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A Majorize–Minimize Strategy for Subspace
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Abstract—This paper proposes accelerated subspace optimiza-
tion methods in the context of image restoration. Subspace opti-
mization methods belong to the class of iterative descent algorithms
for unconstrained optimization. At each iteration of such methods,
a stepsize vector allowing the best combination of several search di-
rections is computed through a multidimensional search. It is usu-
ally obtained by an inner iterative second-order method ruled by
a stopping criterion that guarantees the convergence of the outer
algorithm. As an alternative, we propose an original multidimen-
sional search strategy based on the majorize–minimize principle.
It leads to a closed-form stepsize formula that ensures the conver-
gence of the subspace algorithm whatever the number of inner it-
erations. The practical efficiency of the proposed scheme is illus-
trated in the context of edge-preserving image restoration.

Index Terms—Conjugate gradient, image restoration, memory
gradient, quadratic majorization, stepsize strategy, subspace opti-
mization.

I. INTRODUCTION

T HIS work addresses a wide class of problems where an
input image is estimated from degraded data

. A typical model of image degradation is

where is a linear operator, described as a matrix,
that models the image degradation process, and is an additive
noise vector. This simple formalism covers many real situations
such as deblurring, denoising, inverse-Radon transform in to-
mography, and signal interpolation.

Two main strategies emerge in the literature for the restora-
tion of [1]. The first one uses an analysis-based approach,
solving the following problem [2], [3]:

(1)

In Section V, we will consider an image deconvolution problem
that calls for the minimization of this criterion form.

The second one employs a synthesis-based approach, looking
for a decomposition of the image in some dictionary

[4], [5]:

(2)
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This method is applied to a set of image reconstruction problems
[6] in Section IV.

In both cases, the penalization term , whose weight is set
through the regularization parameter , aims at guaranteeing
the robustness of the solution to the observation noise and at
favorizing its fidelity to a priori assumptions [7].

From the mathematical point a view, problems (1) and (2)
share a common structure. In this paper, we will focus on the
resolution of the first problem (1), but we will also provide nu-
merical results regarding the second one. On the other hand, we
restrict ourselves to regularization terms of the form

where , for and stands
for the Euclidian norm. In the analysis-based approach, is
typically a linear operator yielding either the differences be-
tween neighboring pixels (e.g., in the Markovian regularization
approach), or the local spatial gradient vector (e.g., in the total
variation framework), or wavelet decomposition coefficients in
some recent works such as [1]. In the synthesis-based approach,

usually identifies with the identity matrix.
The strategy used for solving the penalized least squares

(PLS) optimization problem (1) strongly depends on the
objective function properties (i.e., differentiability and con-
vexity). Moreover, these mathematical properties contribute
to the quality of the reconstructed image. In that respect, we
particularly focus on differentiable, coercive, edge-preserving
functions , e.g., norm with , Huber, hyperbolic,
or Geman and McClure functions [8]–[10], since they give rise
to locally smooth images [11]–[13]. In contrast, some restora-
tion methods rely on nondifferentiable regularizing functions
to introduce priors such as sparsity of the decomposition coef-
ficients [5] and piecewise constant patterns in the images [14].
As emphasized in [6], the nondifferentiable penalization term
can be replaced by a smoothed version without altering the
reconstruction quality. Moreover, the use of a smoother penalty
can reduce the staircase effect that appears in the case of total
variation regularization [15].

In the case of large-scale nonlinear optimization problems
as encountered in image restoration, direct resolution is impos-
sible. Instead, iterative optimization algorithms are used to solve
(1). Starting from an initial guess , they generate a sequence
of updated estimates until sufficient accuracy is obtained.
A fundamental update strategy is to produce a decrease of the
objective function at each iteration: from the current value ,

is obtained according to

(3)
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where is the stepsize and is a descent direction i.e.,
a vector such that , where denotes
the gradient of at . The determination of is called the
line search. It is usually obtained by partially minimizing the
scalar function until the fulfillment
of some sufficient conditions related to the overall algorithm
convergence [16].

In the context of the minimization of PLS criteria, the deter-
mination of the descent direction is customarily addressed
using a half-quadratic (HQ) approach that exploits the PLS
structure [11], [12], [17], [18]. A constant stepsize is then
used while results from the minimization of a quadratic
majorizing approximation of the criterion [13], either resulting
from Geman and Reynolds (GR) or from Geman and Yang
(GY) constructions [2], [3].

Another effective approach for solving (1) is to consider sub-
space acceleration [6], [19]. As emphasized in [20], some de-
scent algorithms (3) have a specific subspace feature: they pro-
duce search directions spanned in a low-dimension subspace,
with examples given here.

• The nonlinear conjugate gradient (NLCG) method [21]
uses a search direction in a 2-D space spanned by the op-
posite gradient and the previous direction.

• The L-BFGS quasi-Newton method [22] generates updates
in a subspace of size , where is the limited
memory parameter.

Subspace acceleration consists in relying on iterations more
explicitly aimed at solving the optimization problem within
such low dimension subspaces [23]–[27]. The acceleration is
obtained by defining as the approximate minimizer of the
criterion over the subspace spanned by a set of directions

with . More precisely, the iterates are given by

(4)

where is a multidimensional stepsize that aims at partially
minimizing

(5)

The prototype scheme (4) defines an iterative subspace opti-
mization algorithm that can be viewed as an extension of (3) to
a search subspace of dimension larger than one. The subspace
algorithm has been shown to outperforms standard descent algo-
rithms, such as NLCG and L-BFGS, in terms of computational
cost and iteration number before convergence, over a set of PLS
minimization problems [6], [19].

The implementation of subspace algorithms requires a
strategy to determine the stepsize that guarantees the con-
vergence of the recurrence (4). However, it is difficult to design
a practical multidimensional stepsize search algorithm gath-
ering suitable convergence properties and low computational
time [26], [28]. Recently, GY and GR HQ approximations
have led to an efficient majorization–minimization (MM) line
search strategy for the computation of when is the
NLCG direction [29] (see also [30] for a general reference on
MM algorithms). In this paper, we generalize this strategy to

define the multidimensional stepsize in (4). We prove the
mathematical convergence of the resulting subspace algorithm
under mild conditions on . We illustrate its efficiency on
four image restoration problems.

The remainder of this paper is organized as follows. Section II
gives an overview of existing subspace constructions and mul-
tidimensional search procedures. In Section III, we introduce
the proposed HQ/MM strategy for the stepsize calculation and
we establish general convergence properties for the overall sub-
space algorithm. Finally, Sections IV and V give some illustra-
tions and a discussion of the algorithm performances by means
of a set of experiments in image restoration.

II. SUBSPACE OPTIMIZATION METHODS

The first subspace optimization algorithm is the memory gra-
dient method, proposed in the late 1960s by Miele and Cantrell
[23]. It corresponds to

and the stepsize results from the exact minimization of
. When is quadratic, it is equivalent to the nonlinear

conjugate gradient algorithm [31].
More recently, several other subspace algorithms have been

proposed. Some of them are briefly reviewed here. We first focus
on the subspace construction, and then we describe several ex-
isting stepsize strategies.

A. Subspace Construction

Choosing subspaces of dimensions larger than one may
allow faster convergence in terms of iteration number. However,
it requires a multidimensional stepsize strategy, which can be
substantially more complex (and computationaly costly) than
the usual line search. Therefore, the choice of the subspace must
achieve a tradeoff between the iteration number to reach con-
vergence and the cost per iteration. Let us review some existing
iterative subspace optimization algorithms and their associated
set of directions. For the sake of compactness, their main fea-
tures are summarized in Table I. Two families of algorithms are
distinguished.

1) Memory Gradient Algorithms: In the first seven algo-
rithms, mainly gathers successive gradient and direction
vectors.

The third one, introduced in [32] as supermemory descent
(SMD) method, generalizes SMG by replacing the steepest de-
scent direction by any direction nonorthogonal to i.e.,

. PCD-SESOP and SSF-SESOP algorithms from [6],
[19] identify with SMD algorithm, when equals respectively
the parallel coordinate descent (PCD) direction and the sep-
arable surrogate functional (SSF) direction, both described in
[19].

Although the fourth algorithm was introduced in [33]–[35] as
a supermemory gradient method, we rather refer to it as a gra-
dient subspace (GS) algorithm in order to make the distinction
with the supermemory gradient (SMG) algorithm introduced in
[24].

The orthogonal subspace (ORTH) algorithm was introduced
in [36] with the aim to obtain a first order algorithm with an
optimal worst case convergence rate. The ORTH subspace
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TABLE I
SET OF DIRECTIONS CORRESPONDING TO THE MAIN EXISTING ITERATIVE SUBSPACE ALGORITHMS. THE WEIGHTS � AND THE VECTORS ��� ARE DEFINED BY (6)

AND (7), RESPECTIVELY. ��� IS DEFINED BY (8), AND ��� IS THE �TH OUTPUT OF A CG ALGORITHM TO SOLVE ��� ����� � �

corresponds to the opposite gradient augmented with the two
so-called Nemirovski directions, and ,
where are prespecified, recursively defined weights

if

otherwise. (6)

In [26], the Nemirovski subspace is augmented with previous di-
rections, leading to the SESOP algorithm whose efficiency over
ORTH is illustrated on a set of image reconstruction problems.
Moreover, experimental tests showed that the use of Nemirovski
directions in SESOP does not improve practical convergence
speed. Therefore, in their recent paper [6], Zibulevsky et al. do
not use these additionnal vectors so that their modified SESOP
algorithm actually reduces to the SMG algorithm from [24].

2) Newton-Type Subspace Algorithms: The last two algo-
rithms introduce additional directions of the Newton type.

In the quasi-Newton subspace (QNS) algorithm proposed in
[25], is augmented with

(7)

This proposal is reminiscent from the L-BFGS algorithm [22],
since the latter produces directions in the space spanned by the
resulting set .

SESOP-TN has been proposed in [27] to solve the problem
of sensitivity to an early break of conjugate gradient (CG) it-
erations in the truncated Newton (TN) algorithm. Let de-
note the current value of after iterations of CG to solve the
Gauss-Newton system , where

(8)

In the standard TN algorithm, defines the search direction
[39]. In SESOP-TN, it is only the first component of , while
the second and third components of also result from the CG
iterations.

Finally, to accelerate optimization algorithms, a common
practice is to use a preconditioning matrix. The principle is to
introduce a linear transform on the original variables, so that
the new variables have a Hessian matrix with more clustered

eigenvalues. Preconditioned versions of subspace algorithms
are easily defined by using instead of in the previous
direction sets [26].

B. Stepsize Strategies

The aim of the multidimensional stepsize search is to deter-
mine that ensures a sufficient decrease of function de-
fined by (5) in order to guarantee the convergence of recurrence
(4). In the scalar case, typical line search procedures generate a
series of stepsize values until the fulfillment of sufficient con-
vergence conditions such as Armijo et al. [40]. An extension of
these conditions to the multidimensional case can easily be ob-
tained (e.g., the multidimensional Goldstein rule in [28]). How-
ever, it is difficult to design practical multidimensional stepsize
search algorithms allowing to check these conditions [28].

Instead, in several subspace algorithms, the stepsize results
from an iterative descent algorithm applied to function ,
stopped before convergence. In SESOP and SESOP-TN, the
minimization is performed by a Newton method. However, un-
less the minimizer is found exactly, the resulting subspace al-
gorithms are not proved to converge. In the QNS and GS al-
gorithms, the stepsize results from a trust region recurrence on

. It is shown to ensure the convergence of the iterates under
mild conditions on [25], [34], [35]. However, except when
the quadratic approximation of the criterion in the trust region
is separable [34], the trust region search requires to solve a
nontrivial constrained quadratic programming problem at each
inner iteration.

In the particular case of modern SMG algorithms [41]–[44],
is computed in two steps. First, a descent direction is con-

structed by combining the vectors with some predefined
weights. Then, a scalar stepsize is calculated through an itera-
tive line search. This strategy leads to the recurrence

Different expressions for the weights have been proposed. To
our knowledge, their extension to the preconditioned version of
SMG or to other subspaces is an open issue. Moreover, since
the computation of does not aim at minimizing in
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the SMG subspace, the resulting schemes are not true subspace
algorithms.

In Section III, we propose an original strategy to define the
multidimensional stepsize in (4). The proposed stepsize
search is proved to ensure the convergence of the whole algo-
rithm, under low assumptions on the subspace, and to require
low computationnal cost.

III. PROPOSED MULTIDIMENSIONAL STEPSIZE STRATEGY

A. GR and GY Majorizing Approximations

Let us first introduce Geman and Yang [3] and Geman and
Reynolds [2] matrices and , which play a central role
in the multidimensional stepsize strategy proposed in this paper:

(9)

(10)

where , is a free parameter, and
is a vector with entries

Both GY and GR matrices allow the construction of ma-
jorizing approximation for . More precisely, let us introduce
the following second order approximation of in the neighbor-
hood of

(11)

Let us also introduce the following assumptions on the function
:

(H1) is and coercive.
is -Lipschitz.

(H2) is , even and coercive.
is concave on .

.
Then, the following lemma holds.

Lemma 1 [13]: Let defined by (1) and . If As-
sumption H1 holds and with (resp.
Assumption H2 holds and ), then, for all , (11) is a
tangent majorant for at i.e., for all ,

(12)

The majorizing property (12) ensures that the MM recurrence

(13)

produces a nonincreasing sequence that converges to a
stationary point of [30], [45]. Half-quadratic algorithms [2],
[3] are based on the relaxed form

(14)

where is obtained by (13). The convergence properties of
recurrence (14) are analyzed in [12], [13], [46].

B. Majorize–Minimize Line Search

In [29], is defined as (3) where is the NLCG direc-
tion and the stepsize value results from successive
minimizations of quadratic tangent majorant functions for the
scalar function , expressed as

at . The scalar parameter is defined as

where is either the GY or the GR matrix, respectively de-
fined by (9) and (10). The stepsize values are produced by the
relaxed MM recurrence

(15)

and the stepsize corresponds to the last value . The dis-
tinctive feature of the MM line search is to yield the convergence
of standard descent algorithms without any stopping condition
whatever the number of MM subiterations and relaxation pa-
rameter [29]. Here, we propose to extend this strategy
to the determination of the multidimensional stepsize , and we
prove the convergence of the resulting family of subspace algo-
rithms.

C. MM Multidimensional Search

Let us define the symmetric positive definite (SPD)
matrix

with and is either the GY matrix or the
GR matrix. According to Lemma 1,

(16)

is quadratic tangent majorant for at . Then, let us de-
fine the MM multidimensional stepsize by , with

. (17)

Given (16), we obtain an explicit stepsize formula
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Moreover, according to [13], the update rule (17) produces
monotonically decreasing values if . Let
us emphasize that this stepsize procedure identifies with the
HQ/MM iteration (14) when , and to the
HQ/MM line search (15) when .

D. Convergence Analysis

Here, we establish the convergence of the iterative subspace
algorithm (4) when is chosen according to the MM strategy
(17).

We introduce the following assumption, which is a necessary
condition to ensure that the penalization term regularizes
the problem of estimating from in a proper way

(H3) and are such that

Lemma 2 [13]: Let be defined by (1), where and
satisfy Assumption H3. If Assumption H1 or H2 holds, is
continuously differentiable and bounded below. Moreover, if for
all , with (resp., ), then

has a positive bounded spectrum, i.e., there exists
such that

Let us also assume that the set of directions fulfills the
following condition.

(H4) For all , the matrix of directions is of size
with and the first subspace direction

fulfills

(18)

(19)

with .
Then, the convergence of the MM subspace scheme holds

according to the following theorem.
Theorem 1: Let defined by (1), where and satisfy

Assumption H3. Let defined by (4)–(17) where satisfies
Assumption H4, , and
with (resp., ). If
Assumption H1 (resp., Assumption H2) holds, then

(20)

Moreover, we have convergence in the following sense:

Proof: See Appendix A.
Remark 1: Assumption H4 is fulfilled by a large family of

descent directions. In particular, the following results hold.
• Let be a series of SPD matrices with eigenvalues

that are bounded below and above, respectively by and
. Then, according to [16Sec. 1.2], Assumption H4

holds if .
• According to [47], Assumption H4 also holds if results

from any fixed positive number of CG iterations on the

linear system , provided that is a matrix
series with a positive bounded spectrum.

• Finally, Lemma 3 in Appendix B ensures that Assumption
H4 holds if is the PCD direction, provided that is
strongly convex and has a Lipschitz gradient.

Remark 2: For a preconditioned NLCG algorithm with a vari-
able preconditioner , the generated iterates belong to the sub-
space spanned by and . Whereas the convergence
of the PNLCG scheme with a variable preconditioner is still
an open problem [21], [48], the preconditioned MG algorithm
using and the proposed MM stepsize
is guaranteed to converge for bounded SPD matrices , ac-
cording to Theorem 1.

E. Implementation Issues

In the proposed MM multidimensional search, the main com-
putational burden originates from the need to multiply the span-
ning directions with linear operators and , in order to com-
pute and . When the problem is large scale, these
products become expensive and may counterbalance the effi-
ciency obtained when using a subset of larger dimension. In this
section, we give a strategy to reduce the computational cost of
the product when or . This general-
izes the strategy proposed in [26, Sec. 3] for the computation
of and during the Newton search of the
SESOP algorithm.

For all subspace algorithms, the set can be expressed as
the sum of a new matrix and a weighted version of the previous
set

(21)

The obtained expressions for and are given in Table II.
According to (21), can be obtained by the recurrence

Assuming that is stored at each iteration, the computa-
tionnal burden reduces to the product . This strategy is ef-
ficient as far as has a small number of columns. Moreover,
the cost of the latter product does not depend on the subspace
dimension, by contrast with the direct computation of .

IV. APPLICATION TO THE SET OF IMAGE PROCESSING

PROBLEMS FROM [6]

Here, we consider three image processing problems, namely
image deblurring, tomography, and compressive sensing, gen-
erated with Zibulevsky’s code.1 For all problems, the synthesis-
based approach is used for the reconstruction. The image is as-
sumed to be well described as with a known dic-
tionary and a sparse vector . The restored image is then
defined as where minimizes the PLS criterion

1[Online]. Available: http://iew3.technion.ac.il/mcib
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TABLE II
RECURSIVE MEMORY FEATURE AND DECOMPOSITION (21) OF SEVERAL ITERATIVE SUBSPACE ALGORITHMS. HERE, ����� � �� DENOTES THE SUBMATRIX OF ���

MADE OF COLUMNS � TO � , AND ��� DENOTES THE MATRIX SUCH THAT ���, ��� � ����� � ��

where is the logarithmic smooth version of the norm

that aims at sparsifying the solution.
In [6], several subspace algorithms are compared in order to

minimize . In all cases, the multidimensional stepsize results
from a fixed number of Newton iterations. The aim of this sec-
tion is to test the convergence speed of the algorithms when
the Newton procedure is replaced by the proposed MM step-
size strategy.

A. Subspace Algorithm Settings

SESOP [26] and PCD-SESOP [19] direction sets are consid-
ered here. The latter uses SMD vectors with defined as the
PCD direction

(22)

where stands for the th elementary unit vector. Following [6],
the memory parameter is tuned to (i.e., ). More-
over, the Nemirovski directions are discarded, so that SESOP
identifies with the SMG subspace.

Let us define SESOP-MM and PCD-SESOP-MM algorithms
by associating SESOP and PCD-SESOP subspaces with the
multidimensional MM stepsize strategy (17). The latter is
fully specified by the curvature matrix , the number of MM
sub-iterations and the relaxation parameter . For all ,
we define where is given by
(10), and . Function is strictly convex and fulfills
both Assumptions H1 and H2. Therefore, Lemma 1 applies.
Matrix identifies with the identity matrix, so Assumption H3
holds and Lemma 2 applies. Moreover, according to Lemma 3,
Assumption H4 holds and Theorem 1 ensures the convergence
of SESOP-MM and PCD-SESOP-MM schemes.

MM versions of SESOP and PCD-SESOP are compared to
the original algorithms from [6], where the inner minimization
uses Newton iterations with backtracking line search, until the
tight stopping criterion

is met, or seven Newton updates are achieved.

Fig. 1. Deblurring problem taken from [6] (128 � 128 pixels). The objective
function and the gradient norm value as a function of iteration number (left) and
CPU time in seconds (right) for the four tested algorithms.

For each test problem, the results were plotted as functions of
either iteration numbers, or of computational times in seconds,
on an Intel Pentium 4 PC (3.2-GHz CPU and 3-GB RAM).

B. Results and Discussion

1) Choice Between Subspace Strategies: According to
Figs. 1–3, the PCD-SESOP subspace leads to the best re-
sults in terms of objective function decrease per iteration,
while the SESOP subspace leads to the largest decrease of
the gradient norm, independently from the stepsize strategy.
Moreover, when considering the computational time, it appears
that SESOP and PCD-SESOP algorithms have quite similar
performances.

2) Choice Between Stepsize Strategies: The impact of the
stepsize strategy is the central issue in this paper. According to
a visual comparison between thin and thick plots in Figs. 1–3,
the MM stepsize strategy always leads to significantly faster al-
gorithms compared with the original versions based on Newton
search, mainly because of a reduced computational time per
iteration.

Moreover, let us emphasize that the theoretical convergence
of SESOP-MM and PCD-SESOP-MM is ensured according
to Theorem 1. In contrast, unless the Newton search reaches
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Fig. 2. Tomography problem taken from [6] (32 � 32 pixels). The objective
function and the gradient norm value as a function of iteration number (left) and
CPU time in seconds (right) for the four tested algorithms.

Fig. 3. Compressed sensing problem taken from [6] (64� 64 pixels). The ob-
jective function and the gradient norm value as a function of iteration number
(left) and CPU time in seconds (right) for the four tested algorithms.

the exact minimizer of , the convergence of SESOP and
PCD-SESOP is not guaranteed theoretically.

V. APPLICATION TO EDGE-PRESERVING IMAGE RESTORATION

The problem considered here is the restoration of the well-
known images boat, lena, and peppers of size

. These images are firstly convolved with a Gaussian point
spread function of standard deviation 2.24 and of size 17 17.
Second, a white Gaussian noise is added with a variance ad-
justed to get a signal-to-noise ratio (SNR) of 40 dB. The fol-
lowing analysis-based PLS criterion is considered:

TABLE III
VALUES OF HYPERPARAMETERS �� � AND RECONSTRUCTION QUALITY IN

TERMS OF PSNR AND RMSE

where is the first-order difference matrix. This criterion de-
pends on the parameters and . They are assessed to maxi-
mize the peak signal to noise ratio (PSNR) between each image

and its reconstruction version . Table III gives the resulting
values of PSNR and relative mean square error (RMSE), defined
by

and

The purpose of this section is to test the convergence speed
of the multidimensional MM stepsize strategy (17) for different
subspace constructions. Furthermore, these performances are
compared with standard iterative descent algorithms associated
with the MM line search described in Section III-B.

A. Subspace Algorithm Settings

The MM stepsize search is used with the Geman and
Reynolds HQ matrix and . Since the hyperbolic function

is a strictly convex function that fulfills both Assumptions
H1 and H2, Lemma 1 applies. Furthermore, Assumption H3
holds [29] so Lemma 2 applies.

Our study deals with the preconditioned form of the following
direction sets: SMG, GS, QNS, and SESOP-TN. The precondi-
tioner is a SPD matrix based on the 2-D Cosine Transform.
Thus, Assumption H4 holds and Theorem 1 ensures the con-
vergence of the proposed scheme whatever the number of MM
subiterations . Moreover, the implementation strategy de-
scribed in Section III-E will be used.

For each subspace, we first consider the reconstruction of
peppers, illustrated in Fig. 4, allowing us to discuss the tuning
of the memory parameter , related to the size of the subspace

as described in Table I, and the performances of the MM
search. The latter is again compared with the Newton search
from [6].

Then, we compare the subspace algorithms with iterative de-
scent methods in association with the MM scalar line search.

The global stopping rule is considered.
For this setting, no significant differences between algorithms
have been observed in terms of reconstruction quality. For each
tested scheme, the performance results are displayed under the
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(a) (b)

Fig. 4. (a) Noisy, blurred peppers image, 40 dB. (b) Restored image.

TABLE IV
RECONSTRUCTION OF peppers: ITERATION NUMBER �/TIME � (s)
BEFORE CONVERGENCE FOR MM AND NEWTON STRATEGIES FOR THE

MULTIDIMENSIONAL SEARCH IN SMG ALGORITHM

TABLE V
RECONSTRUCTION OF peppers: ITERATION NUMBER �/TIME � (s) BEFORE

CONVERGENCE FOR THE MULTIDIMENSIONAL SEARCH IN GS ALGORITHM

form where is the number of global iterations and is
the global minimization time in seconds.

B. Gradient and Memory Gradient Subspaces

The aim of this section is to analyze the performances of SMG
and GS algorithms.

1) Influence of Tuning Parameters: According to Tables IV,
V, the algorithms perform better when the stepsize is obtained
with the MM search. Furthermore, it appears that leads
to the best results in terms of computation time which indicates
that the best strategy corresponds to a rough minimization of

. Such a conclusion meets that of [29]. In contrast, the
MM strategy with high values of leads to poor performances
in term of iteration number , comparable with those obtained
when using Newton search.

The effect of the memory size differs according to the sub-
space construction. For the SMG algorithm, an increase of the
size of the memory does not accelerate the convergence. On

TABLE VI
RECONSTRUCTION OF peppers: ITERATION NUMBER �/TIME � (s) BEFORE

CONVERGENCE FOR MG AND NLCG FOR DIFFERENT CONJUGACY STRATEGIES.
IN ALL CASES, THE STEPSIZE RESULTS FROM � ITERATIONS OF THE MM

RECURRENCE

TABLE VII
ITERATION NUMBER �/TIME � (s) BEFORE CONVERGENCE FOR MG AND

NLCG ALGORITHMS. IN ALL CASES, THE NUMBER OF MM SUBITERATIONS

IS SET TO � � �

the contrary, it appears that the number of iterations for GS de-
creases when more gradients are saved and the best tradeoff is
obtained with .

2) Comparison With Conjugate Gradient Algorithms: Let us
compare the MG algorithm (i.e., SMG with ) with the
NLCG algorithm making use of the MM line search strategy
proposed in [29]. The latter is based on the following descent
recurrence:

where is the conjugacy parameter. Table VI summarizes the
performances of NLCG for five different conjugacy strategies
described in [21]. The stepsize in NLCG results from iter-
ations of (15) with and . According to Table VI,
the convergence speed of the conjugate gradient method is very
sensitive to the conjugacy strategy. The last line of Table VI re-
produces the first column of Table IV. The five tested NLCG
methods are outperformed by the MG subspace algorithm with

, both in terms of iteration number and computational
time .

The two other cases lena and boat lead to the same conclu-
sion, as reported in Table VII. Finally, Table VIII reports the re-
sults obtained with 20 dB. While the iteration number

and computational time before convergence globally in-
creased due to the higher noise level, the best results were still
observed with MG algorithm.

C. Quasi-Newton Subspace

Dealing with the QNS algorithm, the best results were ob-
served with iteration of the MM stepsize strategy and
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TABLE VIII
ITERATION NUMBER �/TIME � (s) BEFORE CONVERGENCE FOR MG AND

NLCG ALGORITHMS FOR ��� � 20 dB. IN ALL CASES, THE NUMBER OF

MM SUBITERATIONS IS SET TO � � �

Fig. 5. Reconstruction of peppers: Influence of memory � for algorithms
L-BFGS and QNS in terms of iteration number � and computation time � in
seconds. In all cases, the number of MM subiterations is set to � � �.

TABLE IX
ITERATION NUMBER �/TIME � (s) BEFORE CONVERGENCE FOR QNS AND

L-BFGS ALGORITHMS FOR � � �

the memory parameter . For this setting, the peppers
image is restored after 68 iterations, which takes 124 s. As a
comparison, when the Newton search is used and , the
QNS algorithm requires 75 iterations that take more than 1000 s.

Let us now compare the QNS algorithm with the standard
L-BFGS algorithm from [22]. Both algorithms require the
tuning of the memory size . Fig. 5 illustrates the perfor-
mances of the two algorithms. In both cases, the stepsize results
from one iteration of MM recurrence. Contrary to L-BFGS,
QNS is not sensitive to the size of the memory . Moreover,
according to Table IX, the QNS algorithm outperforms the
standard L-BFGS algorithm with its best memory setting for
the three restoration problems.

D. Truncated Newton Subspace

Now, let us focus on the second order subspace method
SESOP-TN. The first component of , , is computed by
applying iterations of the preconditioned CG method to the
Newton equations. Akin to the standard TN algorithm, is
chosen according to the following convergence test:

where is a threshold parameter. Here, the setting
has been adopted since it leads to lowest computation time for
the standard TN algorithm.

TABLE X
RECONSTRUCTION OF peppers: ITERATION NUMBER �/TIME � (s) BEFORE

CONVERGENCE FOR MM AND NEWTON STEPSIZE STRATEGIES IN SESOP-TN
ALGORITHM

TABLE XI
ITERATION NUMBER �/TIME � (s) BEFORE CONVERGENCE FOR SESOP-TN

AND TN ALGORITHMS FOR � � ��� AND � � ��

In Tables X and XI, the results are reported in the form
where denotes the total number of CG steps.

According to Table X, SESOP-TN-MM behaves differently
from the previous algorithms. A quite large value of is nec-
essary to obtain the fastest version. In this example, the MM
search is still more efficient than the Newton search, provided
that we choose . Concerning the memory parameter, the
best results are obtained for .

Finally, Table XI summarizes the results for the three test im-
ages, in comparison with the standard TN (not fully standard,
though, since the MM line search has been used). Our con-
clusion is that the subspace version of TN does not seem to
bring a significant acceleration compared to the standard ver-
sion. Again, this contrasts with the results obtained for the other
tested subspace methods.

VI. CONCLUSION

This paper explored the minimization of penalized least
squares criteria in the context of image restoration, using the
subspace algorithm approach. We pointed out that the existing
strategies for computing the multidimensional stepsize suffer
either from a lack of convergence results (e.g., Newton search)
or from a high computational cost (e.g., trust region method).
As an alternative, we proposed an original stepsize strategy
based on a MM recurrence. The stepsize results from the mini-
mization of a half-quadratic approximation over the subspace.
Our method benefits from mathematical convergence results,
whatever the number of MM iterations. Moreover, it can be
implemented efficiently by taking advantage of the recursive
structure of the subspace.

On practical restoration problems, the proposed search is sig-
nificantly faster than the Newton minimization used in [6], [26],
[27], in terms of computational time before convergence. Quite
remarkably, the best performances have almost always been ob-
tained when only one MM iteration was performed ,
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and when the size of the memory was reduced to one stored it-
erate , which means that simplicity and efficiency meet
in our context. In particular, the resulting algorithmic structure
contains no nested iterations.

Finally, among all of the tested variants of subspace methods,
the best results were obtained with the memory gradient sub-
space (i.e., where the only stored vector is the previous direc-
tion), using a single MM iteration for the stepsize. The resulting
algorithm can be viewed as a new form of preconditioned, non-
linear conjugate gradient algorithm, where the conjugacy pa-
rameter and the stepsize are jointly given by a closed-form for-
mula that amounts to solve a 2 2 linear system.

APPENDIX

A. Proof of Theorem 1

Let us introduce the scalar function

(23)

According to the expression of , reads

(24)

Its minimizer is given by

(25)

Therefore

(26)

Moreover, according to the expression of , we have

(27)

minimizes , hence . Thus,
using (26) and (27), we have

(28)

According to (24) and (25), the relaxed stepsize
fulfills

(29)

where . Moreover,

(30)

Thus, using (28)–(30), we obtain and

(31)

Furthermore, according to
Lemma 1 and [13, Prop. 5]. Thus,

(32)

According to Lemma 2

(33)

Hence, according to (32), (33), and Assumption H4,

(34)

which also reads

(35)

Thus, (20) holds. Moreover, is bounded below according to
Lemma 2. Therefore, is finite. Thus

and finally

B. Relations Between the PCD and the Gradient Directions

Lemma 3: Let the PCD direction be defined by ,
with

where stands for the th elementary unit vector. If is gra-
dient Lipschitz and strongly convex on , then there exist

such that fulfills

(36)

(37)

for all .
Proof: Let us introduce the scalar functions

, so that

(38)

is gradient Lipschitz, so there exists such that for all

In particular, for and , we obtain

given that according to (38). According to the ex-
pression of ,
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Moreover, minimizes the convex function on so

(39)

Therefore

(40)

is strongly convex, so there exists such that, for all ,

In particular, and give

(41)

Using (39), we obtain

(42)

Therefore

(43)

Thus, (36) and (37) hold for and .
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