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Regularized Adaptive Long Autoregressive Spectral
Analysis

Jean-François Giovannelli, Jérôme Idier, Daniel Muller, and Guy Desodt

Abstract—This paper is devoted to adaptive long autoregressive
spectral analysis when i) very few data are available and ii) infor-
mation does exist beforehand concerning the spectral smoothness
and time continuity of the analyzed signals. The contribution is
founded on two papers by Kitagawa and Gersch [1], [2]. The first
one deals with spectral smoothness in the regularization frame-
work, while the second one is devoted to time continuity in the
Kalman formalism. The present paper proposes an original syn-
thesis of the two contributions. A new regularized criterion is in-
troduced that takes both pieces of information into account. The
criterion is efficiently optimized by a Kalman smoother. One of the
major features of the method is that it is entirely unsupervised. The
problem of automatically adjusting the hyperparameters that bal-
ance data-based versus prior-based information is solved by max-
imum likelihood (ML). The improvement is quantified in the field
of meteorological radar.

Index Terms—Adaptive spectral analysis, hyperparameter esti-
mation, long autoregressive model, maximum likelihood (ML), me-
teorological Doppler radar, regularization, spectral smoothness,
time continuity.

I. INTRODUCTION

A DAPTIVE spectral analysis and time-frequency analysis
are of major importance in fields as widely varied as

speech processing [3], acoustical attenuation measurements
[4], [5], ultrasonic Doppler velocimetry [6], or Doppler radars
[7]–[11]. [12] gives a synthesis of the various methods for
these problems, and provides a number of bibliographical
introductions.

The present paper focuses on short-time analysis. Typically,
for analysis of pulsed Doppler signals, only eight or 16 sam-
ples are available to estimate one spectrum, with possibly var-
ious shapes (multimodal or not, of large spectral width or not,
mixed clutter, etc.). Under such circumstances, the construction
of the sought spectra becomes extremely tricky on the sole basis
of the samples. As a point of reference, let us recall that sev-
eral hundred samples are usually needed to compute an aver-
aged periodogram with a fair bias-variance compromise [13],
[14]. Therefore, parametric methods have generally been pre-
ferred, among which autoregressive (AR) methods play a cen-
tral role. The AR coefficients estimation is usually tackled in the
least squares (LS) framework [15], [16]. These methods often
provide a solution at points where nonparametric methods are
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useless. But when the number of data is very low, these tech-
niques become, in their turn, useless, especially if various spec-
tral shapes are expected due to model order limitations.

In order to construct a reliable image, structural information
about the sought spectrum sequence must be accounted for. Our
investigation is therefore restricted to the cases in which two
kinds of information are foreknown:spectral smoothnessand
time continuity. This a priori information is the foundation of
the proposed construction.

In the framework of stationary AR analysis, Kitagawa and
Gersch proposed a method integrating the idea of spectral
smoothness [1] by which ahigh-order AR modelcan be
robustly estimated, thereby getting around the difficult problem
of order selection and providing the ability to estimate various
spectral shapes. For the nonstationary case, and aside from [1],
the same authors introduced in [2] a Markovian model for the
regressor sequence in the Kalman formalism in order to reflect
time continuity. The present paper reviews [1] and [2] and
makes an original synthesis suited to the special configuration
of Doppler signals. A new Regularized LS (RegLS) criterion
simultaneously includes the spectral and time information and
is optimized by a Kalman smoother (KS).

One of the major features of the method is that it is entirely
unsupervised: the adjustment of parameters that weight the rel-
ative contributions of the observationversusthea priori knowl-
edge is automatically set by maximum likelihood (ML).

A comparative study is proposed in the context of pulsed
Doppler radars. Special attention is payed to atmospheric
and/or meteorological context imaging or identification:
ground clutter, rain clutter, sea echos, etc. Adaptive spectral
estimation of mixed clutter is achieved by means of several
usual AR methods and the proposed one. The latter achieves
qualitative and quantitative improvements w.r.t. usual methods.

The paper is organized as follows. Section II mainly intro-
duces notations and problem statement. Section III focuses on
usual LS methods and usual adaptive extensions. The proposed
method is presented in Section IV, and Section V deals with
the KS. The problem of automatic parameter estimation is ad-
dressed in Section VI. Simulation results are presented in Sec-
tion VII. Finally, conclusions and perspectives for future works
are presented in Section VIII.

II. PROBLEM STATEMENT

The problem is that of processing pulsed Doppler signals
from electronic scanning radars or ultrasound velocimeter. The
reader may consult [6], [7] for a technological review. The
pulsed Doppler systems are such that the observed signals do
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Fig. 1. Simulated observations over 110 range bins with eight samples per bin (corresponding to eight Doppler pulses). The left-hand side (LHS) figure shows
the true spectra sequence. The narrow zero-mean spectra characterizes ground clutter (bin 15 to 57). Rain clutter induces more or less broad, single-mode spectra
(bin 35 to 75). Lastly, sea echos resulting from wave phenomena exhibit two maxima (bin 56 to 95). The middle figure shows the real part and imaginary part of
the data and the rhs one shows the associated periodograms.

not occur in the usual form of time-frequency problems. So,
neither the usual time-frequency methods nor the one proposed
by Kitagawa and Gersch can be directly applied, and part of the
presented work consists in constructing an appropriate method
for the encountered configuration.

The measurements are available as a set of complex signals
, depth-wise juxtaposed in range bins. It is

assumed that each is a sample vector
extracted from a zero-mean stationary process. Fig. 1 gives a
Gaussian simulated example over bins for which

samples are observed per bin. The successive regressors
are denoted , where indicates the considered bin

and the order of the autore-
gression coefficient . Let us note

the collection of the whole set of coefficients. Let us also
introduce and for signal and prediction error powers. The
remainder of the paper is devoted to estimation of these quanti-
ties. The next section deals with the usual LS methods and their
adaptive extension, and shows their inadequacy for the problem
at stake.

III. REVIEW OF CLASSICAL METHODS

A. Stationary Spectral Analysis

This subsection is devoted to spectral analysis applied to a
single bin . Assuming a Gaussian distribution for the observed
signal, the likelihood of the AR coefficients shows
a special form [17, p. 82], but its maximization raises a diffi-
cult problem. A few authors [18], [19] have undertaken to solve
it, but firstly, the available algorithms cannot guarantee global
maximization, and secondly, they are not computationally ef-
ficient for the applications under the scope of the paper. To
remedy these disadvantages, the following approximation of the
likelihood function is usually accepted [16, p. 185]:

(1)

involving the norm of the prediction error vector

(2)

i.e., a quadratic form with regard to the , namely, the
LS criterion. The and are the vector and matrix
designed according to some chosen windowing assumption
[15, p. 217], [20, (2)]. There are four possible forms: nonwin-
dowed (covariance method), prewindowed, postwindowed,
double-windowed, i.e., pre- and postwindowed (autocorrelation
method). Let us note , the size of , ,
or , according to the chosen form. This choice is of
importance since it strongly influences spectral resolution for
short time analysis [15].

Whatever the chosen form, the maximization of (1) comes
down to the minimization of (2) and yields

(3)

As a prerequisite, the problem of choosing the model order
must be tackled. must be high enough to describe various PSD
and low enough to avoid spurious peaks, i.e., to ensure spectral
smoothness. This compromise can usually be set by means of
criteria such as FPE [21], AIC [22], CAT [23], or MDL [24],
but, in the situation of prime interest here, they fail because the
available amount of data is too small [25]. Actually, there ex-
ists no satisfying compromise in term of model order, since too
few data are available to estimate DSPs with possibly complex
structures.

B. Adaptive Spectral Analysis

For the “multirange bin” analysis, the first idea consists in
processing each bin independently. According to the LS ap-
proach, it amounts to minimizing a global LS criterion

(4)

However, the resulting spectra hold unrealistic variations in the
spatial direction (see Fig. 4). In order to remedy this problem,
the adaptive least squares (ALS) approach accounts for spatial
continuity by processing the data from several bins, possibly in
weighted form, to estimate each . A first approach uses a
series of LS criteria including the data in a spatial window of
length . A widely used alternative is the exponential decay
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memory which uses geometrically weighted LS criteria, with
parameter . The latter is more popular because it is
simpler: is merely incorporated into a standard recursive LS
algorithm [15, p. 266]. In both cases, the degree of adaptivity,
i.e., the spatial continuity is modulated by or .

C. Conclusion

Whatever the variant, the main disadvantage of these ap-
proaches has to do with the parameter settings.

1) From the spectral standpoint, smoothness is introduced in
a roundabout fashion,via the model order (adjusted by)
and the compromise no longer exists when the amount of
data is reduced.

2) From the spatial standpoint, continuity is also indirectly
introduced (and tuned by or ) and no automatic
method for adjusting this parameters is available.

These limitations are unavoidable in the simple LS formalism,
and to alleviate this problem, we resort to the regularization
theory. In this framework, the proposed approach:

• includes the spectral smoothness and spatial continuity in
the estimation criterion itself;

• allows long-AR model to be robustly estimated, and then
various spectra to be identified;

• provides automatic parameter setting, i.e., an entirely un-
supervised method.

IV. L ONG AR (SPATIAL CONTINUITY) SPECTRALSMOOTHNESS

A. Spatial Continuity Model

The first idea consists in building a spectral distance. Fol-
lowing [2], starting with the PSD in bin

(5)

the proposed spectral distance betweenand is founded
on the th Sobolev distance between and

Calculations similar to those of [2] yield a quadratic form

(6)

where is the th spectral matrix.

B. Spectral Smoothness Model

The spectral smoothness measure proposed by Kitagawa and
Gersch in [2] (see also [26]) is easily deduced from (6) as the
distance to a constant DSP

(7)

According to [1], [2], , but as well as (6) and (7) can
be extended to .

Remark 1: Strictly speaking, and are not
spectral distances nor spectral smoothness measures since they
are not functions of the PSD itself. However, they are quadratic
and this has two advantages: it considerably simplifies regressor

calculations (see Section V) as well as regularization parameter
estimation (see Section VI).

C. Double Smoothness

Starting with the spectral smoothness (7) and the spatial dis-
tance (6), a new quadratic penalization is introduced

(8)

It integrates both spectral smoothness and spatial continuity, re-
spectively, tuned by and .

Remark 2: The penalization (8) has a Bayesian interpretation
[27] as a Gaussian prior for the sought regressors

(9)

useful for hyperparameter estimation in Section VI.

D. Regularized Least Squares

From the LS criteria (4) and the penalization term (8), the
proposed RegLS criterion reads

(10)

involving three terms which respectively measure fidelity to the
data, spectral smoothness and spatial regularity. The regularized
solution is defined as the minimizer of (10)

(11)

Remark 3: The regularized criterion (10) has a clear
Bayesian interpretation [27]. Likelihood (1) and prior (9) can
be fused thanks to the Bayes rule, into a Gaussian posterior law
for the sought regressors

(12)

Solution (11) is also the MAP estimate.

E. Optimization Stage

Several options are available to compute (11). Since
is quadratic, is the solution of an

linear system. Moreover, since the involved matrix is sparse,
direct inversion should be tractable but not recommendable
here ( , ). Another approach may be found
in gradient or relaxation methods [28] since is
differentiable and convex. But, given the depth-wise structure,
another algorithm is preferred: KS. Here we resort to the
initial viewpoint of Kitagawa and Gersch in [2]. However, it is
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noticeable that [2] does not mention the minimized criterion,
whereas our KS is designed to minimize (10).

V. KALMAN SMOOTHING

A. State-Space Form

1) The successive prediction vectors are related by a first-
order state equation

(13)

in which each is a complex, zero-mean, circular, vector
with covariance matrix and the -sequence,
is depth-wise white.

2) The full state model also brings in the initial mean and co-
variance: the null vector and , respectively.

3) The observation equation is the recurrence equation for the
AR model in each bin, written in compact form as

(14)

i.e., a generalized version of the one proposed in [2], adapted
to depthwise vectorial data. Each is a complex, zero-
mean, circular vector with covariance . The se-
quence is also depthwise white.

Remark 4: [2] accounts for spatial continuity by means of a
special case of (13): . The latter has two draw-
backs, though. Firstly, it is introduced apart from the idea of
spectral smoothness. Secondly, from a Bayesian point of view,
this equation is interpreted as a Brownian process with an in-
creasing variance, which may cause drifts to appear in the es-
timated spectra. On the contrary, the new coefficientscan
be chosen in order to ensure stationarity of the model (13) or to
minimize the homogeneous criterion (10).

B. Equivalence Between Parameter Settings

1) Homogeneous Criterion:This section establishes the
formal link between the parameters of the KS (and )
and those of the regularized criterion (10) (and ). [29]
states that the KS associated to (13) and (14) minimizes

(15)

Partial expansions yield identification of (10) and (15) through
the following count-down recursion.

1) Initialization

and

2) Count-down recursion

and

3) The last step yields the initial power

with . These equations allow us to pre-
compute the coefficients of the KS in order to minimize
(10).

2) Limit Model: This section is devoted to the asymptotic
behavior of the -sequence. For the sake of notational sim-
plicity, the sequence is rewritten in a count-up form

(16)

It is clear that since . Let us introduce
. It is straightforward that , so the

entire -sequence remains in . Moreover, if it exists, the
limit necessarily fulfills . Elementary
algebra yields

(17)

with . Finally, one can effortlessly see that
, we have , i.e.,

is a Lipschitz function with ratio in . Hence, the sequence
effectively converges toward . It is also easy to see that the
sequence is monotonous: increasing if and decreasing
otherwise. In the present case, comparison ofin (16) and

in (17) shows that the -sequence is decreasing (in the
count-up form), hence, is increasing.

Finally, since , the corresponding limit state
power is given by

(18)

3) Associated Stationary Criterion:This section is devoted
to the stationary limit model: the special case of (13), with

and , i.e., a stationary first-order AR model for the
-sequence. The initial power is denoted for notational co-

herence, even if it is not defined as a limit. It is actually defined
according to and in order to ensure stationarity for the
first-order AR model: .

Replacement of , , by , , in (15) yields
the criterion minimized by the stationary KS
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where superscript “” stands for stationary. Since we have
from (18) and from (17), one can

effortlessly see that

So the stationary criterion and the initial homogeneous
one are equal apart from the edge effects, i.e., two
terms regarding the first and last regressors. As a consequence,
the minimizer of and are practically equivalent
and the latter is preferred since it does not require precomputa-
tion of the and .

C. Kalman Smoother Equations

• Initialization

(19)

(20)

• Filtering phase (for )
— Prediction step

(21)

(22)

— Correction step

(23)

(24)

(25)

(26)

(27)

• Smoothing count-down phase (for )

(28)

(29)

(30)

D. Fast Algorithm

Fast algorithms used to take a primordial position in past
decades, especially for real-time computations. More specifi-
cally, for adaptive spectral analysis of the ultrasound Doppler
signal, the MARASCA algorithm [27] has been used in a
real-time high-resolution velocimeter prototype. But it has two
drawbacks, resulting in a rigid spectral and spatial continuity
tuning. On the one hand, it proceeds by blocks and incorporates
spatial continuity by using the regressor of the current block as
a prior mean for the next one; on the other hand, the fast version
is developed only for the zero-order smoothness .

To our knowledge, no fast algorithm exists for the KF in the
configuration of interest, mainly because of the structures of the

state equation and the smoothness matrix. However, a fast algo-
rithm may be developed on the basis of high-order displacement
matrices [30]. More precisely, it is easy to see that the displace-
ment matrix of order (if integer) is null for . Taking
advantage of this property may result in a fast version of the
proposed algorithm.

However, calculation time problems are now less crucial than
they used. The standard KS algorithm only takes 0.36 s1 to
process the entire data set of Fig. 1, so real time computations
can probably be achieved.

VI. HYPERPARAMETERSESTIMATION

The estimated -sequence and spectra sequence depends on
hyperparameters: smoothness and AR ordersand ,

power sequence , and two regularization parametersand
.

A. Power Parameters

The parameters are needed by the proposed RegLS
method as well as the LS and ALS procedures, and the same
empirical estimates will be used for all of them. In the crite-
rion (10), parameters only act as weighting coefficients, so
that the successive terms are of equivalent weight. The proposed
empirical technique replaces the prediction error powersby
the signal powers themselves. A simple empirical estimate

could be used. However, since the estimation
variance is high for , in practice, a more efficient tech-
nique consists in smoothing the sequence. Let us note that
[2] proposes a scheme, which is equivalent in principle.

B. Order Parameters

The proposed framework allows us to estimate long AR
models to describe various spectral shapes. Moreover, by
choosing the maximal order , we get rid of the
difficult problem of model-order selection. In fact, as expected
and confirmed in Section VII-C, as long asis large enough,
it does not significantly affect the spectral shape.

On the other hand, to our experience, the smoothness order
does not affect the spectrum sequence provided that . So
the smoothness order isa priori tuned to , i.e., a first-order
derivative spectra penalization. Moreover, Section VII-C also
provides a quantitative sensitivity study of the spectra sequence
with regard to this parameter.

C. Regularization Parameters

The problem of regularization parameter estimation within
the proposed framework is a delicate one. It has been extensively
studied and several techniques have been proposed and com-
pared [26], [31]–[35]. The ML approach is often chosen within
the Bayesian framework mentioned in Remarks 2 and 3. The
Gaussian likelihood function (1) and the Gaussian prior (9) to-
gether yield a Gaussian marginal law for the observed samples

, i.e., the regularization parameter likelihood. The
hyperparameter-co-log-likelihood (HCLL) is easily computed

1The proposed algorithm has been implemented using the computing envi-
ronment Matlab on a personal computer, Pentium III, with a 450 MHz CPU and
128 Mo of RAM.
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for a given hyperparameter set, as a function of innovation vec-
tors and covariances , i.e., two of the KF subproducts

ignoring constant coefficients. This expression is the generaliza-
tion of a more conventional identity, available for scalar obser-
vations [2]. The error covariance matrix is an matrix,

possibly ranging from to according to
the windowing form and model order. Since is selected
in the presented computations, no specific algorithm has been
developed for inversion nor determinant calculations.

The ML estimate

(31)

can be computed by means of several algorithms: coordi-
nate/gradient descent algorithm [28] or EM algorithms [36],
[37], but none of them can ensure global optimization. Here,
the optimization stage is tackled by means of a coordinate
descent algorithm with a golden section line search [28]. Since
HCLL is a function of two variables only, the optimization
stage only requires about 10 s.

VII. SIMULATION RESULTS AND COMPARISONS

The present section assesses the effectiveness of the proposed
method, compared to the usual ones by processing the example
shown in Fig. 1.

A. Quantitative Comparison Criterion

Since the true spectrum sequence is known in the presented
simulations, quantitative criteria are computable on the basis
of distances between estimated spectra and true ones

, accumulated over the bins. Normalized distances

with and have been computed. The normalization is
chosen so that a null estimated spectrum results in a 100% error.
Practically, the integrals are approximated by discrete summa-
tion over the frequency domain , , with

.

B. Tuning Parameters

1) Usual Methods:Since no automatic parameter tuning is
available for usual methods, these parameters have been chosen
in order to produce the best distance. Moreover, we have
checked that such a quantitative procedure finds itself in good
agreement with the visual appreciation.

1) First of all, it is noticeable that, even for a short model,
the nonwindowed and prewindowed methods systemat-
ically yield numerous spurious peaks. The best results

Fig. 2. The left and right figure, respectively, show HCLL andL distance
(L behaves similarly) as a function of regularization parameters(� ; � ),
respectively [read on the vertical and the horizontal axis (log scaled)]. In
both cases, a star(�) locates the minimum.

have been obtained with the postwindowed form2

(double-windowed behaves similarly) so, the estimated
spectra are of poor resolution [15].

2) As expected, since the true spectra show up to three
modes, the best results have been obtained with
for both LS and ALS.

3) Finally, as far as the ALS method is concerned,
has been selected.

2) Regularized Method:The HCLL function has been
computed on a fine discrete grid of 100 100 values
between and 1 for and between 1 and 3 for . The
result is the HCLL sheet shown in Fig. 2 (LHS). It is fairly
regular and exhibits a single minimum at and

. Moreover, Fig. 2 right-hand side (RHS) shows the
corresponding distances, and the strikingly similar behavior
of and is a strong argument in favor
of the likelihood as a criterion for parameters tuning.

However, it must be mentioned that a variation of on-decade
on or entails a nearly imperceptible variation in the esti-
mated spectra and a fraction of percent error. This point is es-
pecially important for qualifying the robustness of the proposed
method. Contrary to the choice of model order in the usual AR
analysis, which is critical, the choice of offers broad
leeway and can be made reliably.

Practically, the adjustment is set using the coordinate descent
algorithm, and Fig. 2 (LHS) illustrates its convergence from
three different starting points.

C. Order Sensitivity

This section assesses the sensitivity of the method with regard
to the order parametersand . For to and for

to (step .25), we have computed the ML estimate
(31)

and the corresponding optimal likelihood and distance

2A possible explanation for this rather counterintuitive fact, is that the post-
windowed form is somewhat “self penalizing,” i.e., the corresponding criterion

incorporates quadratic penalization terms:aaa
y
Maaa , whereM only depends

upon the data.
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Fig. 3. (Top) Optimal likelihoodHCLL (P; k) and (bottom) distancesL (P; k) as a function of orderP for several smoothness orderk = 0:5, 1, 1.5, and 2.

They are plotted in Fig. 3 as a function offor the several values
of .

As far as the likelihood is concerned, the following applies.

• is a decreasing (almost linear) function of model
order : the ML selected order is the maximal one

.
• does not depend on(the four curves are over

plotted) so that, given , the triplet “over-pa-
rameterizes” the likelihood andis indifferent.

As far as the is concerned, it still behaves similarly to the
likelihood. It is roughly decreasing with and not depending
upon . As a conclusion, the maximization of the likelihood
with regard to and does not provide any improvement and
the recommended scheme described in Section VI-B is an effi-
cient one.

D. Qualitative Evaluation

We have then compared the usual methods at their best (op-
timally adjusted parameters knowing the true spectra) with the
proposed method (automatic selection of regularization parame-
ters without knowledge of the true spectra). The results obtained
by LS, ALS, and RegLS are presented in Fig. 4. A simple quali-
tative comparison with the reference Fig. 1 already leads to four
conclusions.

1) The ML strategy provides a good value for the regular-
ization parameters, and the (and ) distance is in ac-
cordance with the qualitative assessment.

2) The effect of the regularization is obvious. Estimated
spectra are in much greater conformity with the true
ones. The spectrum shapes are reproduced more precisely
in one, two, or three modes. Their positions and their
amplitudes are correctly estimated.

3) Moreover, the spectral resolution for the ground clutter
is strongly enhanced. It is essentially due to the coherent
accounting for spectral and spatial continuity resulting in
a robust nonwindowed form.

4) However, it can be seen that the sudden transitions at the
beginning of the ground clutter is slightly oversmoothed.
This can be expected from quadratic regularization and

Fig. 4. Estimated spectra from left to right: usual LS estimate, adaptive LS
estimate, and regularized LS estimate (proposed method). Corresponding true
spectra and data are shown in Fig. 1. Quantitative results are given in Table I.

TABLE I
QUANTITATIVE COMPARISON OF THEPERIODOGRAM, LSMS, AND THE

REGULARIZED ONE. L AND L INDICATES THE DISTANCESBETWEEN

ESTIMATED AND TRUE SPECTRA

may be at least partially avoided by introducing non-
quadratic regularization [38]–[40].

E. Quantitative Evaluation

In the nonadaptive context, quantitative comparisons have
previously been performed in [1], [26]. The adaptive extension
originally proposed by Kitagawa and Gersch has also been
quantitatively assessed in [2].

For the proposed method, quantitative comparison have been
achieved by evaluating and distances between true and
estimated spectra. The results are listed in Table I and show an

improvement of about 10% form periodogram to best LS,
10% from best LS to best ALS and 10% from best ALS to the
entirely automatic proposed method.

VIII. C ONCLUSION AND PERSPECTIVES

This paper tackles short-time adaptive AR spectral estimation
within the regularization framework. It proposes a new regular-
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ized LS criterion accounting for spectral smoothness and spa-
tial continuity. The criterion is efficiently optimized by a spe-
cial Kalman smoother. In this sense, the present study signifi-
cantly deepens the contributions of [1], [2], given that the latter
separately address spectral smoothness and spatial continuity.
Moreover, the proposed method is entirely unsupervised, and it
is shown that ML regularization parameters are both formally
achievable and practically useful. Finally, a simulated compar-
ison study is proposed in the field of Doppler radars. It shows
an improvement of about 10%, comparing some usual methods
at their best versus the entirely automatic proposed one.

Future works will be devoted to compensate for the over-
smoothing character of quadratic regularization in the presence
of spatial breaks. [41] accounts for spatial continuity while
preserving breaks by way of a non-Gaussian state model and
extended KF algorithms. In our mind, a preferable approach
could be to introduce nonquadratic convex penalty terms and to
minimize the resulting criterion using descent algorithms [38],
[39], [42].
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