2194 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 10, OCTOBER 2001

Regularized Adaptive Long Autoregressive Spectra
Analysis

Jean-Francgois Giovannelli, Jéréme Idier, Daniel Muller, and Guy Desodt

© 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

Abstract—This paper is devoted to adaptive long autoregressive useless. But when the number of data is very low, these tech-
spectral analysis when i) very few data are available and ii) infor- niques become, in their turn, useless, especially if various spec-
mation does exist beforehand concerning the spectral Smoothnessy | shapes are expected due to model order limitations.
and time continuity of the analyzed signals. The contribution is | der t truct liable i tructural inf fi
founded on two papers by Kitagawa and Gersch [1], [2]. The first norder 1o construct a reliable Image, structural information
one deals with spectral smoothness in the regularization frame- about the sought spectrum sequence must be accounted for. Our
work, while the second one is devoted to time continuity in the investigation is therefore restricted to the cases in which two
Kalman formalism. The present paper proposes an original syn- kinds of information are foreknowrspectral smoothnesand

thesis of the two contributions. A new regularized criterion is in- e continuity This a priori information is the foundation of
troduced that takes both pieces of information into account. The .
the proposed construction.

criterion is efficiently optimized by a Kalman smoother. One of the . . .
major features of the method is that it is entirely unsupervised. The  In the framework of stationary AR analysis, Kitagawa and
problem of automatically adjusting the hyperparameters that bal- Gersch proposed a method integrating the idea of spectral
ance data-based versus prior-based information is solved by max- smoothness [1] by which &igh-order AR modelcan be
imum likelihood (ML). The improvement is quantified in the field 1 11y estimated, thereby getting around the difficult problem
of meteorological radar. . S L . .
_ _ ~of order selection and providing the ability to estimate various
Index Terms—Adaptive spectral analysis, hyperparameter esti- spectral shapes. For the nonstationary case, and aside from [1],
mation, long autoregressive model, maximum likelihood (ML), me- - yne same authors introduced in [2] a Markovian model for the
teorological Doppler radar, regularization, spectral smoothness, . . -
time continuity. regressor sequence in the Kalman formalism in order to reflect
time continuity. The present paper reviews [1] and [2] and
makes an original synthesis suited to the special configuration

. INTRODUCTION of Doppler signals. A new Regularized LS (RegLS) criterion
DAPTIVE spectral analysis and time-frequency analys@imultaneously includes the spectral and time information and
are of major importance in fields as widely varied a optimized by a Kalman smoother (KS).
speech processing [3], acoustical attenuation measuremenfg@ne of the major features of the method is that it is entirely
[4], [5], ultrasonic Doppler velocimetry [6], or Doppler radard/nsupervised: the adjustment of parameters that weight the rel-
[7]-[11]. [12] gives a synthesis of the various methods fattive contributions of the observatiorrsushea priori knowl-
these problems, and provides a number of bibliographicgfige is automatically set by maximum likelihood (ML).
introductions. A comparative study is proposed in the context of pulsed
The present paper focuses on short-time analysis. TypicalR@ppler radars. Special attention is payed to atmospheric
for analysis of pulsed Doppler signals, only eight or 16 san@nd/or meteorological context imaging or identification:
ples are available to estimate one spectrum, with possibly vafound clutter, rain clutter, sea echos, etc. Adaptive spectral
ious shapes (multimodal or not, of large spectral width or ndtstimation of mixed clutter is achieved by means of several
mixed clutter, etc.). Under such circumstances, the constructiésal AR methods and the proposed one. The latter achieves
of the sought spectra becomes extremely tricky on the sole ba#iglitative and quantitative improvements w.r.t. usual methods.
of the samples. As a point of reference, let us recall that sev-The paper is organized as follows. Section Il mainly intro-
eral hundred Samp|es are usua”y needed to compute an a%lﬁes notations and problem statement. Section Ill focuses on
aged periodogram with a fair bias-variance compromise [13Jsual LS methods and usual adaptive extensions. The proposed
[14]. Therefore, parametric methods have generally been pféethod is presented in Section IV, and Section V deals with
ferred, among which autoregressive (AR) methods play a cdRe KS. The problem of automatic parameter estimation is ad-
tral role. The AR coefficients estimation is usually tackled in th@ressed in Section VI. Simulation results are presented in Sec-
least squares (LS) framework [15], [16]. These methods oftéian VII. Finally, conclusions and perspectives for future works
provide a solution at points where nonparametric methods &€ presented in Section VIII.
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Fig. 1. Simulated observations over 110 range bins with eight samples per bin (corresponding to eight Doppler pulses). The left-hand sideglsH8)§igur

the true spectra sequence. The narrow zero-mean spectra characterizes ground clutter (bin 15 to 57). Rain clutter induces more or less i speciiae

(bin 35 to 75). Lastly, sea echos resulting from wave phenomena exhibit two maxima (bin 56 to 95). The middle figure shows the real part and intagfinary par
the data and the rhs one shows the associated periodograms.

not occur in the usual form of time-frequency problems. Sage., a quadratic form with regard to the,, namely, the

neither the usual time-frequency methods nor the one propos&l criterion. They,, and Y,, are the vector and matrix

by Kitagawa and Gersch can be directly applied, and part of tHesigned according to some chosen windowing assumption

presented work consists in constructing an appropriate metha8, p. 217], [20, (2)]. There are four possible forms: nonwin-

for the encountered configuration. dowed (covariance method), prewindowed, postwindowed,
The measurements are available as a set of complex sigrhdsble-windowed, i.e., pre- and postwindowed (autocorrelation

Y =lyy,---.y,] depth-wise juxtaposed i#/ range bins. Itis method). Let us noté, the sizeofy,, : L=N - P, L =N,

assumed that ea@h, = [¥m1, - - -, ¥mn]" IS @N sample vector or L = N + P, according to the chosen form. This choice is of

extracted from a zero-mean stationary process. Fig. 1 givesmportance since it strongly influences spectral resolution for

Gaussian simulated example ove&f = 110 bins for which short time analysis [15].

N = & samples are observed per bin. The successive regressohatever the chosen form, the maximization of (1) comes

are denoted,,, = [a.,,], Wherem indicates the considered bindown to the minimization of (2) and yields

(m € N}, = {1,2,...,M}) andp the order of the autore- LS s Fo o1t

gression coefficientp € N*%,). Letus noted = [a, ..., ay] € a,, =argminQ,>(an) = (YY) Yoy,..  (3)

CY X the collection of the whole set of coefficients. Let us also @

introducer,,, andr¢, for signal and prediction error powers. The As a prerequisite, the problem of choosing the model aftier

remainder of the paper is devoted to estimation of these quaitidst be tackled” must be high enough to describe various PSD

ties. The next section deals with the usual LS methods and thaid low enough to avoid spurious peaks, i.e., to ensure spectral

adaptive extension, and shows their inadequacy for the problemoothness. This compromise can usually be set by means of

at stake. criteria such as FPE [21], AIC [22], CAT [23], or MDL [24],
but, in the situation of prime interest here, they fail because the
IIl. REVIEW OF CLASSICAL METHODS available amount of data is too small [25]. Actually, there ex-
. _ ists no satisfying compromise in term of model order, since too
A. Stationary Spectral Analysis few data are available to estimate DSPs with possibly complex

This subsection is devoted to spectral analysis applied ts@uctures.
single birm. Assuming a Gaussian distribution for the observed
signal, the likelihood of the AR coefficients(y,,, |a,,) shows B. Adaptive Spectral Analysis
a special form [17, p. 82], but its maximization raises a diffi- For the “multirange bin” analysis, the first idea consists in
cult problem. A few authors [18], [19] have undertaken to solvgrocessing each bin independently. According to the LS ap-
it, but firstly, the available algorithms cannot guarantee globgtoach, it amounts to minimizing a global LS criterion
maximization, and secondly, they are not computationally ef- v
ficient for the applications under the scope of the paper. To QIS (A) = Z LS(g ) @)
remedy these disadvantages, the following approximation of the o m AT
likelihood function is usually accepted [16, p. 185]: m=t
However, the resulting spectra hold unrealistic variations in the
o N -Q(a,) spatial direction (see Fig. 4). In order to remedy this problem,
o) = (775,)™" exp < ) (1) the adaptive least squares (ALS) approach accounts for spatial
continuity by processing the data from several bins, possibly in
involving the norm of the prediction error vector weighted form, to estimate eaeh,. A first approach uses a
series of LS criteria including the data in a spatial window of
IS(an) = el em = (¥,, — Yimam) (4, — Ymam) (2) lengthW. A widely used alternative is the exponential decay

A€
77’77/
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memory which uses geometrically weighted LS criteria, witbalculations (see Section V) as well as regularization parameter
parameter\ € [0,1]. The latter is more popular because it i€stimation (see Section VI).

simpler: \ is merely incorporated into a standard recursive LS

algorithm [15, p. 266]. In both cases, the degree of adaptivify; Double Smoothness

i.e., the spatial continuity is modulated By or A. Starting with the spectral smoothness (7) and the spatial dis-

. tance (6), a new quadratic penalization is introduced
C. Conclusion (6) q p

. . . M M-1
Whatever the variant, the main disadvantage of these ap- .., 1 1
proaches has to do with the parameter settings. @A) =~ z_:l Drlm) + = z_:l Dr(m,m+1). (8)

1) From the spectral standpoint, smoothness is introduced in ) o
aroundabout fashiojathe model order (adjusted 1) It integrates both spectral smoothness and spatial continuity, re-

and the compromise no longer exists when the amount$f€ctively, tuned by, = 1/r; andAg = 1/ra. .
data is reduced. Remark 2: The penalization (8) has a Bayesian interpretation

2) From the spatial standpoint, continuity is also indirectl{¢7] @s & Gaussian prior for the sought regressors
introduced (and tuned b¥% or A\) and no automatic o0
A . ) ) A - A 9
method for adjusting this parameters is available. F(A) xexp[-Q7(A)] ©)
These limitations are unavoidable in the simple LS formalisraseful for hyperparameter estimation in Section VI.
and to alleviate this problem, we resort to the regularization

theory. In this framework, the proposed approach: D. Regularized Least Squares

* includes the spectral smoothness and spatial continuity inFrom the LS criteria (4) and the penalization term (8), the
the estimation criterion itself; proposed RegLS criterion reads

« allows long-AR model to be robustly estimated, and then
various spectra to be identified; QE(A) =Q™>(4) + Q™ (A)

« provides automatic parameter setting, i.e., an entirely un- Mo
supervised method. =) — (Y- Yo (0,0 = Vinan)

m=1 "

V. LONG AR (SPATIAL CONTINUITY) SPECTRAL SMOOTHNESS

A. Spatial Continuity Model Ts St
The first idea consists in building a spectral distance. Fol- 1 ! '
lowing [2], starting with the PSD in bim + > (@ — @) Ai(an = ayys)
m=1
r ' (10)
SmlV) = s A1) =Y e (5)
11— A, () = involving three terms which respectively measure fidelity to the

data, spectral smoothness and spatial regularity. The regularized

the proposed spectral distance betwSgnand.S,,- is founded solution is defined as the minimizer of (10)

on thekth Sobolev distance betweeh,, and A,/
a* 2 Anes = argmin QT8(A). (11)
E [An (V) — A (V)]| dr. A

¥4

1
Dy(m,m’) o</
_ o 0 ) _ Remark 3:The regularized criterion (10) has a clear
Calculations similar to those of [2] yield a quadratic form Bayesian interpretation [27]. Likelihood (1) and prior (9) can
be fused thanks to the Bayes rule, into a Gaussian posterior law
n_ _a o, Y ; p
Di(m,m’) = (@ — @) Ar(@m — @) ©) for the sought regressors

F(A]Y) < exp [-QF5(A)] . 12)

Solution (11) is also the MAP estimate.
The spectral smoothness measure proposed by Kitagawa and

Gersch in [2] (see also [26]) is easily deduced from (6) as tlie Optimization Stage
distance to a constant DSP

whereA;, = diag[1%*, ..., P?*] is thekth spectral matrix.

B. Spectral Smoothness Model

Several options are available to compute (11). Since
Di(m) x a:rnAkam- @) QReg(A) is quadratic Axc, i§ the solu_tion of arMR ><_MP
linear system. Moreover, since the involved matrix is sparse,
According to [1], [2],k € Z, butA, as well as (6) and (7) can direct inversion should be tractable but not recommendable
be extended t& € R,. here = 110, P = 7). Another approach may be found
Remark 1: Strictly speakingDy.(m, m’) andDy(m) are not in gradient or relaxation methods [28] sineg®°s(A) is
spectral distances nor spectral smoothness measures sincedifigrentiable and convex. But, given the depth-wise structure,
are not functions of the PSD itself. However, they are quadratiaother algorithm is preferred: KS. Here we resort to the
and this has two advantages: it considerably simplifies regressutial viewpoint of Kitagawa and Gersch in [2]. However, it is
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noticeable that [2] does not mention the minimized criterion, 3) The last step yields the initial power
whereas our KS is designed to minimize (10).

@ — (1 _ -1
V. KALMAN SMOOTHING " =ra(l+p— 1)

A. State-Space Form with p = rq/rs € RY,.. These equations allow us to pre-

1) The successive prediction vectars are related by a first- compute the coefficients of the KS in order to minimize
order state equation (10).

2) Limit Model: This section is devoted to the asymptotic

@il = WnGm + Em (13) behavior of then,,-sequence. For the sake of notational sim-

_ _ _ _ plicity, the sequence is rewritten in a count-up form
in which eacke,, is a complex, zero-mean, circular, vector

with covariance matri®’;, = 5, A ! and the,,,-sequence, _

is depth-wise white. m =l = (1+p)

2) The full state model also brings in the initial mean and co- m eEN*: Gmy1 = (24 p— @) L. (16)

variance: the null vector angt* = T“A,jl, respectively.

3) The observation equation is the recurrence equation for fhés clear thaty, €]0,1[sincep € R?, . Let us introducef (u) =
AR model in each bin, written in compact form as (24 p—w)~L. Itis straightforward thaf (]0, 1[) C]0, 1[, so the
entired,,,-sequence remains |, 1[. Moreover, if it exists, the
Y = Y@ + €y (14)  limit o, € [0, 1] necessarily fulfillsf (oo, ) = aoo. Elementary

_ ) ) ) algebra yields
i.e., ageneralized version of the one proposed in [2], adapte

to depthwise vectorial data. Eaeh, is a complex, zero- 60— 02 —4
mean, circular vector with covarianaé, I;. The ¢, se- Qoo =~ (17)
guence is also depthwise white.

Remark 4: [2] accounts for spatial continuity by means of avith & = 2+p = 2+r4/r,. Finally, one can effortlessly see that
special case of (13¥,,,+1 = @m +&. The latter has two draw- V u, v €]0, 1[, we have f(u) — f(v)] < (1+p) *lu—v|,i.e., f
backs, though. Firstly, it is introduced apart from the idea @8 a Lipschitz function with ratio if0, 1[. Hence, the sequence
spectral smoothness. Secondly, from a Bayesian point of viegffectively converges toward... It is also easy to see that the
this equation is interpreted as a Brownian process with an Bgguence is monotonous: increasingiif< a., and decreasing
creasing variance, which may cause drifts to appear in the egierwise. In the present case, comparisomvpfin (16) and
timated spectra. On the contrary, the new coefficienfscan oo in (17) shows that thé,,-sequence is decreasing (in the
be chosen in order to ensure stationarity of the model (13) oraeunt-up form), hencey,,, is increasing.
minimize the homogeneous criterion (10). Finally, sincer;, = rqa,,, the corresponding limit state

power is given by

1

B. Equivalence Between Parameter Settings

1) Homogeneous CriterionThis section establishes the Too = Tdloo: (18)

formal link between the parameters of the k8 and«,,,, 75,) ] ] o ] o
and those of the regularized criterion (10); (and r.). [29] 3) Associated Stationary CriterionThis section is devoted

states that the KS associated to (13) and (14) minimizisthe stationary limitmodel: the special case of (13), with =
QKS(4) s andr;, = rZ_, i.e., a stationary first-order AR model for the

an-sequence. The initial power is denoted for notational co-

Mo ' herence, even if it is not defined as a limit. It is actually defined
= Z TT(ym = Yinan) (4m — Yinam) according tor;,, anda., in order to ensure stationarity for the
m=1"" first-order AR modelr®, = 75 /(1 — o2).
MLy ot Replacement ofv,,, r5,, 7% bY oo, 75, 7% in (15) yields
+ Z 7,7(“7%1 — W) A (@mg 1 — @) the criterion minimized by the stationary KS
m=1 ™
1
+ T—aaIAkflal. (15) Moy
i i i . . i s A) = Z T(yrn - Ynla"l) (yrn - Ynla"l)
Partial expansions yield identification of (10) and (15) through m=1m
the following count-down recursion. (1—a.)? M
e B 4 A2 T Feo) a,T Ava
1) Initialization (m = M — 1) < m Bk Cm
e m=1

—1 e
Apf—1 = (1 + p) s andrM_l = Tqep—1-

S (G — 1) Ak(@n — @)
2) Count-down recursiofm = M —2,...,1) oo fz1
. ) +M@TM +al, Avan)
Uy = (2 +p— anl-l—l) 17 andT:n = TdWm- (- 1555 MZREM
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where superscripts” stands for stationary. Since we hayg= state equation and the smoothness matrix. However, a fast algo-
75, /oo from (18) andry = 7S, /(1 — sy )? from (17), one can rithm may be developed on the basis of high-order displacement
effortlessly see that matrices [30]. More precisely, it is easy to see that the displace-
ment matrix of ordeRk + 1 (if integer) is null for A. Taking
advantage of this property may result in a fast version of the
proposed algorithm.

However, calculation time problems are now less crucial than
So the stationary criterio@°(A) and the initial homogeneousthey used. The standard KS algorithm only takes 036os
one QRe2(A) are equal apart from the edge effects, i.e., twprocess the entire data set of Fig. 1, so real time computations
terms regarding the first and last regressors. As a consequera®, probably be achieved.
the minimizer ofQ®<&(A) and(Q5(A) are practically equivalent
and the latter is preferred since it does not require precomputa- VI. HYPERPARAMETERSESTIMATION
tion of thew,,, andrs,.

Q°%(A) = Q"5(A) + M (aIAkal + aLAkaM) .

o

The estimated,,,-sequence and spectra sequence depends on
M + 4 hyperparameters: smoothness and AR ordeasd P,

C. Kalman Smoother Equations power sequence’ , and two regularization parametexs and

* Initialization (m = 1) Ad-
ay1 =0 (19) A. Power Parameters
Py :TgoA’:l_ (20) The M parameters?, are needed by the proposed RegLS
method as well as the LS and ALS procedures, and the same
« Filtering phase (forn = 2,..., M) empirical estimates will be used for all of them. In the crite-
—  Prediction step rion (10), parameters;, only act as weighting coefficients, so

that the successive terms are of equivalent weight. The proposed
empirical technique replaces the prediction error powgrdy
the signal powers,,, themselves. A simple empirical estimate

P = y:rnym /N could be used. However, since the estimation
—  Correction step variance is high fotvV = 8§, in practice, a more efficient tech-
nigue consists in smoothing the sequefige Let us note that

Ap|m—1 —Woolm—1|m—1 (21)
Prn|rnfl :agoPrnflhnfl + 7c€>oA]:1 (22)

K, — rn|rn—1Yr;|; (23) [2] proposes a scheme, which is equivalent in principle.
Ry =% I + K Yo, (24) B. Order Parameters
em =Ym — Ym@nm—1 (25) The proposed framework allows us to estimate long AR
B =Cmfm—1 + Ko Rle,. (26) model§ to descrit_)e various spectral shapes. Moreover, by
— choosing the maximal orde® = N — 1, we get rid of the
Folm =Fjm—1 — K R K, (27)  difficult problem of model-order selection. In fact, as expected
_ and confirmed in Section VII-C, as long &5is large enough,
* Smoothing count-down phase (for= M —1,...,1) it does not significantly affect the spectral shape.
. On the other hand, to our experience, the smoothness brder
Qm :aooPnz|n1,P7;+1|rn (28) does not affect the spectrum sequence providedithat). So
AV =i + Qe (g1 |0 — Bt ) (29) the smoothness orderaspriori tuned tok = 1, i.e., afirst-order

t derivative spectra penalization. Moreover, Section VII-C also
Lonjst =L + Qm (P m1lm — b m+llm) Q- (30) provides a quantitative sensitivity study of the spectra sequence
with regard to this parameter.

D. Fast Algorithm C. Regularization Parameters

Fast algorithms used to take a primordial position in past The problem of regularization parameter estimation within
decades, especially for real-time computations. More specifie proposed framework is a delicate one. It has been extensively
cally, for adaptive spectral analysis of the ultrasound Dopplstudied and several techniques have been proposed and com-
signal, the MARASCA algorithm [27] has been used in pared [26], [31]-[35]. The ML approach is often chosen within
real-time high-resolution velocimeter prototype. But it has twihe Bayesian framework mentioned in Remarks 2 and 3. The
drawbacks, resulting in a rigid spectral and spatial continuitgaussian likelihood function (1) and the Gaussian prior (9) to-
tuning. On the one hand, it proceeds by blocks and incorporatgsher yield a Gaussian marginal law for the observed samples
spatial continuity by using the regressor of the current block g$) ; A, A1), i.e., the regularization parameter likelihood. The
a prior mean for the next one; on the other hand, the fast versioyperparameter-co-log-likelihood (HCLL) is easily computed
is developed only for the zero-order smoothng@ss= 0). L , , , _ _

The proposed algorithm has been implemented using the computing envi-

TQ our k_nOW|e.dge’ no faSF algorithm exists for the KF in thﬁ)nment Matlab on a personal computer, Pentium Ill, with a 450 MHz CPU and
configuration of interest, mainly because of the structures of thes Mo of RAM.
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for a given hyperparameter set, as a function of innovation ve ——
torse,, and covarianceg,,,, i.e., two of the KF subproducts = ' :E\\ I— i
: - ——
_s" s e~
HCLL(As, Aa) = Y Indet Ry, + €], R e -~ s
m=1 : Ebl__~ \ R $\>
ignoring constant coefficients. This expression is the generaliz | ~] i & \\\

tion of a more conventional identity, available for scalar obse
vations [2]. The error covariance mati,, is anL x L matrix, o _ ,
Fig. 2. The left and right figure, respectively, show HCLL ahdl distance

L pOS_SIny _ranglng fronl, = 1to L = N + P ac_cordlng to (L' behaves similarly) as a function of regularization paramefatsa),
the windowing form and model order. Sinée= 1 is selected respectively [read on the vertical and the horizontal akig (, scaled)]. In
in the presented computations, no specific algorithm has beih cases, a stéx) locates the minimum.

developed for inversion nor determinant calculations.

The ML estimate have been obtained with the postwindowed form
(double-windowed behaves similarly) so, the estimated
(5\242 3\3@) = arg min HCLL( ), \g) (31) spectra are of poor resolution [15].
A5, Ad 2) As expected, since the true spectra show up to three

. . modes, the best results have been obtained itk 3
can be computed by means of several algorithms: coordi- for both LS and ALS

nate/gradient descent algorithm [28] or EM algorithms [36], 3) Finally
[37], but none of them can ensure global optimization. Here, has be'en selected
the optimization stage is tackled by means of a coordinate )

descent algorithm with a golden section line search [28]. Sincez) Regularized MethodThe HCLL function has been

: : : . .. _computed on a fine discrefieg,, grid of 100x 100 values
HCLL is a function of two variables only, the optimization 10
stage only requires about 10 s y P between—2 and 1 for A, and between 1 and 3 foxy. The

result is the HCLL sheet shown in Fig. 2 (LHS). It is fairly
regular and exhibits a single minimum &' = —1.53 and
VIl SIMULATION RESULTS AND COMPARISONS AL = 2.16. Moreover, Fig. 2 right-hand side (RHS) shows the

The present section assesses the effectiveness of the propSQér(?SF’Ondin‘l2 distances, and the strikingly similar behavior

method, compared to the usual ones by processing the exan§SIECLL( s, Aa) a”dLQ_()‘53 Aa) is @ strong argument in favor
shown in Fig. 1. of the likelihood as a criterion for parameters tuning.

However, it must be mentioned that a variation of on-decade
on X or A\q entails a nearly imperceptible variation in the esti-
mated spectra and a fraction of percent error. This point is es-

Since the true spectrum sequence is known in the preseniadially important for qualifying the robustness of the proposed
simulations, quantitative criteria are computable on the bagiethod. Contrary to the choice of model order in the usual AR
of distances between estimated specifa(i’) and true ones analysis, which is critical, the choice ¢4, Aq) offers broad
Sm(v), accumulated over th&f bins. Normalized distances leeway and can be made reliably.

Practically, the adjustment is set using the coordinate descent
. Ef‘j:l j(} |§m(,,) — S (v)|"dr algorithm, and Fig. 2 (LHS) illustrates its convergence from

- M three different starting points.

1 -
Zrn:l fo |Sm,(l’)|7 dv

with» = 1 andr = 2 have been computed. The normalization i§+ Order Sensitivity

chosen so that a null estimated spectrum results in a 100% erroiT his section assesses the sensitivity of the method with regard
Practically, the integrals are approximated by discrete sumntathe order parametetsand P. For P = 1 to P = 7 and for

tion over the frequency domaim = ¢/Q, ¢ € Ngo_1, with &k = 0tok = 2 (step .25), we have computed the ML estimate
Q = 1024. (31)

as far as the ALS method is concerngd = 20

A. Quantitative Comparison Criterion

B. Tuning Parameters (5\2”‘(3 k), Ay(P, k)) =g 1;1111HCLL()\S, A, P k)
1) Usual Methods:Since no automatic parameter tuning is o

available for usual methods, these parameters have been che@gehthe corresponding optimal likelihood and distance
in order to produce the be&f distance. Moreover, we have
checked that such a quantitative procedure finds itself in good HCLL,, (P, k) =HCLL (XS’“(P, k), N\ (P, k), P, k)
agreement with the visual appreciation. , _ _ _ o _
1) First of al, it s noticeable that, eVen 10r & ShOTt MOl -2 s £ o ok poeg o cocaporig b
the nonwindowed and prewmdowed methods SyStemﬁarkorporates guadratic penalization term&Mam, whereM only depends
ically yield numerous spurious peaks. The best resuligon the data.
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Fig. 3. (Top) OptimallikelihoodICLL.(P, k) and (bottom) distancds? , (P, k) as a function of ordeP for several smoothness order= 0.5, 1, 1.5, and 2.

Lgpt(Pv k) =L" (S‘SHA(Pv k)vj‘lc\iIL(Pv /{}),P, k) .

They are plotted in Fig. 3 as a functionBffor the several values
of k.
As far as the likelihood is concerned, the following applies.

» HCLL,, is a decreasing (almost linear) function of model
order P: the ML selected order is the maximal ofe=
N-1=T.

* HCLL,y does not depend ah (the four curves are over
plotted) .SO t'f,]at, g_lvel_P’ the trlpI,Et,()\s_’ Ad; k) over-pa- Fig. 4. Estimated spectra from left to right: usual LS estimate, adaptive LS
rameterizes” the likelihood andis indifferent. estimate, and regularized LS estimate (proposed method). Corresponding true

As far as thd.? is concerned, it still behaves simiIarIy to thespectra and data are shown in Fig. 1. Quantitative results are given in Table I.
likelihood. It is roughly decreasing witk* and not depending
upon k. As a conclusion, the maximization of the likelihood TABLE |

: . . f QUANTITATIVE COMPARISON OF THEPERIODOGRAM, LSMS, AND THE
with regard tok and P does not prowde any improvement and REGULARIZED ONE. L.* AND L2 INDICATES THE DISTANCES BETWEEN

the recommended scheme described in Section VI-B is an effi- ESTIMATED AND TRUE SPECTRA
cient one.
Method L2 L!
o . Periodogram | 87.1% | 92.9%
D. Qualitative Evaluation Best LS 76.6% | 85.4%
We have then compared the usual methods at their best (op- Best ALS | 66.4% | 75.5%
ML & RegL.S | 57.9% | 69.2%

timally adjusted parameters knowing the true spectra) with the

proposed method (automatic selection of regularization parame-

tberi\év'tXEgt knc;wFleedgL%ofthetrue spec;:Fral):..Thf fsgltslobtamlt_ed may be at least partially avoided by introducing non-
y Lo, ,andRegL>are presente NFg. 4. ASimple quali- quadratic regularization [38]-[40].

tative comparison with the reference Fig. 1 already leads to four

conclusions. E. Quantitative Evaluation

1) The ML strategy provides a good value for the regular- h daoti i . h
ization parameters, and thé (andLt) distance is in ac- In.t e nonadaptive context, quantitative comparisons have
cordance with the ('qualitative assessment previously been performed in [1], [26]. The adaptive extension

2) The effect of the regularization is obvio.us Estimategriginally proposed by Kitagawa and Gersch has also been

: guantitatively assessed in [2].

spectra are in much greater conformity with the tru |For the proposed method, quantitative comparison have been

ones. The spectrum shapes are reproduced more PreciatNieved by evaluating® andL? distances between true and

g]morllii;(;\elzvsoéroer gg:reeectjn(;d;isn'u;zzlr positions and thetlerstimated spectra. The results are listed in Table | and show an
P y : L2 improvement of about 10% form periodogram to best LS,

3) Moreover, the spectral resolution for the ground cIuttelr % from best LS to best ALS and 10% from best ALS to the
is strongly enhanced. It is essentially due to the coheren

accounting for spectral and spatial continuity resulting iﬁnt|rely automatic proposed method.
a robust nonwindowed form.

4) However, it can be seen that the sudden transitions at the
beginning of the ground clutter is slightly oversmoothed. This paper tackles short-time adaptive AR spectral estimation

This can be expected from quadratic regularization amdthin the regularization framework. It proposes a new regular-

VIIl. C ONCLUSION AND PERSPECTIVES
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ized LS criterion accounting for spectral smoothness and spat5s]
tial continuity. The criterion is efficiently optimized by a spe-
cial Kalman smoother. In this sense, the present study signif{— ]
cantly deepens the contributions of [1], [2], given that the latteff17]
separately address spectral smoothness and spatial continuh}g@]
Moreover, the proposed method is entirely unsupervised, and
is shown that ML regularization parameters are both formally
achievable and practically useful. Finally, a simulated comparng]
ison study is proposed in the field of Doppler radars. It shows
an improvement of about 10%, comparing some usual methoda0]
at their best versus the entirely automatic proposed one. 21]
Future works will be devoted to compensate for the over-
smoothing character of quadratic regularization in the presend@?]
of spatial breaks. [41] accounts for spatial continuity while[23]
preserving breaks by way of a non-Gaussian state model and
extended KF algorithms. In our mind, a preferable approaci?4]
could be to introduce nonquadratic convex penalty terms and 195)
minimize the resulting criterion using descent algorithms [38],

[39], [42]. [26]
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