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Abstract— This paper presents an unsupervised method for
restoration of sparse spike trains. These signals are modeled as
random Bernoulli-Gaussian processes, and their unsupervised
restoration requires (i) estimation of the hyperparameters that
control the stochastic models of the input and noise signals and
(i) deconvolution of the pulse process. Classically, the problem
is solved iteratively using a maximum generalized likelihood
approach despite guestionable statistical properties.

The contribution of the article is threefold. First, we present
a new “core algorithm” for supervised deconvolution of spike
trains, which exhibits enhanced numerical efficiency and reduced
memory requirements. Second, we propose an eriginal imple-
mentation of a hyperparameter estimation procedure that is
based upon a stochastic version of the expectation-maximization
(EM) algorithm. This procedure utilizes the same core algorithm
as the supervised deconvolution method. Third, Monte Carlo
simulations show - that the proposed unsupervised restoration
method exhibits satisfactory theoretical and practical behaviors
and that, in addition, good global numerical efficiency is achieved.

I. INTRODUCTION

This paper deals with restoration of sparse spike trains
distorted by a linear system and corrupted by additive white
noise. Such a problem occurs in a variety of areas such as
geophysics, communications, medical imaging, nondestructive
evaluation (NDE), radar, etc. In order to obtain an adequate
solution, the spiky nature of the unknown signal must be
accounted for. In a stochastic framework, this can be done by
modeling the pulse train as a Bernoulli-Gaussian (BG) process
and by using a Bayesian estimator for the restoration. This
approach produced interesting results and several recursive
[1]-[4] and iterative [5]-[8] methods are now available.

However, as is often in Bayesian estimation, the parameters
of the probability distributions which control the problem,
also referred to as the hyperparameters, must be specified
somehow. In addition, in many applications, the linear sys-
tern that distorts the pulse train is not known precisely and
must also be estimated. As far as the latter problem is
concerned, several techniques based upon higherorder statistics

(see, e.g., [9]-[11]) or distance between probability distribu-
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tions [12]-[15] have been developed in the past few years;
they provide an adequate answer, as long as the data sample
is large enough.

On the other hand, the problem of hyperparameter estima-
tion is not solved appropriately at the moment. In this paper,
attention is focused on this problem, while the linear system is
assumed to be known. In the sequel, signal and hyperparameter
estimation will be referred to as unsupervised deconvolution.
A commonly used technique consists of jointly estimating the
spike train, the hyperparameters, and possibly the linear sys-
tem through maximization of a single generalized likelihood
(GL) defined as the probability distribution of all stochastic
quantities conditionally on all deterministic parameters. From
a practical standpoint, this maximum generalized likelihood
(MGL) approach is appealing as suboptimal maximization
of the generalized likelihood can generally be implemented
easily. This explains why it has been applied to-several
problems such as signal and image processing [16], [17],
automatic control [18], [19], and pattern recognition [20]. For
deconvolution of BG signals, Mendel and coworkers [5], [21],
[22] followed by others [23] used the approach to jointly
determine the pulse signal, a parametric model of the linear
system and the hyperparameters. The resulting methods were
easy to implement and produced interesting results.

However, the asymptotic behavior of MGL estimators is
very questionable. In general, they do not fulfill the property
of consistency [24], [25]. But a.more serious and seldom
reported issue is that MGL estimates may not exist [24]. This
indicates that incautious use of the MGL approach is risky, and
that development of well-behaved hyperparameter estimation
techniques is highly desirable.

The contribution of this paper is threefold: first, we propose

- a new core algorithm that may be used as the basic element

of several iterative BG deconvolution methods. The new
algorithm presents a low numerical complexity and small
memory requirements, thereby extending the applicability of
BG deconvolution to large data samples.

Second, we present a hyperparameter estimation method
based upon a true maximum likelihood (ML) estimator, which
guarantees a satisfactory theoretical behavior of the estimates.
The major difficulty lies in the computation and maximiza-
tion of the likelihood function. Here, the ML estimator is
implemented by means of an expectation-maximization (EM)
algorithm. Two factors contribute to achieving fast conver-
gence: (i) adequate choice of the auxiliary variable of the
EM algorithm; (ii) utilization of a stochastic version of the
EM algorithm (SEM algorithm [26]). In the context of BG
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Fig. 1. Schematic representation of the phenomena under study.

deconvolution, the SEM algorithm was formerly proposed by
Lavielle [27], [28] but our implementation uses a smaller set of
auxiliary variables in order to yield better convergence rates.
In addition, implementation of the SEM algorithm makes use
of the same core algorithm that is used for restoration of the
pulse train. This results in a consistent algorithmic framework
and methods with a low numerical complexity for both signal
restoration and hyperparameter estimation.

Third, evaluation and comparison of SEM and of an al-
ternative MGL hyperparameter estimation method is carried
out using Monte Carlo simulations. This allows us to assess
the cost/performance ratio of the different techniques precisely
and to clarify their respective ranges of application. ‘

The paper is organized as follows. A mathematical for-
mulation of the problem is given in Section II. Then, the
core algorithm and the corresponding BG signal restoration
methods are presented in Section III. Section IV contains
background results on EM and SEM algorithms. Section
V is devoted to hyperparameter estimation using the SEM
algorithm. The Monte Carlo simulation results are presented
in Section VI and the conclusions of this study are drawn in
Section VIIL.

II. PROBLEM FORMULATION

A schematic representation of the phenomena under study
is given in Fig. 1. The observed signal is the noise-corrupted
convolution product of the unknown pulse signal and of the
impulse response of the linear system. As all signals are
assumed to be discrete-time, the input-output equation can be
written in the following matrix form:

z=Hr+n ¢))

where vectors z, r and n contain the samples of the observed
signal, of the input signal and of the observation noise,
respectively. (P x N) matrix H is made up of shifted samples
. of the impulse response of the linear system.

Here, the observation noise is assumed to be a zero-mean
Gaussian process with variance r,,. The unknown pulse train is
modeled as a BG process, which is made up of two parts: An
unobserved part (), that controls the occurence of a pulse and
an observed part R that represents the amplitude of the pulse
process at each time-sample. @ is an independent identically
distributed (i.i.d.) Bernoulli process with parameter A, and R
is a white zero-mean- Gaussian process with variance Qr,.
Therefore, a BG process X can be formally defined as-a
sequence of independent random variables (RV’s) X such
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that

Xi = (Qx, Ri)

. ' Pr{gr =1} = A
Qr: binary RV {Pr{qk —0)=1-A )
Ry zero-mean Gaussian RV with variance ¢r,.

The above definition and the assumption on the observation
noise show that all probability distributions associated with
the problem are controlled by 8 = {X,r,,r,}; these three
quantities represent the hyperparameters of the deconvolution
problem.

Let us first consider supervised deconvolution. As shown by
(2), restoration of the pulse process requires two -operations:
detection of position variables Q) and estimation of amplitude
variables Rj. Straightforward derivation of a MAP ‘estimator
of x = {q,r} yields the maximization of the following joint
likelihood:

p(a,r|2z6) xp(z|r;0)p(r|q;0)Pr(q;0) 3)

where vectors g and r contain the samples of the position
and amplitude variables, respectively. This approach, in which
detection and estimation are carried out jointly, has been re-
ported to produce a high number of false detections [21]-[23].
It is preferable to use a sequential approach where detection is
performed first through maximization of the posterior marginal
likelihood of ‘g ' :

Pr(q|z;0) o p(z | q;6)Pr(q;0). “)

After the estimate ¢ of the Bernoulli sequence has been
obtained, the amplitude variables are determined through max-
imization of the posterior likelihood of r conditionally to z
and q ‘

p(r|2,q;0) < p(z | r;0)p(r| q;0). )

As input-output (1) is linear, and since the conditional dis-
tributions of n and r are Gaussian, determination of risa
classical MAP estimation problem under linear and Gaussian
assumptions. The solution can be expressed in closed-form

“and is classically given by

# =TH' B 'z, ; (6)
B £ HIH + 7,1 : 7

where I1 denotes the covariance matrix of the prior distribution
p(r | q;8). From (2), we get

D=r,Q with Q%2 diag{qs}. ®)

The expression of the detection criterion can be derived
easily. Using (1), (2), and the Gaussian distribution of the
observation noise, (4) can be written as

Jo(a) = p(z | q;0)Pr(q; 6)

1 [ z’B7'z ’ N—N.
®

where N, denote the number of nonzero samples of q. The
major difficulty lies in the maximization of Jp(q), because
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of the discrete nature of the Bernoulli variable. Exact max-
imization of Jp would require (9) to be evaluated for all
possible configurations of ¢, and such a task is intractable
for signals of realistic sizes. In practice, only a small part of
all possible configurations is explored. Thus, the efficiency
of the detection algorithm is a function of the proportion of
explored configurations and of the exploration strategy. These
points are discussed in Section III.

Let us now turn to unsupervised deconvolution. Here too,
the discrete nature of the Bernoulli sequence generates diffi-
culties. The ML estimate of @ is defined by

Oy 2 arg %aaé(p(z; 8), where ® = [0,1] x [0, +00)>.
€ .
(10)
The likelihood function p(z; @) cannot be evaluated directly,
but must be computed through projection of joint conditional
distribution p(z,x;0). Using (2) and Bayes rule, we obtain

p(z;0) = /p(z,x;e) dx
= Z/p(z,r | q;0)Pr{q;8)dr

= p(z | q;0)Pr(q;6). an
q
Equation (11) shows that for a given value of the hyperparame-
ters, evaluation of the likelihood requires the summation with
respect to (w.r.t.) q of a function, which is identical to the
detection criterion given in (4). Therefore, direct evaluation
of the likelihood—not to mention its maximization—cannot
be carried out in practice. This difficulty will be overcome
through derivation of a stochastic extension to the EM algo-
rithm, as explained in Sections IV and V. \

III. SUPERVISED DECONVOLUTION

A. General Considerations

- Maximization of detection criterion (9)is performed along
lines similar to those presented in [5], {6], and [23]: These

techniques consist of defining the notion of neighboring se-

quences, and of maximizing the detection criterion along a
series of neighboring sequences. The overall efficiency of
such a scheme relies on three main factors: (i) the nature of
the neighborhoods; (ii) the exploration strategy of the current
neighborhood; and (iii) the availability of a numerically effi-
cient core algorithm, i.c., a set of formulas relating the criteria
of two neighboring sequences. When the exploration strategy
of the current neighborhood always results in increasing the
criterion at each step, the algorithm converges in a finite
(hopefully small) number of iterations, as q spans a finite
set. Practically, such a scheme may provide interesting results
only when the criterion is well-behaved, i.e., when a local
optimum close to the global one can be reached from any
initial point through a series of neighboring sequences with
increasing criterion values. )

Kormylo and Mendel’s classical single most likely replace-
ment (SMLR) algorithm [21], [5] can be interpreted in this
framework as follows: A neighborhood is made up of all
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sequences that differ from the current one by one sample,
and the selection strategy consists of choosing as the next
current sequence the one that maximizes the criterion over
the entire neighborhood of the current sequence. This strategy
exhibits a satisfactory practical behavior [22]; moreover, when
associated with a finite impulse response (FIR) model of
the filter (whereas Mendel and. coworkers used an ARMA
model), it yields a very simple algorithmic structure [7] and
avoids the use of a realization procedure [21] to identify the
ARMA parameters before running the deconvolution algo-
rithm. Conversely, this algorithm requires an O(/N'?) memory
load, a potentially penalizing factor in applications like NDE.
In Section HI-B, we propose an original core algorithm suited
for an SMLR exploration strategy. This algorithm presents a
reduced memory requirement and is faster in many practical
situations. In addition, the core algorithm is at the heart of
the Gibbs sampler used in the “S-step” of the unsupervised
deconvolution procedure of Section V.

Improved performance of SMLR-type methods may be

expected if the proportion of explored configurations is in-

creased. This can be achieved by expanding the size of
the neighborhoods, and techniques like SSS and SSS-SMLR
detectors [6] rely on this principle. The core algorithm de-
scribed in Section IH-B can be easily extended from first-order
neighborhoods to second-order ones defined as follows: Two
Bernoulli sequences are (k-order) neighbors when they differ
at most at k consecutive samples. The performance of a
second-order extension and of several selection strategies was
investigated in [29]. The conclusions are that the slightly
better estimation results produced by second-order methods are
not worth extra computational load, and that SMLR provides
the best tradeoff between result accuracy and computational
cost. Consequently, throughout the rest of the paper, we shall
only deal with first-order methods, which will be associated
with an SMLR exploration strategy in the case of supervised
deconvolution.

B. Core Algorithm

The core algorithm links the criterion values associated
with two (first-order) neighboring sequences. We start with
the following logarithmic expression for criterion: J

L(q;6) £ 21n Jy(q) + Pln 27
=—7z'B7'z—1n|B|+2N.In\

+2(N = N)In(1 - A) (12)

because it lends itself nicely to algebraic manipulations and
tends to prevent overflows. Moreover we introduce ratio 4 2
r; /Ty and normalized matrix B £B /7n. In the sequel tilded
quantities depend on g only, and the main part of the algorithm
can be expressed in terms of those normalized quantities.

Given any initial sequence qo, let qz, k e [1, N] denote
the sequence differing from qo only at site k. We seek a
relationship between L{qy; 8) and L(qo; 8). Let vy, be the N-
vector whose coordinates are O except for the kth one, which
is equal to 1. Subscript &k (resp. 0) will refer to any quantity
related to qg (resp. qg)- From (7) we get

By, = By + epuHv v, H' (13)
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where ¢, takes the value 1 (resp. —1) when a 1 is added to
(resp. removed from) sequence qg. Define auxiliary quantities

hy 2 Hvy and g 2 e+ ph}Bythy.  (14)
Applying the matrix inversion lemma to (13) yields
B;l = By' — uBythypy thl Byt (15)
7B 'z =2 Byta — p(z By the) 25t (16)
It may also be shown from (13) (cf. [30]) that
|Bel = | Bolexpr- (17)

These expressions enable us to compute L(qy; €) knowing
L(qo; @), and to update B;* for the next iteration [7]. They
provide the key to SMLR like algorithms. Actually, the al—
gorlthm derived in [7] makes use of auxiliary quantity A&
B~1H instead of By in order to yield a faster algorithm.
The associated numerical cost is O(N?) multiplications per
iteration. The major drawback of this structure is the memory
requirement associated with the storage of N X N matrix A.
Here, we propose to use another auxiliary quantity of
smaller dimension in order to relieve this drawback: Inspection
of (7) reveals that term HIIH' is not full rank. More precisely,
by deﬁnlng G2 H D where D denotes the N x N, matrix
made of the nonzero columns in (), (7) can be rewritten as
B=Gu@ +1I, therefore B~'=1—puGC~'G" (18)
where C' & uG'G+1is a N. x N, matrix. We are now able
to express the right-hand side of (16) in terms of Cj*

7' By'hy, = 2'hy, — pz' GoCy tGo'hy,
h, By th, = hih, — uh,GoCy1Go'hy

19)
(20)

where quantities z'hg, hihg, z'Go and Go'hy can be ex-
tracted from matrix H'H and vector H’'z, both of which
may be computed only once when the procedure is initialized.
Hence, iterative computatlon of L(q; @) may be implemented
using matrix CO only.

In order for the algorithm to proceed, updated equations
for matrix C~! must be derived. Note that the size of 1
varies whenever a pulse is added to or removed from current
sequence qq. Hereafter, we only deal with the addition of
a pulse, the other case being a straightforward consequence.
Addition of a pulse at site & amounts to a recursion on C

Cy = [uhc;;oGo 1 :L-C,Zv{il};:khk} @1)
Then, invoking the inversion lemma for block matrices
QJ_FJEprNZJ
P
where |
b2 —up tCy Gohy (22)
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Finally, the core algorithm can be summarized as follows.
* Computation of criterion values

pr = extuhihy — p?h,GoCy'Ghhy  (23)
7' By'hy, = 2'hy — 4z’ GoC7Ghhy, (24)
L(qx;8) ~ L(qo; 8) = pfy, 'ry (7' By 'hy)® — In(exfr)
— 2e,In(1/A—1) (25
+ Update of C~! (when e, = 1)° k
B——MEG*G@M (26)
~ / N

bl ) ﬁ’;l

Provided that H'H and H'z have been computed and stored
during the initialization, a single evaluation of L{qx;8) —
L(qo; @) and an update of C~! both require O(N2) mul-
tiplications. In comparison, the corresponding orders were.
O(1) and O(N?) for the former algorithm derived under
identical assumptions [7]. This well balanced computational
load between exploration and updating enables the efficient
implementation of different local (either deterministic or sto-
chastic) selection strategies. Our practical experience showed
that it runs faster when associated with a SMLR selection
strategy. But the most interestirig feature is the drastic storage
reduction implied by this core algorithm. This feature allows
the processing of signals of arbitrary length provided N,
remains reasonable.

I\{. EM AND SEM ALGORITHMS

We consider the problem of ML estimation of a parameter
@ given the data z. The estimate 8y, is defined by
A A
Oy = arg Igggp(z, 0). (28)
Dempster e al. [31] proposed a rather general scheme for
maximizing a likelihood function: The EM algorithm. It is
an iterative procedure that increases the likelihood, but does
not guarantee convergence toward the ML estimate. A set of
conditions required to ensure convergence of the EM algorithm
toward the ML estimate can be found in. [31] and [32].
The EM algorithm has been successfully applied to various
problems in tomography and image processing in situations
where direct maximization of the likelihood is too difficult
[33]-[35]. Depending on the complexity of the addressed
problem, the implementation of the EM algorithm may be
very difficult and even impossible. Several algorithms derived
independently, such as the Baum—Welsh reestimation formulas
[36] for hidden Markov chains, can be viewed as special cases
of the EM formalism as introduced by Dempster ef al. -

A. EM Algorithm

The EM algorithm relies on the introduction of an auxiliary
variable y which, roughly speaking, makes the likelihood
p(z,y;0) easier to compute. Classically, {z,y} is referred

‘to as the complete data set. Let 8, denote the current estimate
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of the parameter, and define
Q0.00) 2 [ ol |00 mp(.y:6)dy.
D(6]|6 é/ 2:0)In P 1%90)
( H 0) p(y | 0) p(y | Z;@)

D(8|8y) is a Kullback-Leibler distance, which is known to
be nonnegative [37]. Definitions (29) and a logarithmic form
of Bayes rule yield

Inp(z;0) — lnp(Z; 8o) =

(29)

Q(8,60) — Q(89,60) + D(8|| 6o).

(30)
Since D(@ || 6o) is nonnegative, any value of & such that
Q(6,6,) > Q(8o,6,) increases the likelihood. The ratio-
nale underlying the EM algorithm consists of increasing the
likelihood at..each iteration by choosing the value of @ that
maximizes Q(8,8p). Thus, one iteration of the algorithm is

usually defined by the two steps [31] that follow:

Compute Q(6, 6;), function of @,
0111 = argmax Q(6, ;).

Expectation (E)
Maximization (M)

Convergence rates are linear. and depend on the comparative
information content of the complete data and the observed data
about 0: less-informative complete data sets lead to improved
convergence rate [31], [38]. Conversely, less-informative data
sets can yield intractable computations in.the E-step as well
as in the M-step. In fact, the choice of the complete data set
governs the tradeoff between convergence rate and complexity.

EM algorithms are interesting in situations where an auxil-
iary .variable y can be chosen such that Q(8,8¢) can be maxi-
mized more easily than p(z; 8). This is the case in problems of
mixtures, missing or censored data, and in positron emission
tomography [35]. But for unsupervised BG deconvolution, no
choice of auxiliary quantity allows implementation of EM.
Therefore an alternative approach must be sought. Here we
adopt a SEM algorithm in Whlch @ is approximated in a
stochastlc manner.

B. SEM as a Stochastic Approximation of )

Since ) cannot be computed nor maximized, we are looking
for some approximation to this quantity. This kind of problem
occurs in settings not restricted to BG deconvolution [39], [40].
As the definition of () involves an expectation operator, we
can resort to stochastic approximation techniques and replace

the expectation by averages of K samples (Y, k=1---K)
drawn from p(y | z;6o) [39]; [40], [41]
K
Q(6,60) = Ellnp(z,Y;9) | 2;6] ~ ‘Z (2, Yy 6)
k:
GD
In the sequel we only consider the case K = 1, which

results in simpler computations: This choice corresponds to
the SEM algorithm, that was used by Celeux and Diebolt
[41] for estimation of mixture parameters in order to speed-up
the convergence of EM algorithms. One iteration of the SEM
algorithm is defined by the following two steps:

Sampling (S) | z; BAZ)

sample Y; from p(y 32y
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Maximization (M)~ ;.1 = arg maxInp(z, Yy; 6). (33)
This process generates an homogeneous Markov chain (8,).

When the goal of the estimation procedure is to determine
the proportion A\* of a two-component mixture of known
densities, Celeux and Diebolt [42], [43] established several
properties of the chain, the most important of which are given
hereafter, as follows:

1) The chain is ergodic and converges to its steady-state
distribution p (where P denotes the size of z);

2) Let Ap and Ap respectively denote a random- variable
with distribution p, and the ML estimate associated
with the sample of size P. As P goes to infinity
VP(Ap — Ap) converges in distribution to a zero-mean
Gaussian distribution.

The practical significance of the above properties is the follow-
ing: A realization of the SEM chain can be decomposed into a
mean value and some residual additive noise. When P grows
to infinity the mean value converges to the true proportion
while the variance of the residual noise decreases to zero at
rate O(1/P). This mean value is determined practically using
averages over I successive samples 21 6;/1.

These results have been formally established in the case of
the above mentioned mixture problem only. However, Celeux
and Diebolt conjecture that their results hold in more general
cases [42] and the numerical experiments. presented in Section
VI tend to support their conjecture. In the next section we
present the main features of our implementation of SEM
applied to unsupervised BG deconvolution.

V. UNSUPERVISED DECONVOLUTION
USING A SEM APPROACH

For SEM as well for EM algorithms, the first issue to
be dealt with is the choice of auxiliary variable y. In [27]
and [28], Lavielle described a SEM approach to unsupervised
deconvolution of BG processes in which y = {¢,r}. Such
a choice yields an extremely simple M-step; this allowed
Lavielle to estimate both- filter coefficients and hyperparame-
ters when the signal-to-noise ratio is high (>50 dB). However,
no systematic study of the hyperparameter estimates is pro-
vided in this work.

Convergence of SEM to its steady-state distribution is
governed by the underlying EM algorithm. As mentioned
in Section IV-A, convergence of the procedure can be sped
up - if the ‘information content. of the complete data set:is
reduced. Such a reduction can be obtained by including only
one of the components of y in the complete data set. As the
amplitude variable r is defined conditionally to the location
variable q (see (2)), gq is the natural choice for building the
complete data set. This choice results in the desired reduction
of information content but, on the other hand, turns the M-
step into a nonlinear optimization problem. One last difficulty
should be mentioned: in the S-step, the probability distribution
Pr(q | z; @) must be evaluated for all possible configurations
of q each time a sample of the auxiliary variables Q is
drawn, i.e., at each iteration of the algorithm. As already
underlined in Sections II and I, such computations cannot
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be implemented in practice. The techniques developed to

overcome the difficulties of the M- and S-steps are presented '

hereafter.

A. M-Step

The optimization problem is defined by B3) with Y = Q
and 8 = {\,r,,7r,}. Therefore, the criterion to be maxi-
mized is identical to marginal detection criterion (12) used
in supervised deconvolution and it takes the following form:

L(Q:0) = LY (ra,ma) + 2L (N) |
where

LS)(rm,rn) £ 7B 'z —In|B|
and

LY\ 2 Neln A+ (N — N In(1 - A).

SEM iteration index ¢ is omitted in order to simplify the
notations. Optimization must be performed with respect to 8.
Maximization of L can be decoupled into two independent
optimization problems

~

A=arg m/{ix L(2), (34)
{fz,Tn} = arg gnzix Lg) (Pay ). (35)

Solution to (34) is immediately given by A\ = N,/N. Determi-
nation of {#,,#,} is not as straightforward. In order to make
the computations easier, we use the normalized quantities
ft = r4/rn and B = B/r, introduced in Section III-B. Let

L(l)(u,rn) be defined by

LQ(ymn) £ L (wrn,7a)
—In|B| < Plnr, —2'B~*

z/r,. (36)
Maximization of ig)(u, rn) With respect to 7, immediately
yields

o) =2 B '2/P (37
and substituting the above expression into (36) allows us to
transform the original two-dimensional optimization problem
(35) into the following one-dimensional maximization prob-

lem:

L{p) 2 —Plnz’B~'z —1n|B|. (38)

After ji is determined, 7,, is computed from /i through (37).
The goal is now to find the value of u that maximizes
L(u). Note that existence of such a maximum in [0, +00)
is guaranteed, since L is a continuous function and it can be
shown that '

i = arg maxIN/(,u),

lim L(u) = ~Plnz'z and  lim L) = —
p—0 pn——+o0

In order to reduce tl~16 actual dimension of the Problem from
N to N, we express B = uGG'+1 interms of C = pG'G+1

as in Section III-B, and we get

L(p) = —Pln(z'z — 4y GC~'@'z) — In|C). 39)
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Computation of the first and second derivatives of E(u) can
be carried out easily after diagonalization of (N, x N, ) matrix

‘G'G. Then, ji can be determined using any second-order local

descent algorithm. Finally, the algorithm for estimation of
{re,rn} can be summarized as follows.

* Diagonalization of G’G and computation of the first and
second derivatives of L(u). -

¢ Determination of [ using a second-order descent algo-
rithm,

» Computation of #,, using (37) and (18).

» Computation of 7, = [fi#,.

This algorithm is easy to implement and presents a moderate
computational complexity, as the dimension of the matrices
involved in the computation of the derivatives of L is reduced
from N to N,.

B. S-Step ‘

Here again, SEM iteration index 7 is omitted in order to
simplify the notations. The S-step is defined by
(40)

Sampling (S) sample Q from Pr(q | z;8).

Direct sampling of Q according to (40) would require Pr(q |
z;0) to be evaluated for all possible configurations of q. As
underlined in Sections II and V, such a task is intractable in
practice, and an indirect approach must be utilized.

The problem of sampling a random vector Y with many
possible discrete states from a given distribution 7(Y) is
frequently encountered in the area of Markov-based image
processing. A classical solution, referred to as stochastic re-

~ laxation, consists of generating a homogeneous and reversible

Markov chain (Y;);>o which converges in distribution to
7(Y). The desired sample is taken from (Y;),;>o after the
steady-state is reached.

With stochastic relaxation algorithms, only a small number
of components of Y; may be modified during the transition
from state j to state j + 1. Let S; and Y, denote the set
of components that may be modlﬁed and the corresponding
subvector of Y ;, respectively. Define YS = Y \Ys,. One
iteration of the algorithm is made up of two steps: i) selectlon
of site S; and ii) sampling of Y5, from a transition probability
distribution, which is a function of conditional probability
m(Ys, | Ys,). Within this framework, several algorithms may
be derived; they differ mainly by the site selection technique,
which may be either deterministic or probabilistic, and by
the specific relationship between transition probabilities and
7(Ys, | Yg,). Convergence of several of these procedures is -
investigated in [44].

From a practical standpoint, these algorithms are useful only
if conditional probabilities 7(Ys, | Ys,) can be evaluated
easily. Such a situation prevails when 7 is the distribution of a
Markov field, but also in our case, where 7(q) = Pr(q | z;0).
Indeed, the core algorithm presented in Section III-B provides
a simple way of evaluating the variation of InPr(q | z;86)
when a component ¢; of q is modified. Computation of
conditional probabilities Pr(g; | 2, G;; @) follows easily.
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The stochastic relaxation algorithm must be selected so as
to minimize the amount of computations required to reach a
steady state.

According to the results presented in [44], a Gibbs sampler
with a predefined (i.e., deterministic) ordering of the sites is
best suited to our problem. At this point, the parameters that
remain to be fixed are the number of components of q that
may be modified at each iteration, the exact ordering of the
sites and the initial state of the chain. Our implementation of
SEM makes use of a cyclical sweep with sites made up of
one sample only. An extension that use sites made up of two
adjacent samples of g in order to speed up the convergence
of the chain has been developed and tested in [29]. The
estimation results obtained with this second-order extension
where statistically indistinguishable from those presented in
Section VI. '

Finally, in order to achieve fast convergence the initial
value of the chain must be selected among the likely states
of the steady-state distribution. Supervised deconvolution al-
gorithms presented .in Section III aim at finding a value of
q thdt maximizes the steady-state distribution. We therefore
use the SMLR algorithm (see Section ITII-A) to initialize the
Gibbs sampler.

A synthetic view of the overall unsupervised deconvolution
procedure is given in Fig. 2. In this block-diagram, most of the
computational time is spent in the S-step by the Gibbs sampler.
In our experiments, sampling was achieved with five cyclical
sweeps, i.e., 5V iterations of the Gibbs sampler. Each iteration
consists essentially of evaluating likelihood increments as in
(25). Each evaluation requires O(N2) (say, O(A\2N?) on the
average) multiplications. As I successive samples of the SEM
chain (6;) are needed to form the final estimate 6, the whole
procedure requires about 5/ A\ N multiplications. Note that I
does not have to increase as N grows. Therefore, the overall
* numerical complexity is O(A\?N?), which is reasonable for
usual values of A and N (up to about 500 for implementation
on usual workstations).

C. MGL Estimation

In this section, we briefly review the MGL method that
will be compared to the SEM approach in the simulations. of
Section .VI. 4

Due to implementation convenience, the most popular MGL
approach [21]-[23] relies on maximization of joint likelihood
p(z,r,q;0) = p(z | 1;0)p(r | q;8)Pr(q;8) wrt r, q
and 8. Such an approach presents two major drawbacks: (i)
It lacks reliability, since a large number of false alarms is
" generally obtained; (ii) It is not bounded above on the range
of its natural parameter set [24], and the search domain for
6 must therefore be restricted in order for an estimate to be
defined. On the other hand, it is acknowledged in {21], [22]
that maximization of marginal likelihood p(z,q;0) = p(z |
q; 0)Pr(q; ) (see (4)) wrt. q and @ is far more reliable
although more computationally demanding. In addition, it can
be shown that

» when q is held constant, p(z, ¢; 8) ié bounded above: by
(9) and (12) we have L(q; 8) o< Inp(z, q; 8), and L(q; 6)
is bounded above w.rt. 8 (see Section V-A);
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Initialization
Choice of 9

gl

I
S-step
Initialization of Markov chain  (Q)
(SMLR algorithm)

Gibbs sampler
(cyclical sweep, 1st-order neighborhood)

M-step
Local 2nd-order optimization method

Supervised deconvolution
(SMLR algorithm)

Fig. 2. Schematic representation of the unsupervised deconvolution proce-
dure.

o since q spans a finite set, the marginal likelihood is
bounded above w.r.t. both ¢ and 8.

Therefore, we adopted the marginal criterion to perform MGL

* estimation (this approach is refetred to as Kormylo’s maximum

likelihood deconvolution [22]).
For computing the MGL estimates, we use the classical
suboptimal alternating technique

Gi = arg_max p(z,q;6;) (41)

qe{0,1}N
0,11 = arggleaé(p(z,qi;G). ' (42)

This procedure is often referred to as a block-component
method [22], and converges in a finite number of iterations
as it generates a sequence (q;);>1 that increases the function
p(z, q; 0(q)), which spans a finite set.

Comparison of (42) and (33) reveals that the second step
of this jterative procedure is identical to the M-step of the
SEM algorithm. This step is performed as explained in Section
V-A. Step (41) in the iterative procedure corresponds to
maximization of the marginal likelithood used for detection of
the Bernoulli sequence in supervised deconvolution (see (4)).
As shown in Section III, exact maximization of the criterion
is not feasible. Following the discussion in Section III-A, we
chose the SMLR algorithm to (suboptimally) perform this task.

VI. NUMERICAL EXPERIMENTS

In this section, we compare the results. of unsupervised
deconvolution applied to a set of synthetic data corresponding
to the single parameter set

A*=0.05, ;=1 and ¢, =0.005.

Such a choice corresponds to an usual value for A* in the
context of BG deconvolution, and to a standard signal-to-noise
ratio (Arzrp/7y) of 10 dB, provided the energy of the filter,
71, equals ‘1.
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Fig. 3. Impulse response and power spectrum of the linear system used for

the simulations.

A first set of 1000 realizations of 200-sample long BG
input signals was drawn. Each signal was convolved with the
wavelet, i.e., the impulse response, depicted in Fig. 3. This
wavelet had been separately identified on actual seismic data.
Its spectrum is poor but realistic, contrarily to the classical
Kramer wavelet used in many simulations [21]. The wavelet
energy was normalized to one. Then a realization of Gaussian
white noise with variance r} was added to each convolved
trace. This first set of “short” signals was processed by
supervised and unsupervised deconvolution algorithms.

Then a second set of “long” signals was generated in order

to investigate the asymptotic behavior of hyperparameters es-
timates in unsupervised deconvolution algorithms. It consisted
of 400 signals each made up of 1600 samples. Whereas the
processing of signals of size N = 200 requires a moderate
computation time, it is not so for signals of size N = 1600.
According to the complexity analysis presented in Section V-
B, as \* was kept constant while the size of each trace was
multiplied by a factor of eight, the overall computational load
was multiplied by a factor 8 ~ 500. This corresponds to a
huge increase of the computational burden.

Our first goal was to study the statistical behavior of SEM
and MGL. We investigated the bias (B), variance (V) and
mean-square error (MSE) of the hyperparameter estimates
obtained with the four algerithms. Among these quantities, the
MSE is the only one that defines a distance measure between
true and estimated parameters. Therefore MSE is viewed as
the most significant one.

As these quantities do not admit closed-form expressions,
Monte Carlo simulations were employed. Let K denote the
number of signals in a given data set, and let é(Zk) be the
hyperparameter estimate obtained with signal k. B, V and
MSE in one set were determined using sample averages as
follows:

), MSE = ~ 0%)?

Mx
1
S)
N

=
il

and
V =MSE - B2,
Then we define the normalized quantities
B£B/g*, 52VV/0* and E 2 /MSE/6*.

Quantities B, S and E can be interpreted as relative error
~ measures that we wish as small as possible.
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TABLE I
NORMALIZED MEAN SQUARE ERROR OF THE ESTIMATES
A Ty Ty
Short | MGL | 0.34 | 0.73 | 0.14
signals | SEM | 0.34 | 0.6 | 0.12
Long MGL | 0.21 | 0.28 | 0.067
signals | SEM | 0.14 | 0.18 | 0.041

Short signals (N = 200) Long signals (N = 1600)

0.6 0.8

0.4 .
MGL SEM o4

MGL SEM

Fig. 4. Normalized mean and standard deviation of the estimates
(A" = 0.05).

Short signals (N = 200)

Long signails (N = 1600}

2 2
15 15
% < f
2 o
L R th---boo - _*———
0.5 _ 0.5
MGL SEM MGL SEM

Fig. 5. Normalized mean and standard deviation of the estimates (r} =1).

The algorithms where initialized with §, = 6° £
(X%, 79, ¢0), where
A=001, =4 and r%=0.01.

Recall that in the case of SEM estimation (cf. Section IV-B), a
Markov chain (6’1) is generated. Then, the final hyperpameter
estimate is taken as the average over a number / of successive
samples of the chain. This number must be fixed. After
preliminary tests we chose I = 20 samples. This empirical
rule is qualified later in this sectlon

B S and E were evaluated for each hyperparameter. The
dlfferent values of E for each hyperparameter are presented
in Table I. B and S are represented graphically in Figs. 4-6.
Each figure corresponds to one hyperparameter. Parameter r,,
is always better estimated than r, and A as testified by MSE
values relative to this parameter.

In terms of MSE, SEM is superior to MGL. SEM and MGL
present similar variances, and the larger MSE of MGL is
essentially produced by a higher bias. From this first analysis,
we may conclude that from an estimation standpoint, SEM
should be preferred to MGL. The asymptotic behavior of the
estimates, which may be inferred from the comparison of
results obtained with short and long data sets, confirms these
first conclusions. As the number ‘of samples is multiplied by
a factor of eight, a reduction in variance of approximatively
the same factor is expected according to classical asymptotic
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Short signals (N = 200) Long signals (N = 1600)

-
T
1
|
|

0.9 0.9

MGL SEM MGL SEM

Fig. 6. Normalized mean and standard deviation of *the estimates

(r* = 0.005).

TABLE 11
Scorg S(i) AND MEAN EXECUTION TIME OF SUPERVISED
AND UNSUPERVISED DECONVOLUTION ALGORITHMS

SMLR || MGL | SEM
Score 0.52 1.62 | 0.61
Mean time (s.) || 0.12 0.46 13

theory. Such a reduction is indeed observed. For the SEM
method, the MSE decreases by a factor of nine, as the bias
has a negligible influence in the MSE. For MGL, however,
the reduction of the MSE is smaller as the bias of the
estimates remains essentially unchanged. This is consistent
with the formerly reported nonconsistency of MGL estimates.
Therefore, it appears that SEM yields the best asymptotic
behavior, which is in agreement with the conjecture of Celeux
and Diebolt [42], [43].

Our second goal was to investigate the degradation of the

detection performance when we go from a supervised method
to an unsupervised one. When 8% is known an estimated
Bernoulli sequence g® may be obtained using a supervised
method such as SMLR (see Section IIT). When 6* is not
known, an unsupervised method, such as MGL or SEM,
must be employed to compute an estimate € and a Bernoull
sequence q“. We want to assess how close g* is from ¢°. Let
qg) be the detection sequence estimated for signal k using
method : € {SMLR, MGL, SEM}. We defined a performance
index L,(;) as

LY 2 L(q",0%) where i € {SMLR, MGL, SEM}.

Then figures of merit S(i), i € {SMLR, MGL,SEM} were
~.computed according to

K .
5(i) = Z (Ly, - Lg))/ﬁk where I, = arg max L,

. = 43)
The above expressions show that an efficient algorithm will
~obtain a low score (0 if it is always better than the other
ones), and that the figure of merit increases as efficiency
decreases. The scores obtained by the three algorithms together
with the mean execution time on HP715-type workstations
are presented in Table II for the set of short signals. They
show that, on the average, SEM performance is very close to
the supervised result, and it is significantly better than MGL
results. ‘
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Fig. 7. Normalized mean and standard deviation of the estimates for two
initialization choices.

Our third goal was to investigate initialization issues. This
is a potential problem since the SEM algorithm is designed
to mimick the EM algorithm, and the latter generally offers
no guarantee of global convergence. Here again, no specific
theoretical result may be obtained due to the intricate nature
of the likelihood (11). Therefore, we carried out another set

of experiments with a different initial value 8, = 61 £
Al=02, 71=015 and r.=0.03.

We observed that, on the average, this initialization caused
slower.convergence of the SEM chain to its equilibrium, so
that a larger number (I = 30) of SEM samples was required,
and the first ten samples where discarded from the computation
of the estimated parameter. Comparison of normalized bias and
standard deviation for both initializations with SEM algorithms
is shown in Fig. 7. It appears that estimation of r, and 7,
is not sensitive to initialization. As regards the estimation of
A, initialization with 8 yields a slight increase of variance.
Therefore, our feeling about the method is that initialization is
not a critical issue provided that the number of samples drawn
from the SEM chain has been properly set. A probably more
flexible technique would be to design simple tests to adapt [
to the cutrently processed data. '

VII. CONCLUSION

This paper addressed the problem of hyperparameter esti-
mation in the context of BG deconvolution.” Our main goal
was to offer an alternative to classical MGL approaches,
because these techniques do not yield consistent estimates,
and may not define any estimates at all. However, implemen-
tation of estimators with better statistical behavior is often
difficult. Here, a maximum likelihood estimator was adopted,
and its implementation was carried out using a stochastic
approximation of the EM algorithm. Similar techniques were
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formerly proposed in the same context by Lavielle [27], [28]
and Goussard [45]. Our first contribution is the derivation of
a new core algorithm for BG supervised and unsupervised
deconvolution. With this new structure, memory requirements
are reduced drastically so that signals of arbitrary length may
be processed, provided that the number of spikes remains
moderate. For unsupervised deconvolution, the core algorithm
is one key element that makes the SEM approach practical
and efficient for signals of realistic sizes, another one being
an adequate choice of the complete data set.

Finally, assessment of the performances of the proposed
methods was performed using large data sets and Monte Carlo
simulations. For unsupervised deconvolution, the statistical
behavior of the SEM estimator was studied, and comparisons
were performed with an MGL method.

The results show the superiority of the SEM over the MGL
approach, at least for the class of tested signals. On the other
hand, SEM proves to be more computationally demanding due
to the sampling part of the method, but this load is rather
small if the number of spikes in the signal is moderate. In
this situation, SEM will be preferred since it features smaller
bias than and comparable variance to MGL. However, when
the actual number of spikes in the signal is very large, both
methods become computationally intensive. »

The comparatively good statistical properties of the SEM
methods suggest the following further extensions of this work.

» Extension of the technique to blind deconvolution where
the filter as well as hyperparameters must be identi-
fied—this extension requires a reconsideration of the
M-step only, the S-step being left unchanged.

* Introduction of a relaxation between successive samples
of the SEM Markov chain—then almost sure convergence
toward maximum likelihood might be foreseen when the
relaxation step decreases to zero. Therefore, such an
approach should yield stronger convergence results than
those available for SEM in its present form.

REFERENCES

[1] A. K. Mahalanabis, S. Prasad, and K. P. Mohandas, “Recursive decision-
directed estimation of reflection coefficients for seismic data deconvo-
lution,” Automatica, vol. 18, pp. 721-726, 1982.

[2] G. B. Giannakis, J. M. Mendel, and X. Zhao, “A fast prediction-error
detector for estimating sparse-spike sequences,” IEEE Trans. Geosci.
Remote Sensing, vol. 27, pp. 344-351, 1989.

[3] Y. Goussard and G. Demoment, “Recursive deconvolution of Bernoulli-
Gaussian processes using a MA representation,” IEEE Trans. Geosci.
Remote Sensing, vol. 27, pp. 384-394, 1989.

[4} J. Idier and Y. Goussard, “Stack algorithm for recursive deconvolution
of Bernoulli-Gaussian processes,” IEEE Trans. Geosci. Remote Sensing,
vol. 28, pp. 975-978, 1990. .

- [5] 1. Kormylo and J. M. Mendel, “Maximum-likelihood detection and es-
timation of Bernoulli-Gaussian processes,” IEEE Trans. Inform. Theory,
vol. IT-28, pp. 482-488, 1982.

[6] C.Y. Chiand J. M. Mendel, “Improved maximum-likelihood detection
and estimation of Bernoulli-Gaussian processes,” IEEE Trans. Inform.

- Theory, vol. IT-30, pp. 429-435, 1984.

[71" Y. Goussard, G. Demoment, and J. Idier, “A new algorithm for iterative
deconvolution of sparse spike trains,” in Proc. Int. Conf. Acoust., Speech,
Signal Processing, Albuquerque, NM, 1990, pp. 1547-1550.

[8] M. Lavielle, “Bayesian deconvolution of Bernoulli-Gaussian processes,”
Signal Processing, vol. 33, pp. 67-79, 1993.

[91 IEEE Trans. Automat. Contr., vol. 35, 1990 (Spec. Issue Higher Order
Stat. Syst. Theory Signal Processing).

2997

[10] IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, 1990 (Spec.

~ Issue Higher Order Stat. Syst. Theory Signal Processing).

[11] J. M. Mendel, “Tutorial on higher-order statistics (spectra) in signal pro-
cessing and system theory: Theoretical results and some applications,”
Proc. IEEE, vol. 79, pp. 278-305, 1991.

[12] A. T. Walden, “Non-Gaussian reflectivity, entropy, and deconvolution,”
Geophys., vol. 50, pp. 2862-2888, 1985.

[13] E. Gassiat, Déconvolution Aveugle, Ph.D, dissertation, Univ. de Paris-
Sud, Centre d’Orsay, France, 1988.

[14] M. Basseville, “Distance measures for signal processing and pattern
recognition,” Signal Processing, vol. 18, pp. 349-369, 1989.

[15] S. Bellini and F. Rocca, “Asymptotically efficient blind deconvolution,”
Signal Processing, vol. 20, pp. 193-209, 1990.

[16] P. Devijver and M. Dekesel, “Champs aléatoires de Pickard et
modélisation d’images digitales,” Traitement du Signal, vol. 5, pp.
131-150, 1988.

[17] S. Lakshmanan and H. Derin, “Simultaneous parameter estimation and
segmentation of Gibbs random fields using simulated annealing,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 11, pp. 799-813, 1989.

{18] Y. Bar-Shalom, “Optimal simultaneous state estimation and parameter
identification in linear discrete-time ‘systems,” IEEE Trans. Automat.
Contr., vol. AC-17, pp. 308-319, 1972.

[19] W. L. Tsang, J. D. Glover, and R. E. Bach, “Identifiability of unknown
covariance matrices for some special cases of linear, time-invariant,
discrete-time dynamic systems,” IEEE Trans. Automat. Contr., vol. AC-
26, pp. 970-974, 1981.

[20] R. Duda and P. Hart, Pattern Classification and Scene Analysis.
York: Wiley, 1973.

[21] J. M. Mendel, Optimal Seismic Deconvolution. New York: Académic,
1983. )

[22] J. Goutsias and J. M. Mendel, “Maximum-likelihood deconvolution:
An optimization theory perspective,” Geophys., vol. 51, pp. 1206-1220,
1986.

[23] Y. Goussard, “Déconvolution de processus aléatoires non-Gaussiens par
maximisation de vraisemblances,” Ph.D. dissertation, Univ. de Paris-
Sud, Centre d’Orsay, France, 1989.

[24] E. Gassiat, F. Monfront, and Y. Goussard, “On simultaneous signal
estimation and parameter identification using a generalized likelihood
approach,” IEEE Trans. Inform. Theory, vol. 38, pp. 157-162, 1992.

[25] F. Champagnat and J. Idier, “An alternative to standard maximum
likelihood for Gaussian mixtures,” in Proc. IEEE ICASSP, Detroit, MI,
1995, pp. 2020-2023.

[26] G. Celeux and J. Diebolt, “A probabilistic teacher algorithm for iterative
maximum likelihood estimation,” in Classification and Related Methods
of Data Analysis. Amsterdam: Elsevier, North-Holand, pp. 617-623,
1987.

[27] M. Lavielle, “Déconvolution 2-D et détection de ruptures: Applications
en géophysique,” Ph.D. dissertation, Univ. de Paris-Sud, Centre d’Orsay,
France, 1990.

[28] M. Lavielle, “A stochastic algorithm for parametric and nonparametric
estimation in the case of incomplete data,” Signal Processing, vol. 42,
pp. 3-17, 1995.

[29] F. Champagnat, Y. Goussard, and J. Idier, “Unsupervised Bernoulli-
Gaussian deconvolution,” Tech. Rep. LSS, vol. # GPI-94/01, 1994.

[30] P. Lascaux and R. Thédor, Analyze Numérique Appliquée a I’Art de
U’Ingénieur. Paris, France: Masson, 1986.

[31] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Roy. Stat. Soc. B, vol.
39, pp. 1-38, 1977.

[32] R. Redner and H. Walker, “Mixture densities, maximum likelihood and
the EM algorithm,” SIAM Rev., vol. 26, pp. 195-239, 1984.

[33] M. Feder and E. Weinstein, “Parameter estimation of superimposed
signals using the EM algorithm,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. 36, pp. 477-489, 1988.

[34] M. Segal, E. Weinstein, and B. Musicus, “Estimaté-maximize algorithms
for multichannel time delay and signal estimation,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 39, pp. 1-16, 1991.

[35] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for

" emission tomography,” IEEE Trans. Med. Imaging, vol. MI-1, pp.
113-122, 1982.

[36] L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov
models,” IEEE Acoust., Speech, Signal Processing, pp. 4-16, Jan. 1986.

[371 'D. Dacunha-Castelle and M. Duflo, Probabilités et Statistiques—-Tome 1:
Problémes a temps fixe, 2nd ed. Paris: Masson, 1990.

[38] J.-A. Fessler and A. O. Hero, “Complete data spaces and generalized EM
algorithms,” in Proc. IEEE Int. Conf. ASSP, Minneapolis, MN, 1993,
pp. IV 1-4,

[39] B. Chalmond, “An iterative Gibbsian technique for reconstruction of
M -ary images,” Pattern Recog., vol. 22, pp. 747-761, 1989.

New



2998
[40]
{41]

1“2
[43]

[44]

[45]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 12, DECEMBER. 1996

G..C. G. Wei and M. A. Tanner, “A Monte Carlo implementation of
the EM algorithm and the poor man’s data augmentation algorithms,”
J. Amer. Stat. Assoc., vol. 85, pp. 699704, 1990.

G. Celeux and J. Diebolt, “L’algorithme SEM: Un algorithme
d’apprentissage probabiliste pour la reconnaissance de densités,” Revue
Stat. Appl., vol. 34, pp. 35-52, 1986.

, “Reconnaissance de mélange de densité et classification,” Tech.
Rep.- 349, INRIA, 1984.

, “Asymptotic properties of a stochastic EM algorithm for esti-
mating proportions,” Tech. Rep.- 1591, INRIA, 1992.

J. Goutsias, “A theoretical analysis of Monte Carlo algorithms for the
simulation of Gibbs random field images,” IEEE Trans. Inform. Theory,
vol. 37, pp. 1618-1628, 1991.

Y. Goussard, “Blind deconvolution of sparse spike trains using sto- -

chastic optimization,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing, 1992, vol. 4, pp. 593-596.

Frédéric Champagnat was born in Dakar, Senegal,
in 1966. He graduated from the Ecole Nationale
Supérieure de Techniques Avancées in 1989, and
received the Ph.D. degree in physics from the Uni-
versité de Paris-Sud, Orsay, France, in 1993.

In 1994, he joined the Biomedical Engineer-
ing Institute of the Ecole Polytechnique, Montreal,
Canada, in a postdoctoral position. Since December
1995, he has been with the Laboratoire des Sig-
naux et Systemes, Gif-sur-Yvette, France. His main

algorithms for inverse problems arising in signal and image processing.

research interests are in probabalistic models and’

L

Yves Goussard (M’89) was born in Paris, France,
in 1957. He graduated from the Ecole National
Superieure de Techniques Avancées in 1980, and
he received the Doc. Ing. and Ph.D. degrees from
the Université de Paris-Sud, Orsay, France, in 1983
and 1989, respectively.

From 1983 to 1985, he was a visiting scholar
at the Electrical- Engineering and -Computer Sci-
ence Department of the University. of California,
Berkeley. In 1985, he was appointed a Chargé de
Recherche at CNRS, Gif-sur-Yvette, France, and in

1992 he joined the Biomedical Engineering Institute of the Ecole Polytech-
nique, Montreal, Canada, where is is now an Associate Professor. During
the academic year 1990-1991, he was on sabbatical leave at the Department
of Electrical Engineering Systems, University of Southern- California, Los
Angeles. After some work on nonlinear system identification and modeling,
his interests moved toward ill-posed problems in signal and image processing
with application to biological systems.

Jérome Idier was born in France in 1966. He
received the Dipl. degree in electrical engineering
from the Ecole Supérieure d’Electricité in 1988 and
the Ph.D. degree in physics from the Université de
Paris-Sud, Orsay, France, in 1991.

PSince 1991, he has been with the Centre Na-
tional de la Recherche, assigned to the Laboratoire
des Signaux et Systemes. His major scientific in-
terests are in probabilistic approaches-to inverse
problems for signal and image processing.



