P4(])) P(tj) - T(tlj) tl])T(tI]1 tI])Hz:Z T(tm? t;__ﬂ t )
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PS(J)) P(tJ) = Ht—2T( H’l,“lT(tl])Hl—l T(t
P6(5)) P(gi41,¢;) = T(ng+1,té], t1J)T(QI;+1,t1,1t}_1j)
Lo (@1, thpaj b by
=2 T(Gii+1, i+1j0 Yijs i—lj)'
In order to establish Theorem 1, i.e., the equivalence be-
tween PO and P1, we prove the following set of implications:

P2(5) = P3(j) = P4(j) }

P1
N PS(IZ}} = P6(j) = P2(j +1). (B.1)

* P2(j) = P3(j): We first use Bayes’ rule to decompose
P(qj, t;) as P(qj, t;) = P(t; | g;)P(g;)- Then, using
(3a), (5a), and P2(j), we obtain

P(g;, t;) = r(t;j, £y | @ui)(];, t;j | arj)

HT 57 tt_g’ tz] I q'J)HT(qi])

=2

= rlaj, 35, t1)7(ars, té,», )
: HT(Qija t{js i) t}])
* P3(j) = P4(j): Obvious by summation of P(g;, t;) over

q;-

* P1 and P4(j) = P5(j): Immediate by substitution of the
factored form of 7 into the expression of P(%;).

* P1 and P5(j) = P6(j): First, P(g;,,, ¢;) is decomposed
using Bayes’ rule ‘

P(g;41, t;) = P(g41 | £)P(2))- (B2)

Equations (3b) and (5b) allow P(g;y; | t;) to be
expressed as

P(gjy1 | t) = 7(q1+1 Itéja t)T(ar+1 |t t}—lj)
: I-1
'HT(qu"Fl |tz[+lj7 ij? 5—1_1) (B3)
=2
and the separability property P1 can be used backwards
to rewrite P5(;) as

I-1 '
P(t)) = 7(th;, t;)7(tr; ty_1;) [T 7tirso t50 t1-1s):

=2 (B 4)
Substitution of (B.3) and (B.4) into (B 2) yields the result.

* P6(j) = P2(j + 1): Immediate by summation of
P(g; 1, t;) over t;.

Proof of Theorem 1 (Equivalence between PO and P1):

* Necessary condition PO=-P1: Observe that (4) and (5¢)
imply that P2(1) holds. Therefore, from (B.1), P4(1) also
holds. We now evaluate P(t,_,_1 bt }_1 Hh2<i <L
I — 1 in two different ways.

On one hand, for any ¢ such as 2 < ¢ < | —
1, summation of P4(1) over all possible values of
tl\{t{+1,1a tins t}—1,1} yields

P(tz[+1,1’ tin t}—l,l) = "'(t{+1,1)“'(t.’—1)7'(t}_1,1)- B5)
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On the other hand, since random variables {7, 11 Tixs
Ti\-l,l} are placed on a same clique, PO implies that

P(t{+1,1’ ti, t}—1,1) = T(t{+1,1’ t t}—1,1)- (B.6)

Since (t{ 1110 Lis t)—l,r) denotes any binary triplet, (B.5)
and (B.6) show that P1 is actually a necessary condition
for the fulfillment of PO.

 Sufficient condition P1 = PO: Since P2(1) and P1
are fulfilled, then, by induction on (B.1), P2(5)—P6(j)
hold for any value of j. PO is immediately obtained by
summation of the proper variables in P3(j) and P6(j). O

Proof of Corollary 1: If T is separable, then P2(j) and
P5(j) hold for any value of j. Summation of the proper
variables in P2(j) and P5(j) yields

V(i j) € A®, P(qn) = T(qu)
Vi, §) € N, P(t;) = 7(t])),
V(E, j) € AT P(t,,) =7(t;;);
V(s j) € A, P(t ) = T(t i)

Therefore, the distribution of each type of location or transition
variable is invariant. Since these variables are binary, they
necessarily follow Bernoulli distributions whose characteristic
parameters are defined by (10) and (11).

Moreover, P2(j) and P5(j) show that for any 7 random
variables belonging to Q; (respectively T , and T ) are
‘independent. Thus, Corollary 1 holds. O

VII. APPENDIX C
CHARACTERIZATION OF COMPATIBLE SUBSETS

In order to prove Theorem 3, preliminary definitions and
properties are stated. Then, it is shown that any MBRF
{T, Q}4 built on a convex set A is compatible with any
MBRF {T, Q}A on a larger finite subset A of Ao. Finally,
for any nonconvex finite subset A of A, another finite set
A can be found so as to contain A although {T', @} and
{T, Q} 4 are not mutually compatible. To begin with, let us
define the notion of boundary, which is central in the proof
of Theorem 3. ’

Definition 5: The left boundary B'(A) (resp. the right
boundary B"(A)) of any finite subset A of Ao, contains the
elements of A with no left (resp. right) neighbors in A (see
Definition 2):

X e B{(A) & X €A, N’(X)nA @,
XeB (A)e XeAN(X)NA=0. (CI)
The boundary of A is B(A) = B'(A) UB"(A).

Property 1: For any X on A, there exists at least one
admissible path L{ X, Xn) (see Definition 3) which connects
X to B'(A) and B"(A) in A in the following sense:

X, € B/(A), Xy € B"(A),
X € L(X1, XN) CA.
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A direct consequence is
A#P=>B'(\)#2 and B'(A) # Q.

Proof: Such an admissible path L(X;, Xy) is obtained
by construction by both sides of X. From (C.1), whether
X € B'(A), in which case X; = X, or else X = X, (n is

- unknown at this point) and there exists X,,_; € N’(X,,) NA.
Repeated application of the procedure provides a growing
series of sites on A, all different, so B'(A) must be reached to
end the procedure because A is finite. Symmetrically, B"(A)
is reached the same way and L(X;, Xy) is finally obtained
by concatenation of the two finite series (X;,---,X,) and
(Xn,-, Xn). O

Property 2: For any A C A, we have:
A convex => B(A) ¢ A.

Proof: Since A C A, there exists X in A and not in
A. From Property 1, at least one admissible path L(Xy, Xn)
connects X to B’(A) and B"(A). Now if B(A) C A, the
particular path L(X,, Xn) violates the convexrty of A since
X €A, Xy €A and X ¢ A O

Property 3: Forany X € B(A),{T, Q}A, and {T, Q}A\{X}
are mutually compatible.

Proof: We have to prove (17) with A = A\{X}. Since
{T, Q}4 is a MBRF on A, the expression of P5(A) is given
by (14) and P4(A) is obtained by

1
Pa(A) =" Pa(). (C2)
X=0

To proceed further, it is necessary to mvestrgate separately
the four possible cases: X = Qy;, X = T‘], X =T, and
X= T\ Here, only one of these cases is detailed. The result
for the other three can be obtained in a similar manner.
Assume that X = T;; and X € B'(A). From (13), (18),
and (C.1), we have Q,J & C7;, so as separability applies to

7(C};) in (14):
7(C3;) = 7(t5)7(Ci\ {5 1)

Hence, in (14), T;; only appears in 7(C%;,,), which is the
unique term to be summed in (C.2):

1 . { —
T(Ct. = { if Ct]+1 = {Tq‘j},
XZ=0 (i) 7(C J+1\{t‘l]})’ otherwise.
The resulting form of P4(A) is nothing but P4(A) as it
would have been directly written according to (14). A similar
proof can be derived for the three other cases, and also for
X € B"(A). O
Proof of Theorem 3:
* Sufficient condition (Aconvex = A CSS): Let A be
any finite subset of A, and A any convex subject of
A (A € A). From Property 2, there exists at least one
element X; of B(A) not in A and from Property 3,
{T, Q}s and. {T, Q}a\(x,} are mutually compatible.

Now either A = A\{X1}, hence the result, or there exists
at least one element X, of B(A\{X1}) not in A. In
this case, the procedure is repeated until A is reached.
Mutual compatibility between {T, Q}a and {T, Q}a
results from successive descending compatibility.

» Necessary condition (Anonconvex => A not CSS): Let

A denote -any nonconvex finite subset of A, (Fig. 9
‘depicts the case of a rectangular subset). Among all the
admissible paths which violate the convexity of A, some
of them have a minimal length N. Let L(X;, Xn) one
of the minimal paths. Obviously, L(X1, Xn) N A is

" reduced to {X1, Xn}, otherwise a (shorter) subpath of
L(X;, Xn) could be substituted for L(X;, X ). For the
same reason, we have also

NY{(X,)NnA=g,
N (X,)NA=@,

forn=3,---,N -1,

forn=2,---,N - 2.

Now, consider A = AU L(X;, Xn); the ~6bject of the
proof is to show that P5(A) # Pa(A). Using (14) to
express both Py(A) and P4(A), one gets the relation

P = P TR T ) ()
with X; = (N°(X;) UN'(X3) n 4, Xy =

(N"(Xn_1) UN'(Xy)) N A (note that L(X1, Xn) N
X1 ={X1} and L(X;, Xn) N XN = {Xn}) and

P(Il, Z2,*yTN-1, IN)
N-1

= 1(z1)7(z2 | )7 (2N | ZTp-1) H T(ZN | Tn-1). (C4)
n=3

Equation (C.4) shows that P(z1, 2, +,ZN—-1, ZN)
is the measure of a nonhomogeneous Markov chain X =
(Xl, Xz, e, XN, XN). Actually, (C4) is of the form
of (6), so X is a paiticular MBRF. Now P, (A) is given
by summation of Pa(A) over all the joint realization of
(X2,--+,Xn-1). From (C.3), the summation yields

P(Il, IN)

Pald) = Pa) i yraw)

P4(4)
and P5(A) # Pa(A) tumns out to be equivalent to a

much simpler condition regarding the nonhomogeneous
Markov chain X only:

3z, zn such as P(z, zn) # 7(z1)7(2N). (C.5)

Whether from (C.4) or from the invariance property of
MBRF’s, we have P(z1) = 7(z1) and P(zn) = T{zN),
50 (C.5) means that X, and X  are mutually dependent.

Let us introduce the tramsition matrix Py =
{P(XN =3 | X, = i)}ij between X, and X n (it is
understood that 7 and j, respectively, describe the state
spaces of X; and Xy). Then, classical properties of
Markov chains [29] indicate that an equivalent condition -
of (C.5) and Py is

rank (P1y) > 1. (C.6)
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L(Xl, X5)
X3.

W \é’ﬁo
SE A SR% 2

Q= ]
Fig. 9. Example of a nonconvex set A. Pixels in the finite rectangular
set A are represented by the white circles and bars. The path
L(X1, X5) = (X1,---,Xs) is one of the admissible paths of minimum
length (N = 5) that violate convexity. In such a sitvation, it is
shown that {T Q}4 is not mutually compatible with {T, @}a, where
A = AU L(X;y, X5).

o=
A

On the other hand, since X is a Markov chain, we have
Pin = PoP3---Py, where
P, = {P(X2 = j | X1 =)},

= {P(Xn =j|Xn—l =7:)}ij) n=3,.-,
Py={P(Xy=3|Xn-1=1)}i
are the successive transition matrices between X, Xz, --
,Xn. Since Xs,---,Xn_1 are binary variables, the size
of P3,---,Py_; is 2 X 2. In addition, the maximum
number of rows (resp. columns) of P (resp. Py) is also

equal to two. Thus, the rank of all matrices P3,---,Pn
is less than or equal to two, and (C.6) is equivalent to

rank (P,,) = 2, ,N,

N-1,

foralln=2,.--
which in turn is equivalent'to

3z, 2 such as 7(zy, T2) # 7(21)7(2),
I2,_1, Zn such as T(Tn-1, Tn) # T(Tn-1)7(Tn)
foralln=3,---,N —1,
3zn_1, Zn such as T(zn-1, z}v) # 7(zn-1)T(ZN).
' (C.7)

Finally, (C.7) is fulfilled because from (11) and (13), we
have (g, t) # 7(q)7(t) for any ¢ € {&)), @), (t)),
(!, t7), (t7, t\), (¢, V), (t/, t~, t\)} at least for the
instance of (g, t/,1,t\) = (0 0, 0, 0), provided that
we are in the general case: p/ 0, p~ #0, N\ #0. O

APPENDIX D
VIOLATION OF THE MRF PROPERTY FOR @

The object of Appendix D is to build a counter-example
which shows that the neighborhood system of random field @
is not local. Let (4, j) be an interior site of A°,2 < ¢ <
I —-1,2 € j € J — 1. The idea consists of computing
P(gi; | %) for particular realizations of @, and of showing
that the resulting expression depends on sites located at
arbitrarily large distances from (¢, 7). From (20), it is clear
that P(g;; | /) only depends upon realizations of columns
Q;_1, Q;, and Q; ;. In the sequel, only the realizations of
these three columns will be explicitly defined, and it will be
assumed that the rest of the configuration is not in a forbidden
state, i.e., P(q) > 0. For an arbitrary length parameter L such
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that 0 < L < I — i, we first define particular realizations of
columns Q;_,, @; and Q;,. This configuration is made to
depend on L such that arbitrarily increasing values of L only
modify variables located at arbitrarily increasing distances
from site (4, j). Then, through computation of transition
probabilities between columns and use of (20), we show
that the corresponding value of P(gi; | ¢*) varies with L
even when L becomes arbitrarily large. Hence, dependence of
P(g;; | ¢*7) on g" is not restricted to a local neighborhood
of (i, §).

Define the following configuration (g,, ¢;) of two adjacent
columns:

if L is even:
[0 071
0 1]:
10
0 1§:
@ar @)= . |- )
0 1|:+L
0 0
\_0 01
if L is odd:
[0 071
0 1|:
10
0 1]:
(@G ®)=1 s
1 0|:+L
00
L0 011

and assume that the realization of (Q;_1, @;, Qj41) is
(4, 95, 4,)- An essential step for the computation of P(g;; |

¢") is the evaluation of P(q; | g,)- In order to simplify the
derivations, the parameters of the MBRF -{T, @} are chosen
according to

W= pu"
e=0,

which implies that

\ =
=y O<pu<l, D.1)

A=1-(1-p) (D.2)

Evaluation of pr, = P(q, | q,) can be carried out recursively
on L as follows: we have

pr =Y P(ay | tas)P(tas l 9.);
, t.,
where t,; denotes the realizations of the tramsition column
between g, and g;. Then, using Bayes’ rule yields

pr = TP | ta)Plas |t .

tas

(D3)
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Since € = 0, P(g; | to5) and P(q, | t.5) are equal to zero
when £, is not compatible with the configuration (gq,, ¢;), and
are equal to one otherwise. Therefore, (D.3) can be written as

pL= Pltw)
¢~ P(g,)’
ab

where the sum extends over all the configurations of transition
variables which are compatible with (g,, g;). Finally, Corol-
lary 1 in conjunction with (D.1) and (D.2) yield the following
explicit recursive expression

{P21+1 = 'L—‘)—(le 1+ par),
Part2 = J>‘—"l(ltpzz—1 + pat),

It can be easily verified that the initial conditions are given by
p-1 =1 and pp = 0. We now proceed with the evaluation of
P(g;; | g7). Using (20) and Bayes’ rule, we get

1 A P(q, | 9,)*P(@,)P(a) ]~
Plag147) = [1+, Plas | 9,)2P(a,)? ]

and noticing that P(g, | ) is equal to py_1, we can rewrite
P(g; | ¢7) as

for any [ > 0.

-1

A(”L)z] )

P(g; | ¢9) = [1"' 1
where (uz) is defined by
PL—1
wr={52)
%(%), if L is odd,

From (D.2), it is straightforward to show that series (up) is
characterized by the unique recursive equation
' 1-p 1

p 14+up

if L is even,
(L >0).

UL+1

with initial condition u; = 0. General propei-ties of series of
the form .

k
1+v,’

indicate that if »; > —1, the series converges toward a limit
Voo defined by

k>0

Un+1 =

_VIFdR-1

et 2

Furthermore, if v; # Voo, then the series |V, — Voo| strictly
decreases to zero. Therefore, since u; # uo and since
P(g;; | ¢"9) is a continuous and strictly monotonous function
of ur, P(g;; | ¢¥) converges to the limit

- )y -1
| gt = 2
Poo(Qtqu ) [1‘*’1_)\(“00)] s

but never reaches it. Consequently, only the length of the
columns limits the size of the neighborhoods of random field
Q, i.e., the neighborhood system of @ is not local.
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