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Abstract—Formulated as a linear inverse problem, spectral es- an averaging step, which requires a sufficiently large data set.
timation is particularly underdetermined when only short data By contrast, estimation dine spectra(LS) is more often dealt
sets are available. Regularization by penalization is an appealing with in parametric methods, such as Pisarenko’s harmonic de-
nonparametric approach to solve such ill-posed problems. Fol- . , ’ .
lowing Sacchiet al, we first address line spectra recovering in COMPosition [5], Prony’s approaches [6], [7], or autoregressive
this framework. Then, we extend the methodology to situations of (AR) methods [2], [8], [9]. These techniques are known for
increasing difficulty: the case of smooth spectra and the case of their ability to separate close harmonics. Consequently, they

mixed spectra, .., peaks embedded in smooth spectral contribu- 56 ysyally considered under the headinghigfh-resolution
tions. The practical stake of the latter case is very high since it methods [2]

encompasses many problems of target detection and localization . ) .
from remote sensing. In the more difficult case ofmixed spectrgMS), i.e., small
The stress is put on adequate choices of penalty functions: Fol- sets of harmonics embedded in smooth spectral components,

lowing Sacchiet al, separablefunctions are retained to retrieve g satisfying techniques exist according to [2], [9], and [10].

peaks, whereas Gibbs—Markov potential functions are introduced S . . -
to encode spectral smoothness. Finally, mixed spectra are obtainedThe main .alrn of the present.paper is to contribute to filling
from the conjunction of contributions, each one bringing its own the gap within a nonparametric framework related to a recent

penalty function. contribution due to Sacclait al.[1]. One important conclusion
Spectral estimates are defined as minimizers of strictly convex drawn in the latter was that enhanced nonparametric methods

criteria. In the cases of smooth and mixed spectra, we obtain non- . . . -
differentiable criteria. We adopt a graduated nondifferentiability can reach high resolution, which somewhat contradicts the state

approach to compute an estimate. The performance of the pro- of the art' sketched in. [2]. _ _
posed techniques is tested on the well-known Kay and Marple ex-  Following [1], Section Il starts with modeling the unknown

ample. spectral amplitudes as the DFT of the available observations. In
Index Terms—High-resolution, mixed spectra, regularization, Particular, the number of Fourier coefficients to be estimated is
spectral estimation, spectral smoothness. larger than the length of the data sequence. The current problem

is therefore underdetermined. Then, we resort to regularization
by penalization to balance the lack of information provided by
data with an available prior knowledge, such as spikyness or
HE PROBLEM of spectral estimation has been receivingpectral regularity. Since the main part of our construction is
considerable attention in the signal processing commghade in a deterministic framework, Section Il is also devoted
nity since it arises in various fields of engineering and appliad a natural question: Is it theoretically justified to resort to our
physics, such as spectrometry, geophysics [1], biomedieddproach to estimate power spectral densities (PSDs).
Doppler echography [3], radar, etc. In particular, our pri- Three penalty functions are designed for solving the LS, SS,
mary field of interest is short-time estimation of atmospherignd MS issues, respectively (see Section IIl). Following [1], a
sounding or wind profiling, possibly superimposed on a smajeparablgunction is retained for line spectra (Section I1I-B). To
set of targets, from radar Doppler data [4]. deal with smooth spectra estimation, our construction is inspired
A survey of classical methods for spectral estimation can b§ Gibbs—Markov edge-preserving models for image restora-
found in [2]. When the problem at hand is the restoration @bn [11]-[13] (see Section I1I-C). Finally, mixed spectra are ob-
smooth spectrdSS), basic nonparametric methods based @ined from the conjunction of contributions, each one bringing
the discrete Fourier transform (DFT) such as periodograms @own penalty function (Section 111-D).
often taken up. Such techniques usually involve a windowing or|n all cases, the spectral estimate is defined as the minimizer
of a strictly convex criterion, which is chosen nonquadratic to
avoid oversmoothing effects [1], [14]. Practical computation
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[I. PROBLEM STATEMENT The problem is to incorporate structural information to raise the

A. Deterministic Framework underdeterminacy in an appropriate manner.

Following contributions such as [1] and [15], we formulat®. Random Processes
spectral estimation as a linear underdetermined inverse probler'&OIIOWing [1], our spectral estimation approach is based on

in a deterministic framework. Given discrete time observatiOIPﬁe ground of deterministic Fourier analysis. Hence, a natural
f— t i i - . . . . . e ’ !

Y= [_yo, yis .- yn-1]’, the goal IS to recover the energy disy estion arises: Is it theoretically justified to resort to our con-

tribution of data between frequencies 0 and 1. In the general s§;, tion to estimate PSDs. In this subsection, we put forward

ting of the paper, complex discrete data are processed to estimglg  r approach is not a natural tool as far as PSD estimation
spectral coefficients for normalized frequencies between 0 al% oncerned

1 (the real data case is specifically examined in Appendix D). Let(S,,)nez be a complex-valued random time series defined
The harmonic frequency model is usually considered for thi

task. In such a model, the distribution of spectral amplitude

X(v) is continuous with respect to (w.r.t.) frequencieshen, ! 2jmin

the inverse discrete-time Fourier transform links the unknown Sn = /0 ¢ ds(v) )

spectral functionX(v) € LZ[0, 1] to a complex time series
(2n)ncz (of finite energy) according to wheredS(r) stands for the random spectral measur§ oh a

discrete-frequency framework, (4) can be approximated by

-1
&, = Y 62j7rz/n v, n ) r—1 .
/0 X() d €z @) Sy =Y S(lp/P, (p+1)/P) T,

The signalz,,).ez is partially observed through the data =0

Our approach consists in estimating the variablfg/ P, (p +
Ty = Yn, n € Ny 2 {0,1,..., N—1}. 1)/ P[) and then in evaluating a spectrumthrough the vector
of squared modulusS([p/P, (p + 1)/P[)|? (see Section IlI).
Within this setting, our approach consists in extracting a dgr the case of a regular random process, such quantities are
terministic extensiorfx,,).cz of the datay. Since this exten- random. Thus, they do not identify with a discretized version
sion is of finite energy, it cannot be interpreted in general asofithe PSD.
sample path of a stationary random process (see Section II-B foNonetheless, as shownin[17], itis possible to exhibit a family
details). of singular random processes for which our approach allows us
Estimating X () from y is a discrete-time continuous-fre-to characterize the power spectral measure of such processes.
quency problem. Akin to [1], we propose to solve a discrete
frequency approximation. It corresponds to the juxtaposition of IIl. M ETHODOLOGY
a large number of sinusoids, s&/ > N, at equally sampled
frequencies,, = p/P, p € Np. The accuracy of the approxi-
mation depends strongly af since the discrete counterpart of Sacchiet al.[1] have proposed a penalized approach, where

A. General Setting

(1) reads an estimator of spectral amplitudes is defined as
Py X minimizes7(X)inC" (5)
Yn = ];) X, ¥ ™" neNy ) it
whereX,, € C are unknown spectral amplitudes. In the case of J=Q+ AR (6)
line spectrum estimation, choosing a lafgeseems clear since QX) =|ly— WxypX|? )

the harmonic components do not necessarily coincide with any

sample of the grid. In the case of a continuous backgro#hd,and the power spectrum estimator easily deduces as the squared
is selected for suitably balancing the tradeoff between an efftfodulus of the components of.

cient computation of the estimate and a more accurate result. Iffhe hyperparameter > 0 controls the tradeoff between the

P = N could be satisfactory for smooth spectra (e.g., Gaussigi#seness to data and the confidence in a structural prior em-
spectra with variance > 0.1), it could be preferable to con- bodied inR. In particular, in the case afccurate datgA — 0;

sider higher values for piecewise smooth spectra with sh&ge [1, Sec. 4.A]), Saccht alresort to Lagrange multipliers to
transitions, such as ARMA PSDs with zeros of the MA pafrove thatX identifies with the constrained minimizer & X )

close to the poles of the AR part [16]. subject to (3). .
Let wy = exp(2j7r/P) so thatWyp = [wgp]féﬁi is an In [1], the chosen penalty function reads
N x P Fourier matrix, and an equivalent formulation of (2) is P1
R(X) = log(1+ | X, |?/272 8
Y= WarX @) (X) zzj 81+ 15, [/2r%) ®)
whereX = [Xo, X1, ..., Xp_1]t. SinceN < P, (3)isun- wherer > 0 is a tunable scaling parameter that controls the

derdetermined, and there exists an infinite number of solutiomsnount of sparseness in the solution. In [18] and [19], the abso-
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lute normR(X) = 221;—01 |X,,| is used instead because of its The construction of penalty functions that fulfill (10) forms
convexity, even if it is nonsmooth at zero. In both cases, let tiee guideline of the next three subsections in the LS, SS, and
remark thatR is MS cases, respectively.

B. Line Spectra

e separable, i.e., itis a sum of scalar functions (9a) _ i
hift-i iant: We are naturally led to penalty functiofi,, that satisfy (9)
¢ shiitinvanant. and (10) (the subscriptE:” stands forline). It is not difficult to
R(Xo, X1, ..oy Xpo1) =R(X1, ..., Xp-1,X0)  see that (9) imposes the following form f&r:

_ _ (9b) o1
e symmetry-invariant: R(X) = Z Ro(pp) (11)
R(Xo,Xl, ...,Xp_l)IR(Xp_l, ...,Xl,Xo) p=0
_ (9c) wherep,, = | X,| andRy: R4 — R. Then, the following propo-
e circular: sition characterizes those functioRg that ensure the convexity
R(Xo, ..., Xp_1) = R(|Xol, ..., | Xp_1]). (9d) of Rr.

Proposition 1: Let f: C +— R be a circular function. Then,

Reference [1] adopts the classical Bayesian interpretatidh of/ is (resp. strictly) convex and only ifits restriction orR , is
as a maximurma posteriori estimate. As a random vectaX, & (resp. strictly) convex, nondecreasing (resp. increasing) func-
is given a prior neg-log-density proportional ®(X), which tion.
amounts to choosing a product of circular Cauchy density func- Proof: This property corresponds to the scalar case
tions as thea priori model. In such a probabilistic framework,(m = 1) of Theorem 2 (Section l1I-C), which is proved in
properties ofR can be restated as properties of the complédppendix B. u
random vectotX it is white according to (9a), stationary ac- From Proposition 1, it is apparent tH&f, (X) is not convex
cording to (9b), reversible according to (9c), and phases are ufio(p) = log(1 + p?/272). Moreover, it can be then proved
formly distributed according to (9d). that.7 is not convex either. Thus, we prefer an alterratevex

Considering a circular model is rather natural since no phalégiction 12y that would enhance spectral peaks like the Cauchy
information is available. Stationarity and reversibility are alsprior does. We have borrowed such penalty functions from the
fair assumptions, unless some specific frequency domain shéiplsl of edge-preservingnage restoration [11]-[13], [25]-[27].
information is knowre priori (see [15] and references therein)More precisely, we propose to resort to the following set of func-
Finally, choosing an independent prior seems justified as far#@ns:
line spectra estimation is concerned. In the present paper, this
framework is generalized to other kinds of spectra. More specif-S = {f: R, — R convex, increasing;*, f(07)=0
ically, a stationary Gibbs—Markov model in the frequency do-
main will be introduced to incorporate spectral smoothness (see 0< lim f'(z)/z <oo, lim f'(z)< OO} .
Section I1I-C). =0+ reo

From the computational viewpoint, (8) may notbe the better t ¢ s, the global criterion7 clearly fulfils (10). On the

i i . 2y ; .
choice sincélog(1 + %) is not a convex function oR+: X (yher hand, functions i behave quadratically around zero and
is not necessarily unique, and minimizing (6) using a locﬂhearly at infinite

method such as thigerative reweighted least squar¢drLS)
algorithm used in [1] may provide a local minimizer instead of ¢ < lim f(z)/2? < o0, 0< lim f(z)/z < .
a global solution. The absolute norm is also a possible choice z—0F roo

[18], [19]. However, because it is nondifferentiable at zergp;s is a relevant behavior for erasing small variations, as well
its optimization requires more sophisticated numerical toolgs for preserving large peaks and discontinuities that would be
such as quadratic programming methods. In the present paggkrsmoothed by quadratic penalization.
we restrict the choice tstrictly convexpenalty functionsR in Some functions ofS, such as thdair function Ro(p) =
order to ensure thaf is also strictly convex. As aCoNsSequence, /. _ In(1 + p/7,) [12], [28] or Huber's functionR(p) =
j_admlts no Io_cal minima. Moreover, the r_mnlm|zéf IS 52 /970 +70/2if p < 79, potherwise [29], have also been known
unique and continuous w.r.t. the data [21]; this guarantees 3¢ 5 Jong time in the field of robust statistics [28], [29]. They
well-posedness of the regularized problem [22]. Finally, mamysnave quadratically under the threshejdand linearly above.
deterministic descent methods (such as gradient-based methﬂdg?ractical simulations (see Section V-B-2), we have selected
and the IRLS algorithm [23], [24]) will be ensured to convergg,e hyperbolicootential & = J2+2ins.
toward X if R is P g ole) oTe

C. Smooth Spectra

e continuously differentiabléC*) (10a) 1) Complex Gibbs—Markov Regularizatiomn the field of

e strictly convex (10b) Signal andimage restoration, Gibbs—Markov potential functions
g e _ are often used as roughness penalty functions [11]-[13], [21],

* ‘infinite atinfinity”: ||X1|1|IEOOR(X) = oo (10c) [26], [27], [30]. Adopting this approach in the case of spectral
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regularity, one might think of simply penalizing differences be- Theorem 1:Let f: R}' — R be a convex, coordinatewise
tween complex coefficients, using nondecreasing (resp. increasing) function, ang leR™ — R’
be a function such that each component R” — R is (resp.

iy strictly) convex. Thenf o g is (resp. strictly) convex oR"™
1 _ 7 _ 7 . . N
Rs(X) = Z By (|Xp1 = Xp) (12) Proof: See Appendix A. [
p=0 Theorem 2:Let f: C™ — R be a circular function. Then,
where Xp = X, because of the circularity constraint. Inf is (resp. strictly) convexf and only ifits restriction onR’

(12), the subscript$” stands forsmooth Then, provided that IS & (resp. strictly) convex coordinatewise nondecreasing (resp.
Ry is convex and nondecreasing &1, it is not difficult to increasing) function.

deduce thatR} is convex from Proposition 1. WheR, is Proof: See Appendix B. _ _ u
guadratic, the estimated spectrum is a windowed periodogramBe(?aUSGRl(_pp+1 — pp) is not a coord|na_1teW|se nonde-
i.e., a low-resolution solution [14]. In Section V-B3, wecreasing function op = [po .., pp—1]*, (13) is not convex,

have performed simulations using the hyperbolic functioiccording to Theorem 2. In the case of (14), application of
Ri(p) = /72 + p? in order to obtain solutions of higher Theorem 2 yields the following result.

resolution. The corresponding results are actually disappointingCorollary 1: Let Ry: R — R andRy: Ry — R beC*
(e.g., Fig. 3). Empirically, we observe that the penalty terfiinctions that satisfy the following assumptions:

(12) corresponds to spectral smoothness only roughly, whereas

it produces hardly controllable artifacts. In fact, (12) is not * i fs even and_ convex (152)
a circular function of X: R& does not satisfy (9d). The ® Rjis (resp. strictly) convex and

regularization functionR;(|X,+1 — X,|) also introduces a nondecreasing (resp. increasing) (15b)
smoothness constraint on the phases of the sinusoids, which o 1< plenp = RH(0T)/2R) (). (15c)

does not coincide with some available prior knowledge. For
this reason, let us examine the consequences of restrictingrten, functionRg defined by (14) is (resp. strictly) convex.

circular penalty terms. Proof: See Appendix C. [ |
2) Circular Gibbs—Markov RegularizationThe simplest  Inequality (15c) gives an upper bound on the smoothness
circular energy coding spectral continuity is clearly level that can be introduced while maintaining convexityRgf.

It is important to notice thats,,, > 0 imposesk,(01) > 0. In

— the rest of the paper, we have selected the simplest potéttial

2 — —
Rs(X) = Z B(ppr = pp) 13)  that satisfies?,(0F) > 0, i.e., R2(p) = p. Combined with the
p=0 hyperbolic functionR; (p) = /72 + p?, such a choice yields

since only two magnitudes, and p,,; are involved. As an thatRs is convex ify < 1/2.

extension, one could consider higher order smoothness term$he conditionR;(0%) > 0 means thafy(] - |) is not dif-

such as; (pp+1 — 2pp + pp—1), Which would be better adaptedferentiable orC at zero, and therefor&s is nondifferentiable.

to restore piecewise linear unknown functions. Although conditions (15) are only sufficient, we have the intu-
It is readily seen that (13) satisfies all conditions (9), savéon that convexity and differentiability are actually incompat-

separability. UnfortunatelyRZ is not convex ifR; is an even, ible properties ofRs, as defined by (14). In Section IV, we pro-

convex function. This negative result is a solidforward consg@ose to minimize a close approximation”§ that conciliates

quence of Corollary 1, which is stated below. Therefore, we preonvexity and differentiability so that a converging approxima-

pose to retain a slightly more general circular expression  tion of X can be easily computed.

D. Mixed Spectra

r—1
Rs(X) = Z pBL(pps1 = pp) + Balpp) (14) A mixed spectrum consists of both frequency peaks and
p=0 smooth spectral components; therefore, we propose to split
where parameter > 0 tunes the amount of spectral smoothvector X into two sets of unknown variablesX;, for the
ness, andk,: R, — R. Expression (14) still satisfies conditionsfrequency peaks an& s for the smoother components. The
(9b)—(9d). resulting fidelity to data tern@; reads
In the following, a necessary and sufficient condition for th _ 2 2
convexity ofRs is given. For this purpose, the definition ofa- Qui(X) = lly — Wr (X1 + Xs)|* = lly = Wavp X[, 11|
ordinatewise nondecreasirfgnction is a prerequisite. We alsoyherex = [X | Xg] is aP x 2 complex matrix. The subscript
provide a useful theorem regarding the composition of convex; siands formixed

functions. _ . o _ Then, itis only natural to introduc®;, [which is defined by

Definition 1: A function f: R — R is said to becoordi-  (11y] andR [which is defined by (14)] as specific penalty terms
natewise nondecreasing if and onlydfi € {1, ..., m} for X1, andXs, respectively. The resulting criteriqfty; reads
Ve eRY, Vt20,  f(z) < flz+1tl) (X)) = Qu(X) + A\LRL(XL) + AsRs(Xs)  (16)

wherel; is theith canonical vector. The functighis said to be which is a nondifferentiable function w.r.t. vanishing compo-
coordinatewise increasinif the latter inequalities are strict.  nents ofXg, if R5(0%) > 0. On the other hand7y; is (resp.
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strictly) convex w.r.t. X if Ry, and Rg are (resp. strictly) gence, which is a powerful mathematical tool in the study of the

convex. Then, the global minimizer is uniquely defined by  limiting behavior of the minimizer of a series of functions [37].
The remaining part of the section is devoted to the case of

smooth spectra, i.e., to the minimization @§ defined by (6),

In the Bayesian framework adopted in [1], it is not dif-(7)’ and (14). Extension to the minimization &}, is straight-

ficult to see that(Xy, Xs) corresponds to the joint MAP forward.
solution obtained from a prior neg-log-density proportional 8. Differentiable Approximation of Convex Gibbs—Markov
ALRL(XL) + AgRs(Xs). Finally, the estimated frequencyl:,enalty Function

distribution is taken as the squared modulus of the components ) o . ] ) )
of X1 + Xs. Practically, it is a prerequisite to build a differentiable convex

introduced to encodg the smooth components of j[he_spectrum, J. = Q+ \Rs. (18)
as long as they require less accuracy. Then, the fidelity to data
term would become satisfies the conditions of Proposition 2. Our construction of
Rs. . is based on the hyperbolic differentiable approximation
= —_ T —_ 2 < . .
Qu(X) = lly = Wy p Xy — WorXs|| of the magnitude functioh |:
where@@ < P. Such a modification could provide a (probably

o~

X = [XL ‘Xs} = arg;(nin TIu(X).

slight) increase of overall convergence speed at roughly constant pe: €= Ry, p(r) = Ve + [ (19)
quality of estimation. wheree > 0. Such an approximation is known to satisfy con-
ditions (17) [31, pp. 21-22] and has been already used in the
IV. OPTIMIZATION STAGE field of image restoration [26], [27]. It is also called th&an-
A. Graduated Nondifferentiability dard mollifier procedurg26]. . .
Let ¢, = 9(X,) = ¢:(p,) denote the above differentiable

Nondifferentiable (i.e.nonsmoothconvex criteria can nei- approximation ofp, andg = [qo; g1 - .., gr—1]'. Then, the

ther be straightforwardly minimized by gradient-based alg?ésulting modified smoothness penalty teR . satisfies (10),

riFhms since the gradient is not defined everywhere nor by_CO%hereaﬁs only satisfies (10b) and (10c), according to the fol-
dinate descent methods [31, p. 61]. Nonetheless, there exist ?8\3(/‘mg consequence of Theorem 1 and of Corollary 1.

eral ways to efficiently minimize such criteria [31]-[34]. Here, Corollary 2: Let R, meet the weak form of conditions (15)

we resort to the so-calledgularization methoB1], [32], [35], i, Corollary 1, along withRs(p) = p. Then, the modified
[36]. In the following, it is instead referred to asgeaduated penalty term
nondifferentiability(GND) approach, in order to avoid the pos-

sible confusion with the notion of regularization for ill-posed =
problems. The principle is to successively minimize a discrete Rs,o(X) = Z pR(gp1 = gp) + 0 (20)
sequence of convex differentiable approximations that converge p=0
toward the original nonsmooth criterion. is a strictly convex function ok

We have adopted the GND approach because it is flexible, Proof: Let us remark thaRs . = Rs o ¢, wherep =
easy to implement, and mathematically convergent. Under suig=, - . -, =) andRs is defined by (14) withR;(p) = p. Then,

able conditions, the series of minimizers converges to the solbe proof is an application of Theorem 1, wigh = ¢ and
tion of the initial nonsmooth programming problem [31], [32]f = Rs, given that i) eachy; is strictly convex, and ii) ac-
[35], [36]. More specifically, we have the following result, basegording to Corollary 1, the restriction s on R’} is convex
on [31, pp. 21-22]. and coordinatewise increasifg. ]
Proposition 2: Let 7: C +— R fulfill (10b) and (10c) but o
not (10a), and lel/. (¢ > 0) be a series of approximations ofC- Minimization of.7.
J that fulfills the three conditions (10). If. converges toward  According to the principle of GND, for a finite sequence
J in the following sense: €1 > 62> - >¢ex > 0,the minimizersf(ak are recursively
VX, lim7.(X) = J(X) computed. At the:th iteration, a standard iterative descent al-
=0 17) gorithm is used to comput¥ ., . Atiterationk+1, X ., is used
as the initial solution, and the process is repeated kntil K.

lim 7, (X) >J (X)
c—0 Practical considerations regarding the stopping criterion, the up-

where dating rule ofey, and the numbek of iterations are reported
= . - . in Section V.
X = arg X 5 XE = arg £ X . & . .
“§§£Lﬂ J(X) “§i?§“ Je(X) For anye > 0, the computation oX. can be obtained with
then many mathematically converging descent algorithms sjfice

fulfills (10). Practically, several numerical strategies are studied
lim X, = X. and compared in [38].
e—0

R K1:1 | . | . IRigorous application of Corollary 1 only provides that the restrictioRgf
emark 1:In more general settings, convergence results aKSHRr is nondecreasing. A careful inspection of Appendix C is needed to check

to Proposition 2 can be obtained using the theory abnver- that the strict result actually holds.
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» The Polak—Ribiere version of conjugate gradient (CG) al- b

gorithm is implemented with a 1-D search [39].
* Itis shown that the IRLS method proposed in [38] does not
extend beyond the case of separable penalty functions.
» An original residual steepest descgiRSD) [23] method
is developed. It can also be seen as a determirtistiic
quadratic algorithm based on Geman and Yang's con-
struction [24], [30].
For a small value of i, GND coupled with CG is more effi-
cient than a single run of CG at= ¢, . This point is illustrated

in Section V. In [38], the same conclusion is drawn concerning
GND coupled with RSD.

[
o
T

Q
T

. Relative spectrum (dB)
3 S

w
[=]
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V. EXPERIMENTS 40 0.1 0.2 0.3 0.4 0.5

Fraction of sampling frequency

We illustrate the performances of the proposed spectral esti-
mators in the context of short-time estimation by processing the Fig. 1. True spectrum.
well-known Kay and Marple example [2]. Such data have been
extracted from a realization of a second-order stationary randfodwd

. ) ) . 30 dB, respectively, where the SNR is defined as the ratio
process. Since our approach is not theoretically well-suited

; . ) : the sinusoid power to the total power in the passband of the
dealing with such processes, the spectral estimates will not ored noise process. The passband of the noise is centered at
consistent with the true spectrum. Nonetheless, the results R¥S5 The true spectrum appears in Fig. 1

sented in the following prove that consistency is not a cruualGiVen the real nature of data and the symmetry properties

issue as short-time estimation is addressed. As a preliminary jicq in Appendix D, the spectra are only plotted on a half pe-

question, the ne>§t subsection addresses the problem of hyg%ra [0, 0.5]. The different estimates have been computed using
parameter selection.

P = 512. In practice, taking? > 512 does not markedly im-
prove the resolution.
With regard to the numerical implementation of CG, the fol-
In the first set of simulation results (Section V-B), hyperpdowing conjunction has been selected as stopping criterion:
rameter values have been empirically selected after several trials ‘ ‘ ‘
as those that visually work “the best.” An alternative way for |7(X") = T(XH)T(X) <y
solving this step could be automatic hyperparameter selection. X% — X7 /1X e < a2
More specifically, when the sample size of the observations is VX[, <
large enough (several hundreds of data), the maximum likeli- ¥

hood estimate (MLE) can provide a valuable solution. In thv(\e/hereXi denotes the solution at thiéh iteration of the mini-

last ten years, efficient Monte Carlo Markov chain methods ha}(ﬁ’zation stage, andis 1 or 2. Following Vogel and Oman [26]
been proposed to compute the MLE, for instance, in the cont% have chosén the norm instead, and the thresholds ha{/e
of unsupervised line spectrum estimation [40]. bFen settday, as, az) = (107 10L5 10-6)

1, ¢¢2, 43} — ’ ) .

Inthe case of small data sets, the MLE would probably lack 0 The same stopping criterion has been adopted for RSD, ex-
reliability, and more realistic solutions mustbefound,dependir&%pt that the third condition has not been tested '

on the application. Automatic or assisted calibration ofhyperpa—2 Estimation of LS:The spectrum estimates depicted in
rameters based on a training data set is sometimes possible.r_!:iﬁp > minimize penali.zed criteria with a separable penalty
instance, inthecontextofDopplerradarimagingasaddresseul ;:tion' Fig. 2(a) corresponds to the quadratic potential
[41, Ch. V], an initial data set is recorded as the radar points g(p) : p2' and Fig. 2(b) corresponds to the hyperbolic
a reference direction that corresponds to an identified scenayj tentiaIRo(p’) _ \/T(?Tp?for (\, o) = (0.06, 0.002).

such as atmospheric sounding and wind profiling. This step I—AS shown in [1] and [14], quadratic regularization yields the

lows us to calibrate the radar sensor, but it could also be used t0 " .
: zero-padded periodogram of the data sequence up to a multi-
choose the hyperparameters for the whole recording.

plicative constant. Since the nominal resolution of a 64-point
sequence is 0.015, close sinusoids at 0.2 and 0.21 are not re-
solved. Moreover, this estimate is dominated by sidelobes that
1) Practical Considerations:Following [1], the perfor- maskimportant features of the signal. In the following, the DFT
mances of the proposed methods are tested using the Kay ahthe zero-padded data sequence has been used to initialize all
Marple reference data set [2], which allows easy comparisdarative minimization procedures.
with pre-existent approaches. The data sequence is real, ofhe line spectra estimate depicted in Fig. 2(b) is very sim-
length N = 64, and consists of three sinusoids at fractionalar to the spectral estimate computed with the Cauchy—Gauss
frequencies 0.1, 0.2, and 0.21 superimposed on an additmedel [1 , Fig. 6], as well as to the result given by the Hilde-
colored noise sequence. The SNR of each harmonic is 10, Beand—Prony method [2, Fig. 6(b)]; the sinusoids are retrieved

A. Hyperparameter Selection

B. Kay and Marple Example
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ey for the closest approximatiot., of 7. The results of
Fig. 4 have been computed with, 7 ) = (0.05, 0.001).

First, let us begin with general comments on Fig. 4. Akin to
Fig. 2(b), the three results produce nearly no sidelobes, com-
pared with the periodogram. None of the three results allow
us to separate the two close harmonics, although a narrowband
component around frequency 0.2 is clearly distinguished. Sim-
ilarly, the lowest sinusoid at frequency 0.1 is recovered under

Relative spectrum (dB)
I
S

o : il

0 0.1 0.2 03 0.4 0.5 a broaden format. This is not surprising since smoothness has
B) been incorporated through the penalty function.
Fraction of sampling frequency In Fig. 4(a) and (b), the value @f has been chosen to corre-

Fig. 2. Spectra reconstructed with separable regularization. (a) Zero- pad&&pnd to the bound of convexity Gls el b = psup = 0.5,
perlodogram (b) Line spectra reconstructed with the hyperbolic potent@€cording to Section I1I-C2, and different values«f have

(A, m0) = (0.06, 0.002). been compared. A small parameter vadye = 0.001 yields
a rather inadequate blocky result, as shown in Fig. 4(b). The

at the exact frequencies but with powers different from the oriiscontinuities are due to the quasinondifferentiabilityaf . .
inal ones. Nonetheless, the power ratio (20 dB) is preserved B&€ rougher approximation depicted in Fig. 4(ax (= 0.9)
tween the three harmonics. On the other hand, the broadb&k@vides a smoother estimate. However, itis not smooth enough
part of the spectrum is not recovered. It is replaced by sevef@mpared with the broadband part of the true spectrum. In-
spectral lines. This problem is also encountered in [1] and [18]easingx beyond the bound of convexity is necessary to get
and in high-resolution parametric methods discussed by K&§poother results. The spectrum of Fig. 4(c) has been computed
and Marple [2]. with 1 = 5 andeg = 0.9. It provides a more regular broad-
From a computational standpoint, the IRLS method of [1] h&and response that is quite close to the smooth part of the true
been used as minimization tool. It is known to be convergent fiectrum. Among the estimators tested in [2], the MLE (Capon
the present situation [23], [24]. The solution is reached in aboiethod) shownin [2, Fig. 16(1)] provides a somewhat similar re-
5-10 s on a standard Pentium Il PC. sult. We retain such a tuning as a good candidate for the smooth
3) Estimation of SS: part of the mixed model.

a) Complex RegularizationFig. 3 shows the spectrum With regard to practical aspects of minimization, the three
estimate computed from a convex penalized criterion with tf@sults correspond to contrasted situations.
noncircular penalty functiorRy defined by (12). It has been  « In the case of Fig. 4(a} = 0.9 yields a criterion that is
obtained withr; = 0.1 and A = 0.6. Although the latter value sufficiently far from nondifferentiability to be efficiently
corresponds to a high level of regularization, there remain some minimized in a single run of CG (i.eK = 1), spending
artifacts, where the reversal of the lowest sinusoid is the main  about 25 s of CPU time.
defect. In our opinion, such results definitely disqualify noncir- « Fig. 4(b) has been obtained after three iterations of GND
cular penalty functions. based on CG(eq, €2, e3) = (0.1, 0.01, 0.001), which

b) Regularization of the Power Spectrurithe three globally took about 35 s of CPU time. In comparison, a
spectrum estimates depicted in Fig. 4 are obtained with a single run at3 takes about 60 s, as depicted in Fig. 5.
penalty functioriRg . defined by (20). Three hyperparameters < The valuex = 5 corresponding to Fig. 4(c) does not en-
(A, 1, 71) € R need to be adjusted, let alone the target value  sure that the criterion is convex. Hence, it is possibly mul-
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2
§_ 4) Estimation of MS:The spectrum estimates depicted in
o Fig. 6(a) and (b) are obtained from the minimization of a dif-
2 ferentiable approximation of the penalized criterjBn defined
< by (16):
@

Tu, (X)) = Qu(X) + ALRo(X1) + AsRs, - (Xg). (21)

The regularizing term®&, (11) andRs . (20) depend om and
on{u, 71, €x ), respectively. Given the results presented in the
two previous subsections, we have retaingd= 0.002, 7, =
0.001, e = 0.9, and we have tested the two settings=

Hsup = 0.5 andu = 5.

Two additional hyperparametefs;,, As) appear in (21). It
is a priori suited to choose the same order of magnitude for the
values ofA;, and Ag; otherwise, the overpenalized term would
yield a vanishing component. The valugs = 0.005, A\s =
0.0033 have been retained.

Fig. 6(a) corresponds @ = ji..; therefore, the minimized
Y SR O S criterion is strictly convex. The result has been computed with
CG. ltclearly shows that the mixed model is able to resolve close
-0 sinusoids, whereas the broadband response is much closer from

0 0.1 0z o % 04 03 the SS estimate of Fig. 4(a) than from the LS estimate of Fig. 2(b).
However, the broadband response is not smooth enough, and the
small sinusoidal componentis not as sharp as expected.

Fig. 6(b) corresponds tp = 35; therefore, the minimized
Fig. 4. Smooth spectra reconstructed with a circular Gibbs-Markov penafiyiterion is not convex and possibly multimodal. The result has
function (A, r1) = (0.05, 0.001). (&) Convex case whete = jtown = oo computed with GNC based on CG. The three spectral lines
0.5, ex = 0.9. (b) Convex case wherg = p.p, = 0.5, ex = 0.001. :

(c) Nonconvex case whefe = 5, cx = 0.9. have sharp responses at the sinusoid frequencies, and the power
ratio between the different harmonics is preserved. Moreover,
its smooth part is very close to the broadband component of the

timodal. For this reason, we gradually increase the valuetnfie spectrum. Itis clearly the most satisfactory result among all
1, following thegraduated nonconvexifsNC) approach estimates proposed in this paper. It also outperforms classical
[42], [43]. The principle is very similar to the GND tech-solutions computed on the same data set in [2].

nigue described in Section IV. The empirically chosen law Fig. 6(c) and (d) separately shq\i(LP and |Xs|2, which

of evolution fory is simply pi. = k X peup, and there- are the components of the solution depicted in Fig. 6(b). As ex-
fore, the initial criterion7,,, is convex, as prescribed bypected, the former is rather spiky, whereas the latter is rather
the GNC approach. smooth. However, perfect separation was not the goal since it

Relative spectrum (dB)

Fraction of sampling frequency
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Fig. 6. Mixed spectra. (a) Convex cage= 0.5. (b) Nonconvex extensiop = 5. (c) and (d) correspond respectively to the lih&.|?) and smootk(|Xg|2
parts of| X'|* depicted in (b).

would require that true decisions be taken regarding the prasvery sharp tool for the detection of isolated objects embedded
ence of aline at each frequency sample, whereas our motivatintbroadband events. One possible application is the tracking of
was only to accurately estimate the whole spectrum. There iplanes using a Doppler radar instrument since the informative
somewhat similar difference betweanage segmentatioand data is often embedded on meteorological clutter at low SNR.

edge-preserving restoration The proposed spectral estimators have then been extended to
this framework to additionally take spatial or temporal conti-
VI. CONCLUDING REMARKS nuity into account [41, ch. V].

Inthe contextofshort-time estimation, we have proposed anewAfter the present study, some issues remain open. On the one
class of nonlinear spectral estimators, defined as minimizersisind, we observed in Section V that minimizing a convex crite-
strictly convex energies. First, we have addressed separableff did not always yield a sufficiently smooth estimate. In prac-
nalization introduced in [1] and [18] for enhancing spectral linedice, we resorted to graduated nonconvexity to overcome the lim-

Then, a substantial part of the paper has been devottadion foundin the convex analysis framework. By now, itis hard
to smooth spectra restoration. We have introduced circulgtellwhetherthe latter takes rootin fundamental reasons or if we
Gibbs—Markov penalty functions inspired from commogimply failedinfinding the “good” convex penalty function.
models for signal and image restoration. However, the fact thatOn the other hand, the proposed penalty functions are quite
penalization applies to moduli of complex quantities introduce®phisticated. In practice, several hyperparameters have to be
specific difficulties. A rigorous mathematical study has beemned, which is not always a simple task. In some situations,
conducted in order to build criteria gathering the expectdt/perparameter values can be selected using training data. Oth-
properties such as differentiability, strict convexity, and therwise, depending on the size of the data set, automatic selection
ability to discriminate spectra in favor of the smoothest. using an MLE approach may provide an alternative solution.

Finally, since many practical spectral analysis problems in- Finally, the question of asymptotic properties remains open.
volve both spectral lines and smooth components, we have pFor instance, given the well-known properties of the averaged
posed an original form of mixed criterion to superimpose thgeriodogram, it could be interesting to study the properties of
two kinds of components. We argue that this approach providigeraged versions of our smooth spectra estimator.
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APPENDIX A such restrictiong,, ;. are even functions, i.e., thd »(—t) =
PROOF OFTHEOREM 1 Jo, k(2)

The stated sufficient condition is acknowledged in the scalar |zn|, fn#£k
case [44, Th. 5.1]. Vn € Ny, |2n + (E— 23)(1p)n] = { |t|n ; W
First, let us prove the implication in the large sense. For any ’ '
z,y € C", xz #Zyandanya € (0, 1), lett = axz + @y and Consequentlyz,, + (=t — z)(1x)n| = |70 + (¢ — 7)1 )nl,

@ = 1 — «. Eachg, is convex: and hencef(x — (t — zx)1x) = f(x + (t — 2x)1x) sincef is
circular. ]‘hereforef% L IS even.
ge(t) < agr(x) + agr(y). (22) Since f,. & is even and strictly convex dR, it is increasing

onR,, asshown below?' s, ¢, 0 < s < ¢, leta = (s+¢)/2t so

Then, using repeatedly the fact thats a coordinatewise non- thats = at+ (1 —«)(—t). Sincex € (0, 1) andfs, ;. is strictly

decreasing function, we deduce convex, fz,k(s) < afz1(t) + (1 — a)fe.x(=t) = for(t)
becausef;, ;. is even. }

As a conclusion, all restrictiong, ; are increasing o,

flg®)) < flag(z) +agly)), (23) je., fis coordinatewise increasing i’
<af(g(®) +af(9(y) (24)
APPENDIX C
where the latter inequality holds becaysis convex. PROOF OFCOROLLARY 1

In order to prove the strict formulation, we remark that there is st et us decompos&Rs according to Rs(X) =
atleast oné such thatr;, # 4; therefore, the corresponding in-(1/2) ZPfl S(X,, Xpi1), With
equality (22) becomes strict becaygés strictly convex. Then, p=0 P
the strict counterpart of inequalities (23) and (24) also holds S(X |, X,) =S(p1, p2)
sincef is coordinatewise increasing (remark that the strict con- —R
; . = +R +2uR — 25
vexity of f is unnecessary here). 2(p1) 2(p2) + 2uflpr = p2) - (25)

and let us prove that conditions (15) imply the convexitysof

APPENDIX B on €2, which is a sufficient condition for the convexity &s
PROOF OFTHEOREM 2 on C”. Apply Theorem 2 taS. On one hand$ is convex on
A. Sufficient Condition Ri as a sum of convex functions ¢f;, p2). It is even strictly

. convex if R, is strictly convex.

Let f: RY — R be a (resp. strictly) convex and co- o e other hand, let us prove thats coordinatewise non-
ordinatewise nondecreasing (resp. _mcreasmg) func'[_'%creasing or even increasing as a functiofiaf p») if con-
and letg: C™ ~ R7 be the mapping of the modul|:ditions (15) hold. SinceR, is even,S(p1, p2) = S(pa, p1):
Ve € C7, g() = (Jaa], |z2f, ..., |#m]). We have to prove yherefore we need only to study the behavioSafs a function
thatf o g is (resp. strictly) convex. of, say,p; . SinceR; is even and convex dg, it is nondecreasing

In the large sense, this result is an immediate consequerangr (the strict counterpart of this result is shown at the end

of Theorem 1 forn = 2m. Hoyvever,.the strict gounterpart ofof Appendix B). As a sum of nondecreasing functiongfit
Theorem 1 does not apply sin¢e | is not astrictly convex is obvious thatS is nondecreasing if; > po. If pi < po, the
function. We need a more specific derivation, which is acwal%nditionaé‘/a > 0 reads

P =

generalizable to any functiog with hemivariate[45] convex
components. , Vp1, p2 >0, p1 < p2, Ry(p1) = 2uR(p2 — p1)

Let us consider the proof of Theorem 1/lIfs strictly convex,
(24) readily becomes strict, provided thgir) # g(y). Oth- whichis equivalentto (15c) sind&; andR}, are nondecreasing.
erwise, assumg(z) = g(y) so that (24) read§(g(t)) < Finally, if R, is strictly convexs is shown to be coordinatewise
f(g(z)). Sincex # y, there exists at least orfe such that increasing along the same lines.
xr 7 yi. Then|xy| = |yx| implies|ty| < |zx| sincet; belongs
to the cord(zy, v, ) of the centered circle of radiysy|. Sincef APPENDIX D
is coordinatewise increasing, it follows thig(¢)) < f(g(z)), REAL DATA CASE

which is the expected strict counterpart of inequality (24). The purpose of this Appendix is to show that the proposed

spectral estimation method (in either versions, LS, SS, and MS)

automatically preserves the Hermitian structure of the spectrum
Let f: C™ — R be a strictly convex, circular function. Itswhen real data are processed so that the estimated power spec-

restriction orR? is obviously strictly convex. We have to provetrum is symmetric.

that it is also coordinatewise increasing. ) Letus denot&X = H(X) as the expected Hermitian property
Let 1, be thekth canonical vector iR™, and letf, x(t) = of X, with

f(z + (t — z)1) be the restriction of to the line{w, u, =

Zn, Y0 #£ k} foranyt € R, z € R™. First, let us prove that all H(Xo, X1, ..., Xp_1) £ (X5, Xp_1, -0y XD).

B. Necessary Condition
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Equivalently, X = H(X) means that the inverse DRI =

mrr~*(X) is a real vector. Convexity of the minimized crite- [

rion plays a basic role in the fulfillment of the Hermitian prop-

erty of X, as stated in the following proposition.

Proposition 3: Consider areal data sgtc R and a penalty
function R: Rﬁ: — R that fulfills (9b)—(9d) and (10b)—(10c).
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