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Abstract—We address the problem of estimating spectral lines
from irregularly sampled data within the framework of sparse
representations. Spectral analysis is formulated as a linear inverse
problem, which is solved by minimizing an £!-norm penalized
cost function. This approach can be viewed as a Basis Pursuit
De-Noising (BPDN) problem using a dictionary of cisoids with
high frequency resolution. In the studied case, however, usual
BPDN characterizations of uniqueness and sparsity do not apply.

This paper deals with the £'-norm penalization of com-
plex-valued variables, that brings satisfactory prior modeling for
the estimation of spectral lines. An analytical characterization of
the minimizer of the criterion is given and geometrical properties
are derived about the uniqueness and the sparsity of the solution.

An efficient optimization strategy is proposed. Convergence
properties of the Iterative Coordinate Descent (ICD) and Iterative
Reweighted Least-Squares (IRLS) algorithms are first examined.
Then, both strategies are merged in a convergent procedure, that
takes advantage of the specificities of ICD and IRLS, consider-
ably improving the convergence speed. The computation of the
resulting spectrum estimator can be implemented efficiently for
any sampling scheme.

Algorithm performance and estimation quality are illustrated
throughout the paper using an artificial data set, typical of some
astrophysical problems, where sampling irregularities are caused
by day/night alternation. We show that accurate frequency loca-
tion is achieved with high resolution. In particular, compared with
sequential Matching Pursuit methods, the proposed approach is
shown to achieve more robustness regarding sampling artifacts.

Index Terms—Algorithms, estimation, inverse problems, opti-
mization methods, sparse representations, spectral analysis, time
series.

I. INTRODUCTION

PECTRAL analysis is a very important topic in signal
Sprocessing, that is essential for many application fields
of physics. The finite length of the time coverage, as well as
the discrete nature of the data, considerably complicate the
problem of estimating the Fourier spectrum from a given time
series. More precisely, the observed spectrum—the Fourier
spectrum of the data—is the convolution of the true spectrum
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by the spectral window, whose lobes set the limits of the ob-
served spectrum in terms of frequency resolution and amplitude
precision.

In some applications, experimental conditions or instrument
limitations may cause the data to be irregularly time-spaced.
Much fewer attention was paid to the spectral analysis problem
in this case. In particular, methods based on parametric repre-
sentations [1], that efficiently achieve high resolution with reg-
ularly sampled data, cannot be applied directly. In astrophysics,
moreover, specific observational conditions make the problem
of spectrum estimation particularly difficult. For instance, the
Earth’s daily rotation and annual revolution may cause periodic
gaps in the available data. As a consequence, the magnitude of
the spectral window defined as

1 N-1
W) =5 D_ exp (32 ftn) (1)
n=0

for sampling times t,,,n = 0... N — 1, may show high sec-
ondary lobes, generating false peaks in the observed Fourier
spectrum. An example of spectral window corresponding to the
simulated data used in Section V is given in Fig. 5(b). It illus-
trates the difficulty of spectral analysis in this case.

With the aim of estimating spectral lines, fitting a multisine
model to the available data is a hard task. Indeed, the likelihood
of the data given a multisine model admits many local modes,
even in the case of regular sampling [2]. Prewhitening tech-
niques, widely used in astrophysics, perform the iterative de-
convolution of the observed spectrum [3], [4]. At each iteration,
the highest peak of the residual spectrum is removed, together
with the associated contribution of the spectral window, gen-
erating a sequence of estimated spectral lines. Ad-hoc refine-
ments such as the use of a clean gain for the CLEAN method
[5] or additional local optimization steps for CLEANEST [6],
aim to improve the efficiency of prewhitening techniques. Such
methods can be viewed as implementations of a Matching Pur-
suit [7] estimation strategy. The resulting methodology, how-
ever, is still sensitive to sampling artifacts and may lead to false
detections [8].

During the past decade, spectral analysis has been addressed
as a linear inverse problem, and such an approach became
a serious alternative to parametric methods to achieve high
resolution [9]-[13]. The spectrum is discretized on a fixed
frequency grid, and spectral lines are estimated by locating
a few nonzero values in the corresponding amplitude vector,
i.e., by reconstructing a sparse vector. The use of such a linear
model gives more robustness to the estimation compared to
parametric methods, especially regarding sampling artifacts [8].
On the other hand, it results in a considerable increase of the
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number of unknowns, so efficient estimation algorithms are
required. Specific algorithms were proposed in [9], [10], based
on iterative weighted norm minimizations. For an adequately
chosen norm, the estimator, implicitly defined as the fixed point
of the algorithm, concentrates the energy on a few components.
In [11]-[13], the spectral estimator was defined as the mini-
mizer of a least-squares misfit criterion, penalized by a term
that favors line spectra. Such an approach can be viewed as
the Bayesian Maximum A Posteriori estimation for some prior
distribution expressing sparsity.

Following the formulation in [11]-[13] of the spectral
analysis problem, this paper studies its regularization by the
/*-norm. Compared to other penalization functions that were
proposed in this framework, the use of the /'-norm leads to
exactly sparse estimators while preserving the convexity of the
underlying optimization problem. Moreover, the specific struc-
ture of the functional to optimize allows a powerful algorithmic
implementation for any sampling scheme, while the algorithms
in [11], [12] are essentially designed for regularly sampled data.

In a more general context, the domain of sparse representa-
tions has become a very active field of research: a given data
set is represented as a linear combination of a small number of
elementary signals, called atoms, drawn from a large linearly
dependant collection, called dictionary or redundant basis. The
goal is to represent a wide class of signals, including nonstation-
arities, so the dictionary is usually composed of different fam-
ilies of functions with complementary structures—sinusoids,
spikes, wavelets, shapelets, curvelets, etc. Given the important
size of the dictionary, seeking for the smallest combination of
atoms is usually unfeasible, and the problem is generally sub-
stituted by the minimization of the ¢!-norm, which is a convex
problem: Chen et al. [14] named this methodology the Basis
Pursuit. The approach adopted in this paper formulates a Basis
Pursuit De-Noising (BPDN) problem [14]: the sparsest repre-
sentation of the noisy data is searched in a dictionary made of
an arbitrarily large number of cisoids. Some important differ-
ences arise with the classical Basis Pursuit literature, however:

* Basis Pursuit usually considers dictionaries made of struc-
turally different atoms. When considering a high number of
cisoids—high-resolution analysis—the corresponding dic-
tionary has a high mutual coherence, in the sense defined
in [15] for example. Thus, the conditions that guarantee
the sparsity and the uniqueness of the solution, that were
recently established in [16], [17], are not satisfied for this
problem.

* The spectral analysis problem considers complex-valued
variables, for which much fewer attention was paid com-
pared to the real case. In particular, efficient algorithms
such as Interior Point [14], [18] or Least Angle Regres-
sion [19], [20], are specific to real variables, for which
optimization can be formulated as a quadratic program.
With complex variables, however, optimization formulates
a second-order cone (SOC) programming problem [21],
[22], that can be solved by Interior Point algorithms, e.g.,
[23].

This paper brings some advances concerning sparse mod-

eling via the penalization by the £!-norm. In particular, we show
that the /! penalization operating on the modulus of the com-

plex variables gives more accurate estimates than its real-valued
counterpart operating on real and imaginary parts, as proposed
in [24]. Structural properties are investigated for the minimizer
of the /! penalized criterion, as an alternative to usual charac-
terizations of BPDN solutions that are not applicable here, such
as a low mutual coherence of the dictionary [16], [17] or pos-
itivity of the Exact Recovery Coefficient [17]. In application to
the spectral analysis of regularly or irregularly sampled data,
conditions are given for the uniqueness and the sparsity of the
estimator. In terms of estimation quality, such a methodology
is shown to bring more robustness regarding sampling artifacts,
compared to Matching Pursuit methods. The paper also brings
new elements concerning algorithmic issues. We consider two
different optimization strategies that have been recently pro-
posed for such problems, namely, Iterative Coordinate Descent
(ICD) [18], [35] and Iterative Reweighted Least-Squares (IRLS)
[26], and we propose a mixed strategy using spacer steps [27,
Ch. 7]. The result is a convergent algorithm, that takes advantage
of the specificities of the ICD and IRLS procedures, consider-
ably improving the convergence speed. Simulations on artificial
data show that the proposed procedure allows one to consider a
very high frequency resolution, yielding a much lower computa-
tional cost than the SeDuMi package in the SOC programming
framework [23].

The paper is structured as follows. In Section II, line spectra
estimation is set as an underdetermined linear inverse problem.
The penalization by the /! -norm of complex variables is studied
and an analytical characterization of the minimum of the pe-
nalized criterion is given, that also yields a physical interpre-
tation to the regularization parameter. Section III establishes
conditions for the minimizer of any ¢! penalized criterion to be
unique. In application to high-resolution spectral analysis, prop-
erties are given for both regular and irregular sampling cases.
Optimization algorithms are studied in Section IV, that ends
with the design of a convergent and computationally efficient
procedure. Finally, Section V is devoted to simulation results.

II. STATEMENT AND PRIOR MODELING

A. Linear Formulation of Spectral Analysis

The formulation of spectral analysis as a linear inverse
problem [9]-[13] makes use of an inverse Fourier Transform
model. The irregularly sampled time series (¢, ¥» )n=0,...N—1
is modeled as a noisy sum of a large number of cisoids
with discretized frequencies fi = kfmax/Pk € P, P =
{=P,...,P}. Note that for irregular sampling, parameter
fmax 1s not limited to the Nyquist limit, allowing the recon-
struction of the spectrum in a wider band than with regularly
sampled data [28]. Formally, the reconstruction of the com-
plex-valued spectral amplitudes £ = [z_p,...,zp]" from the
datay = [yo,...,yn_1]" is addressed

y=Wz+e 2)

where

1
W = {— exp(jZWfktn)}
VN n=0,..,N—1,k€P
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isa N x (2P + 1) matrix and e stands for perturbations such
as model errors and observation noise. For irregularly sampled
data, W does not identify with an inverse Discrete Fourier
Transform operator, so it looses structural properties such as
the orthonormal and circulant characters [29]. However, it can
be shown that WTW is still a Toeplitz matrix, with

{—k
{WTW}k,K = W <Tfmax) . (3)

To obtain high frequency resolution, which is our goal in this
paper, one has to set 2P + 1 > N, so the least square solution
to problem (2) is under-determined.

B. Regularization Framework

We adopt a regularization approach in which the estimated
spectrum is the minimizer of the penalized criterion

1
(@) = 5lly - Wz|* + AR(x) Q)

where the penalization function R(z) is adequately designed for
the estimation of spectral lines, i.e., for sparse vectors .

Quadratic penalization functions—/?-norms—yield ridge re-
gression solutions [26]. They lead to a windowed DFT in the
regular sampling case [30]. Although this property does not gen-
eralize to irregular sampling, empirical results established the
inadequacy of #2-norms for line spectra estimation in this case
[29]. Sacchi et al. [11] considered a log-Cauchy penalization,
which is suited to sparse solutions but leads to a nonconvex cri-
terion .J, possibly admitting local minima. In [12], the /2/* pe-
nalization function Ro1(z) = ), \/s% + |zx|? was proposed,
which gives spiky estimators for small positive values of param-
eter s, and leads to a strictly convex criterion. Note that the op-
timization strategies proposed in both papers are especially ef-
ficient for regularly sampled data: in this case, matrix W has
a Fourier structure, which allows to compute high dimensional
matrix products and system inversions at a reasonable cost using
FFT.

In the last decade, the efficiency of the /'-norm to address
sparsity has become a prolific field of research [10], [14]-[17],
[31], [32]. This is the direction followed here for spectral anal-
ysis. In other words, the spectrum estimator is defined as ¢ =
arg minJe (x) with

1
Je(@) = S lly = Wall; + ARc(x) 3)
where R is the /!-norm for complex-valued vectors

Re(@) = Y lonl = 3 V/R(@)* + S@)®. 6)
k k

The reason motivating this choice is twofold.

* First, ¢! penalization may be viewed as an intermediate
choice leading to a strictly sparse solution, and still
defining a convex (although not strictly) penalized cri-
terion, with no local minima. In addition, the minimizer
of Jc is almost always unique, provided it is sufficiently
sparse; see Section III-C.

* Second, the specific structure of .J¢ brought by the £*-norm
allows powerful algorithmic implementations.

Using Rc as a penalization function corresponds to the
BPDN methodology [14], where estimator Z¢ is searched as
the sparsest representation of the noisy data y in a dictionary of
cisoids with arbitrarily thinly discretized frequencies. However,
some substantial differences with the classical Basis Pursuit
literature arise in our case, which are examined in Section II-D
and Section III.

C. Interpretation of the Regularization Parameter

In a Bayesian interpretation, parameter A can be viewed as
an inverse signal-to-noise ratio (e.g., [8]). Here, a characteriza-
tion of the minimum of criterion (5) is given, which provides
a physical interpretation to parameter A. It is a straightforward
generalization of the condition derived in [33] in the real-valued
case, that is also mentioned in [16].

Property 1: x minimizes criterion (5) if and only if

(4)
{
with r = WT(Wz — y).

The proof follows the same scheme as its real-variable coun-
terpart, that can be found in [33]. Note that 7 is merely the dis-
cretized Fourier spectrum of the residual Wz — y. Thus, A is an
upper bound of the Fourier spectrum of the residual, discretized
on the frequency grid, and this bound is attained at all the loca-
tions of the nonzero components in Z.

Let us remark that estimator Zc may suffer from some bias
in the amplitude estimation due to the penalization term in (5).
In practice, it is preferable to re-estimate the amplitudes of the
detected frequencies by least-squares (see Section V). Thus, the
maximum of the final residual spectrum is usually lower than
A. However, Property 1 can help to tune the regularization pa-
rameter. Let A, be the maximum of the Fourier spectrum of
the data: Apax = max |WTy|. For A > Ay, estimator ¢ is
identically zero. Setting A to some percentage, say 5%, of Amax
guarantees that the residual spectrum is lower than 5% of the
maximum of the Fourier spectrum of the data, which heuristi-
cally gives satisfactory results. The use of automatic methods to
choose the best value for parameter ) is still an open problem,
which is out of the scope of this paper.

Vk such that |Z,| =0 :
Vk such that |Zx| # 0 :

Ire| < A,
Tk +)\."f?k/|ik| =0

D. £ Penalization for Complex-Valued Vectors

Much attention has been already paid to /! penalization, but
most of the studies have only addressed the case of real-valued
vectors of unknowns [14], [16], [31], [32]. For instance, in the
case of spectral analysis, BPDN was applied in [24] to a real-
variable model with sine and cosine functions, instead of model
(2) with cisoids. This allows to formulate the optimization as
a quadratic programming problem, which can be tackled by
powerful algorithms. However, the penalization function then
reads Rr(z) = > . (1R(zk)| + |S(zx)|), which is obviously
not equivalent to (6).

The example in Fig. 1 illustrates that the two alternatives are
likely to provide quite different results. It corresponds to a sim-
ulated data set with five sinusoids presented in Section V. Spec-
tral lines are estimated as the minimizers g and ¢ of crite-
rion (4) using penalizations Rg and R¢, respectively. Since the
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Fig. 1. Regularized estimation of the five spectral lines of the data in Section V using penalizations R¢ and Rg: zoom around the true frequencies. Parameter

A was set to 0.05Amax. The black circles represents |&¢|. The white circles and x-marks represent |R(Zg )| and |S(&r)

, respectively. The diamonds locate the

true frequencies. (a) Frequency v, (b) frequency v (c) frequencies v5 and v4, and (d) frequency vs.

true frequencies v; j—1,....5 do not belong to the reconstruction
grid, ¢ has two adjacent nonzero values around the true fre-
quency for vj j—» 5. On the other hand, both vectors R(zw)
and 3 (Zr) do possess a sparse structure, but nothing favors their
nonzero values to be located at the same frequencies. Conse-
quently, in Figs. 1(b)—(d), the real and imaginary parts of Iy
have distinct supports, and none of them coincide with the cor-
rect one. The resulting frequency splitting in Zg is not satisfac-
tory, since a true frequency is estimated by up to four nonzero
components.

Note that no other value of the regularization parameter yields
a better estimate Zr. Fig. 2 represents the location of the nonzero
components in g and Z¢ as a function of A, zoomed around
the two close frequencies (3, v4). Acceptable estimates T are
obtained for A < 0.15\ .« only, since otherwise the line at fre-
quency v4 is not detected. For frequency v3, &g shows at least
two nonzero components, separated by three grid steps. More-
over, the estimation of frequencies 3 and v, obtained with Zg is
always biased by more than one grid step, which is not the case
with Z¢. Thus, sparsity information is more accurately repre-
sented by Rc. That is, in terms of Basis Pursuit, a dictionary
of cisoids is more relevant than a dictionary where elementary
atoms are sine and cosine functions.

III. UNIQUENESS CONDITIONS OF THE SPARSE SOLUTION

Several recent works addressed the question of the unique-
ness of the minimizer of any ¢! penalized criterion. Indeed, [16],
[17] propose sufficient conditions on the recovery of the sparsest
solution that are also sufficient conditions for the minimizer to
be unique. These conditions are based on the mutual coherence
of the dictionary and the Exact Recovery Coefficient of a set of
indexes. We first show that such conditions, however, are far
too restrictive in our case. Then, alternate characterizations are
given that can be applied to the spectral analysis problem.

A. Inefficiency of Mutual Coherence and ERC Based
Conditions for Spectral Analysis

Let A be any redundant dictionary, i.e., a N x M matrix
(M > N) with normalized columns a; (atoms). The mutual
coherence y of the dictionary is defined as [15]

- T
i Iil;%dak a.

V4

)\ as a fraction of Amax

—l,r

33.2 33.3 33.4 33.5 33.6

frequency

33.2 33.3 33.4 33.5 33.6
frequency

(cycles per day) (cycles per day)

Fig. 2. (a) Locations of the nonzero components of Zg for different values of
A between 0 and Ap,.x, in the neighborhood of frequencies (3, v4). Segments
with endpoints marked by a circle (resp., a x-mark) indicate the nonzero com-
ponents of R(Zgr ) (resp., I(&r)). (b) Locations of the nonzero components of
Zc. The two vertical dashed lines locate v3 and v4, and vertical dotted lines
represent the frequency reconstruction grid. The horizontal full line indicate the
upper bound for acceptable solutions. The horizontal dashed line indicate the
heuristic tuning A = 0.05Anax-

Let K C {1,...,M} be a set of indexes. The ERC of K is
defined as [17]

ERC (K) = 1 — max ||ATa|:
kgk

where AT is the pseudo inverse of matrix A.

Resultsin [16, Th. 2 and 3] and [17, Corollary 9] show that the
smaller 1, the weaker the conditions of recovery of the sparsest
representation using the /!-norm. In the classical Basis Pursuit
literature, A is often defined as the union of orthonormal bases,
the latter being structurally different enough one from each other
to ensure that u takes a low value. In our case, the dictionary
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Fig. 3. Upper bound on the number K of nonzero components of ¢ such that
uniqueness conditions in [16, Th. 3] apply.

used for high-resolution spectral analysis has a very coherent
structure. According to (3), the coherence of W is given by

-k
w (Tfmax)

where W is the spectral window defined by (1). Let us remark
that u is not lower than the magnitude of the inner product of
adjacent columns

N

= max
a kL

Ho = |W (fmax/P)| . (®)

As high frequency resolution is required, i.e., 2P + 1 > N, ug
corresponds to the magnitude of the spectral window function
close to the origin, inside its central lobe. Therefore, 1 is close to
[W(0)| = 1. See Appendix I for a quantitative analysis, where
lower bounds are derived for p.

The conditions in [16], [17] link uniqueness and sparsity of
the minimizer of J¢, for a given value of p. Let K stand for the
number of nonzero components of a solution . The sharpest
result is found in [16, Th. 3]. It says that a minimizer ¢ is
the unique one if K < (1 + 1/u)/2. Hence, the lower bound
derived for p in Appendix I can be easily converted into an
upper bound K., for K. Fig. 3 displays such a bound as a
function of the ratio 2P/N, in the regular sampling case, with
fmax = 1/(2T%), where T is the sampling period. It clearly
indicates that in the high-resolution framework, such a bound
is very restrictive. Moreover, the situation is not more favor-
able in the irregular sampling case. Actually, Appendix I shows
that the same bound K, applies to all sampling schemes with
the same empirical variance of the sampling instants. In other
words, the uniqueness properties based on a condition of low
coherence of the dictionary are not compatible with a high-res-
olution analysis.

Tropp [17, Th. 8] obtained a weaker, solution-dependent con-
dition, that allows to verify a posteriori if the obtained solution
is the sparsest one. If so, then the solution is unique. Although

no general result was obtained for such a condition in applica-
tion to the considered spectral analysis problem, the Exact Re-
covery Coefficient (ERC) was always negative in practical cases,
so that the condition in [17] was never verified. Simulations in
Section V will reveal the inadequacy of both ERC and coher-
ence-based conditions to establish the unicity of the minimizer
of (5) in our case.

Nevertheless, it is possible to establish alternate uniqueness
conditions that are more effective in the context of high-resolu-
tion spectral analysis, as shown below.

B. A Uniqueness Condition Based on the Unique
Representation Property

Let A be a N x M matrix with M > N. Let us derive some
uniqueness conditions for the minimizer of

1
H(z) = 5lly - Azl + \Rc(x).

Let us assume that A satisfies the Unique Representation Prop-
erty (URP), i.e., that any N columns of A are linearly indepen-
dent [10]. In the following, the support supp(x) denotes the set
of indexes where « is nonzero. Lemma 1 shows that sparse min-
imizers of H are isolated.

Lemma 1: Suppose that A satisfies the URP. Then, for all
K c{1,...,M} with Card £ < N, there is at most one mini-
mizer of H supported by K.

Proof: Suppose that # and #' minimize H and that they
have the same support K. Let K = card K, and Ax be the
N x K matrix formed by the columns of A with indexes in K.
Then, minimization of H over the set of vectors with support
belonging to K amounts to minimize

1
Hyc(u) = 5|ly — Axull3 + ARc(u),u € C*.

Since the columns of A k are linearly independent, the quadratic
term in H is strictly convex in u, and so is Hy.. Therefore, Hx
has a unique minimizer, say . It is easy to show that & = &k,
where Zx = [#x]rexc. Itis also true that & = Z).. Both £ and 2’
are zero outside K, so & = .

|

The following property allows to link the uniqueness of the

minimizer of H to its degree of sparsity.

Property 2: Let A satisfy the URP, # € C minimize H (x),

and K = card supp(%). Then:

 If K < N, then every other minimizer has more than
N — K nonzero components.

* There exists at most one minimizer with at most N/2
nonzero components. Hence, if K < N/2, the sparsest
solution to (5) is £ and is unique.

Proof: Firstly, suppose that K < N, and that &’ is an-
other minimizer of H. Let K = supp (), K’ = supp (z') and
K’ = card K'. Since H is convex, all vectors &, = a& + (1 —
a)i', 0 < a < 1, also minimize H. Therefore, there is an in-
finity of minimizers with a common support X, = £ U K'.
According to Lemma 1, it comes that card £, > N. On the
other hand, card K < K + K’, which allows to conclude that
K’ > N — K. In particular, if K < N/2, then K’ > N/2.

|
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Note that Gorodnitsky and Rao [10] obtained similar results
to characterize sparse solutions to the noise-free problem y =
Az. Results obtained by Fuchs [31, Corollary 1] are also closely
related to Property 2, but they are limited to the real-valued case.

Property 2 gives a characterization of sparse minimizers of
criterion H, that may be used when characterizations based on
low mutual coherence or positive ERC cannot be applied. On
the other hand, the URP may be irrelevant for classical dictio-
naries in Basis Pursuit applications. For example, if the dictio-
nary contains spikes and cisoids [15], such that one cisoid is
zero at instant ¢,,, then the family formed by all spikes at in-
stants ¢, nm and this cisoid is linearly dependent.

C. Properties for High-Resolution Spectral Analysis

Let us now turn back to the spectral analysis problem, with a
view to examine whether matrix W fulfills the URP.

1) Regular Sampling Case: In the regular sampling case, the
following property holds.

Property 3: In the regular sampling case with fi,,x not lower
than the Nyquist limit, i.e., fmax < 1/(27%), where T is the
sampling period, W satisfies the URP, whatever the discretiza-
tion step of the frequency grid.

Proof: See Appendix II.
|

Such a property generalizes a result in [34] about sparse so-
lutions to the exact problem y = Wz, obtained for a dictionary
of cosine functions and restricted to the case of positive coeffi-
cients.

2) Irregular Sampling Case: In the irregular sampling case,
a weaker property can be established. Basically, it claims that
for given sampling instants and a given frequency grid, matrix
W is likely to satisfy the URP.

Property 4: In the irregular sampling case, the values of fax
for which matrix W does not satisfy the URP are isolated. That
is, if W does not satisfy the URP for a given f2.., then W
satisfies the URP for all fi .« in the neighborhood of f2,..

Proof: see Appendix III.
|

Let us remark, yet, that it is easy to build a matrix W that does
not satisfy the URP. For example, for given P and fi,.x, select
k1 and k5 in P and choose N instants ¢,, where the two sinusoids
with frequencies fr, = k1 fmax/P and fr, = kafmax/P take
the same values. Then, the four columns of W with indexes
(k1,—k1) and (ko, —ko) are linearly dependent.

IV. OPTIMIZATION STRATEGIES FOR
COMPLEX ¢! PENALIZATION

In this section, optimization procedures are considered and
discussed in terms of convergence speed. First, an Iterative Co-
ordinate Descent (ICD) algorithm is described, based on the
Block Coordinate Relaxation (BCR) procedure in [18]. Then,
an Iterative Recursive Least Squares (IRLS) algorithm [11], [26]
is studied. Finally, the two strategies are compared on simula-
tions and merged to obtain a scheme that practically converges
faster than both ICD and IRLS and is guaranteed to converge
towards the minimum of (5). Note that the proposed algorithms

TABLE 1
ICD ALGORITHM FOR THE MINIMIZATION OF .J¢

Iteration t: for k € P,

(t)

o update e, (1)

— (t)
S Y=k WeTy = gsy WeTy

o update z{ = ¢§ (w}el?)

can be applied to the minimization of any ¢* penalized criterion.
In particular, for the spectral analysis problem, the same imple-
mentation is valid for both regular and irregular sampling, since
no specific matrix properties are exploited.

Property 1 gives an explicit necessary and sufficient condition
(NSC) satisfied at the minimum of criterion (5), that allows to
test the convergence of any algorithm. In the following, this test
was used with a numerical tolerance of 107 in the equality
conditions.

A. Iterative Coordinate Descent (ICD)

The Iterative Coordinate Descent algorithm consists in
performing successive 1-D minimizations with respect to each
complex variable zj. It can be viewed as a particular applica-
tion of the BCR algorithm proposed in [18] for 1-D blocks. It
is easy to show that

" = argmin,, Je(z) & " = @3 (wi'er) (9
where w;, is the k*" column of W, e, = y — > gz, wee and
3 1s the complex soft shrinkage function [17]

y s — ie f N
Vu= pert gil) = { (= it A

Thus, every scalar minimization can be performed at a very
low computational cost. Table I summarizes the ICD algorithm.
Convergence proofs towards the minimum of J¢ can be found
in [35]. As ICD operates by successively performing soft
thresholding steps, it shows some similarities with the Iterative
Thresholding procedure in [25]. However, let us note that the
two algorithms are not equivalent, since the thresholding is not
performed exactly the same way.

B. Iterative Reweighted Least-Squares (IRLS)

Figueiredo [26] proposed an Expectation-Maximization
(EM) algorithm for ¢! penalization, which can be extended
to complex variables. It can be written as a two-step iterative
procedure, where at iteration ¢

i) build matrix Q®) = diag{|z®|};
ii) compute the new iterate by
D — Q(t)()\I + Q(t)wTWQ(t))—lQ(t)WTy_ (10)
This EM algorithm can also be interpreted as an [ferative Re-
cursive Least-Squares (IRLS) procedure [36], [37].
Such a structure benefits from the sparsity of the solution.
* The algorithm propagates the zero components. From step
ii), it comes that:

(#87 =0) = («"" =0). (1)
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Conse?uently, the number of nonzero components in :z:(t),
say K. 2 , never increases with the iteration number ¢.

e As Q(t) has only Kg) nonzero lines and columns, the
computation of step ii) amounts to solving a K. ét) x K. g)
system. Then, the computational load either remains con-
stant or decreases with the iteration number ¢.

Relation (11) clearly shows that such an algorithm will not
converge towards the minimum of .J¢ from any initial point. An
extreme example of non convergence is given by the null vector,
which is a fixed point according to (11), be it a minimizer or
not. This does not contradict the known convergence properties
of EM and IRLS algorithms, since the latter are restricted to
continuously differentiable criteria [38], [39].

Indeed, the IRLS algorithm is a generalized version of the
Weiszfeld algorithm, initially proposed for minimizing the sum
of Euclidean distances to a given set of points in R, called
vertices [40]. Kuhn [41] established the convergence of the
Weiszfeld algorithm to the optimal solution if no point in the
iterates is a vertex. If the iterated sequence reaches a vertex,
then the algorithm remains at this vertex. A similar limitation
is imposed by (11), so that convergence does not hold without
restrictions. Nonetheless, the IRLS algorithm ensures that the
criterion never increases [26]: J(z(*1V) < J(z®) for any
current point z(*).

Note that (10) also reads

o) = QWAL+ WQWWT) 1y, (12)
The computation of z(*+1) using expression (12) amounts to
solving a N x N system, and should be preferred to (10) as
long as Kg) > N. When Kg) < N, a more efficient way to
update z(*+1) is

zgﬁj}l) -0 (13a)
(t+1) t 1\ wt
o = (Wiwz+aq7!) Wiy (3b)

where 7 = supp (z®),Q; = diag{|z\"|}, and W corre-
sponds to the matrix formed by the columns of W with indexes
inZ.

An efficient implementation of the IRLS algorithm is given in
Table II. Note that the dimension reduction, caused by the emer-
gence of zero values in (), requires some numerical thresh-
olding step at each iteration. For the aforementioned reasons,
this still weakens the conditions of convergence of the proce-
dure. In practice, a valid strategy is achieved by testing the con-
vergence with the characterization of the minimum given by
Property 1. Despite the lack of theoretical guarantees, conver-
gence towards the minimum of criterion J¢ was always reached
in our simulations.

C. Mixed Strategy

In this Subsection, the behavior of the ICD and IRLS algo-
rithms are first compared in terms of convergence speed. Then,
the two procedures are merged to design a hybrid and conver-
gent algorithm. The data used in this section are those used in
Section V, dedicated to simulation results, and the size of the
problem is N = 514, P = 2000.

101

JC - min(Jc)

-10 |

10

10

1000

100

10
10

number of complex multiplications

Fig. 4. Behavior of ICD (dashed), IRLS (solid), and hybrid (dash-dotted) al-
gorithms. (a) Evolution of the criterion as a function of the CPU cost. (b) Corre-
sponding evolution of the number of nonzero components. The horizontal dotted
line represents the number N of data points.

1) Behavior of the Two Algorithms for Sparse Solutions:
Fig. 4(a) plots the evolution of criterion Jc as a function
of the computational cost, evaluated as the total number of
complex multiplications, for the ICD and IRLS algorithms. At
the beginning, the decrease of J¢ is faster with ICD than with
IRLS (when the IRLS iterations amount to solving N x N
linear systems). On the contrary, when the number of nonzero
components in the current iterate, K. (t), is small enough, Jc
decreases more rapidly with the IRLS algorithm than with ICD.
Fig. 4(b) reveals the link between the decrease rates of the two
algorithms and Kg). For the ICD algorithm, the evolution of
Kg) shows small steps at the beginning and longer steps at
the end. This behavior is inverted for the IRLS algorithm. In
other words, ICD is good at decreasing the number of nonzero
components and bad at estimating the corresponding ampli-
tudes. On the contrary, IRLS lacks efficiency in locating the
nonzero components, but once K. g) is small, the corresponding
amplitudes are estimated very quickly. Note that ICD can be
initialized with () = 0, which is closer to the sparse solution,
whereas IRLS has to be initialized without any zero value.

2) A Hybrid and Convergent Algorithm: The complementary
properties of ICD and IRLS suggest the definition of a hybrid
algorithm merging the two strategies. Let M = 2P + 1 be the
size of the unknown vector z. Iteration ¢ of ICD (one sweep of
the frequency axis) requires NM + 2N K. ;” complex multipli-
cations. For K ét) < N, performing ¢ iterations of IRLS (using
step 2 in Table IT) requires ¢Cliny (K. ét)) +NK g) complex mul-
tiplications, where Ci,,, (K) is the number of multiplications re-
quired for solving a K X K linear system. We used L-U factor-
ization, with

1 8 41
Cinv(K) = 5K3 + gKQ + ?K

We propose to insert g iterations of the IRLS algorithm after
each ICD sweep, as soon as the two parts have the same compu-
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TABLE II
IRLS ALGORITHM FOR THE MINIMIZATION OF .J¢

Initialize (¥ without any zero component and at
iteration ¢ do:

1) if Kg) > N, perform IRLS steps by solving the

N x N system (12), with Q® = diag({|z®|});

2) as soon as Két) < N, perform IRLS steps

by updating only the non-zero components of

x®: solve the K x K system (13b) with

Qz = diag({|a:(zt )|}), where Z indexes the non-

zero components in ().

TABLE III
HYBRID PROCEDURE FOR THE MINIMIZATION OF J¢

Iteration ¢:

o perform one ICD sweep (Table I);
(t)
o if ¢ = % > 1, then perform
inv T
IRLS iterations (Table II).

4

tational cost. As the ICD algorithm converges towards the min-
imum of (5) and each IRLS iteration does not increase the value
of the criterion, this scheme defines a convergent procedure with
ICD spacer steps [27, Ch. 7]. Table III gives the resulting algo-
rithm, and the corresponding saving in CPU cost is shown in
Fig. 4. At the beginning, the decrease rate is similar to the one
obtained with ICD! and switches to the IRLS-like decrease rate
as soon as the number of nonzero components in the current it-
erate is small enough. In this example, the number of complex
multiplications required by the three algorithms was approxi-
mately 1.43 10 for IRLS, 2.46 10'° for ICD, and 1.02 10? for
the hybrid algorithm. Hence, a gain of 10 in computational cost
is obtained by merging ICD and IRLS.

The minimization of (5) formulates a second-order cone
(SOC) programming problem [22], so that the optimization
can also be performed by efficient interior point algorithms,
e.g., [23]. However, in a different application framework with
real variables, Sardy et al. [18] have found empirically that
an ICD-like algorithm converges faster that the interior point
algorithm proposed in [14]. Such a behavior has been confirmed
in our experiments. The CPU time required for optimization
by the hybrid algorithm in Table III (using a C and Matlab
implementation for the ICD and IRLS parts, respectively) is
about 11 s with a 3.4 GHz Intel P4 processor with 4 GB RAM.
Optimizations by ICD and IRLS require approximately 330 s
and 100 s, respectively. As a comparison, optimization using
a SOC programming formulation with the SeDuMi package?
[23], which also mixes Matlab and C, requires more than 1300 s
to solve the same problem. However, in the considered

IFig. 4 shows an extra cost at the beginning of the hybrid algorithm compared
to ICD. It is due to the computation of the Toeplitz matrix W W and of Wiy,
which requires 2 NM complex multiplications.

2Implementation was taken from D. Malioutov’s web page: http://ssg.mit.
edu/group/dmm/dmm.shtml
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Fig. 5. Artificial data. (a) Irregularly sampled time series. (b) Corresponding
spectral window.
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Fig.6. (a) Zoom in the frequency range [30, 37]c/d of the results of a Matching
Pursuit algorithm (x-marks). (b) Results obtained by minimizing J¢c : |Zc]|
(black circles) and posterior amplitude re-estimation (4- signs). The diamonds
locate the true spectral lines and the dotted line represents the Fourier spectrum
of the data.

case where the data are real-valued, an equivalent real variable
optimization problem can be considered (with sines and cosines
instead of cisoids), with only 2P + 1 real unknowns. This trans-
formed problem can still be written in terms of SOC program-
ming. It is solved by SeDuMi in approximately 170 s. Note that
the minimizer obtained by SOC satisfies the NSC of Property 1
up to 1072, whereas the tolerance used in ICD, IRLS and our
hybrid approach was set to 1076.

V. SIMULATION RESULTS

The artificial data in Fig. 5(a) is the sum of five sinusoids
with frequencies ranging from 31 cycles per day (c/d) to 35.6
c/d. Gaussian noise was added to the data with SNR = 17 dB.
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The N = 514 sampling instants correspond to true observa-
tional data [8], covering a period of 5 days with gaps caused by
day/night alternation. The resulting spectral window in Fig. 5(b)
shows high sidelobes at 1 c/d. For such a data set, the Fourier
spectrum shows many false peaks, so that a Matching Pursuit
method is unable to retrieve the five lines correctly, as shown in
Fig. 6(a).

Spectral estimation was performed by minimizing criterion
Jc with fiuax = 50 ¢/d and P = 2000. Parameter A was set to
5% of the maximum of [W fy|. In this example, the mutual co-
herence of the cisoid dictionary is 4 ~ 0.982, so that uniqueness
conditions in [16] would impose the solution Z¢ to have at most
one nonzero component (see Section III-A). Tropp’s ERC [17]
is negative (ERC = —155). Yet, provided that matrix W satis-
fies the Unique Representation Property, which is highly likely
according to Property 4, Property 2 allows to conclude that Z¢
is unique.

Fig. 6(b) shows that estimator Z¢ is sparse and correctly lo-
cates the five frequencies: the nonzero values of ¢ locate the
closest approximation of the true frequencies on the reconstruc-
tion grid—a zoom on the estimated frequencies was shown in
Fig. 1. Let us remark that amplitudes are systematically underes-
timated by Z¢ because of the /'-norm penalization term in J¢.
Once the frequencies are correctly located, however, a reestima-
tion of amplitudes in the least-squares sense provides accurate
results, as shown in Fig. 6(b).

Note that the results in Fig. 6(b) are plotted for positive fre-
quencies only. If the data are real-valued, the estimated spec-
trum is expected to have the Hermitian symmetry, i.e.,
where 1 = z* . Such a symmetry is not guaranteed here.
However, if y € RY, it can be shown [12] that Jc(zc) =
Je (). Thus, if the conditions of uniqueness of ¢ are sat-
isfied, which is almost always true (see Properties 2 to 4), then
2 = &c. Anyhow, let us remark that (Zc + £2)/2 is a Her-
mitian minimizer of criterion J¢ since the latter is convex.

:z,

VI. CONCLUSION

We addressed the estimation of spectral lines from irregularly
sampled data as a linear and underdetermined inverse problem.
Regularization was proposed by minimizing a least-squares
cost function, penalized by the ¢!-norm. Satisfactory prior
sparse modeling was achieved by considering ¢! penalization
with complex variables, whereas A penalization on real vari-
ables was shown to lead to frequency splitting.

Alternate characterizations of sparse solutions were estab-
lished for the spectral analysis problem. In particular, with reg-
ularly sampled data, the minimizer of the penalized criterion is
unique if it is sparse enough. This property remains almost al-
ways true with irregular sampling.

The computation of the estimator can be performed very effi-
ciently by an hybrid optimization algorithm, which merges two
well-known optimization methods with complementary proper-
ties. In particular, the sparsity of the solution is advantageously
exploited to reduce the computational time. The resulting pro-
cedure is ensured to converge towards the minimum of the cri-
terion. Furthermore, this minimum can be characterized explic-
itly, which allows to test convergence with a strong condition.

Such a methodology was shown to provide high-resolution
and robust estimates, especially insensitive to sampling artifacts
that frequently appear in astrophysical applications.

APPENDIX |
LOWER BOUND ON THE MUTUAL COHERENCE PARAMETER
FOR SPECTRAL ANALYSIS

Property I: The mutual coherence p of a dictionary W of
cisoids of frequencies {k fiax/P}r=—p.. p, sampled at distinct
times {¢,, }n=0..N—1, is strictly lower bounded by

27T2 9 N1 1/2
Hmin = (max {0 1- NZ—;;L;X Z (tn - tm)2}>

m,n=0

42 f2 1/2
= <max{0,1— %02}>

where 72 is the empirical variance of the sampling instants

2
o2 = %Zti— % <Ztn> .

In the regular sampling case, ¢, = nT, and at the Nyquist rate
.fmax = 1/2TS, we have

2 N2 -1 1/2
Mmin = [ max< 0,1 — ——— .
12 P2

Proof: Given (7) and (8), we have p > g, where pg =
IW(fimax/P)| and W is the spectral window function (1). It is
easy to show that

(14)

15)

(16)

N-1
1 .
W = e > exp(j2nf(tn — tm))
m,n=0
L N1
=2 Z cos 27 f (ty, — tm)-
m,n=0

Now let us remark that cosz > 1 — 2%/2 for all = # 0. There-
fore, we have

or2¢2 N1
WP > 1 - erf D (ta—tm)” (D
m,n=0

forall f # 0. Letting f = fimax/P, the inequality 1190 > ftmin
is readily obtained where (i, is given by (14), and hence p >
Mmin. Finally, (15) is easy to deduce from (14). The proof of
(16) is immediate, using 5% = (N2 — 1)12/12 when t,, = nT}
and foax = 1/27s.

|

APPENDIX II
PROOF OF PROPERTY 3

Consider regular sampling: ¢, =
the sampling period) and fup.x =

nT, (where T is
a/(2Ts), where «
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is some under- or over-sampling rate (for @ = 1, fiax
corresponds to the Nyquist frequency). Matrix W reads
{1/(VN)exp (jarkn/P)}n—o,. .N-1,k=-P,....P-

Let {km }m=o0,... N—1 be an 1ncreas1ng sequence from P =
{-P,...,P} indexing NV arbitrary columns from W, and con-
sider the N x NN matrix

1 ko,
Uy = {— exp <ja7r—n>} .
\% N P n,m=0 N-—1

» FRREE)

Uy is a full rank matrix if and only if the N constraints

N-1

km,
-1, Z B exp (jaﬂ'?n> =0

n=0

Ym=0,...,N

involve f3,, = 0,Vn = 0,...,N — 1. The polynomial Q(X) =
Zi\:ol BnX™ is of degree d < N — 1 and is zero for z,, =
exp (jarkm/P),m = 0,...,N — 1. If the zeros z,, are all
different, then the polynomial Q(X) has N zeros and is thus

identically zero: 3, = 0,Vn = 0,...,N — 1. It holds
km k
form # q, 2m # 24 = O”; Z m]; L127]. (18)

A sufficient condition for z,, # 2, is an|km — kq|/P < 2m,
which must be true for every sequence {kp, =0, . nv—1 from
P. The maximum value of |k,,, — k,| among all sequences is
2P, S0 2y, # zg is ensured if o < 1.

The case @ = 1 has to be considered separately.
Indeed, in this case, the first and last columns of
W are identical, so one has to consider the ma-
trix formed by the 2P last columns of W, that is,
Wee = {1/VNexp(jmkn/P)}nco,
The maximum value of |kn,, — kg among all sequences
{km}m=o,. . n—1from {1l —P,... P} is2P — 1,80 2, # 24
is ensured if « < 2P /(2P — 1), which is true for o = 1.

As a conclusion, matrix W satisfies the URP condition if
a < 1.

APPENDIX III
PROOF OF PROPERTY 4

Let Uy be a matrix formed by N arbitrary columns of matrix

W
Uy = {exp (]27r fmax n)}
n,m=0,...,N—1

>

for some frequency indexes kp, m—o,..N—1 € P arranged in
increasing order. The determinant of U is

detUy = Z SgN(0)U0,0(0)U1,0(1)s - - -

gESN

YUN—1,0(N-1)

where Sy is the set of all permutations in dimension N and
sgn (o) € {—1;1} is the signature of permutation o. That is

N—

detUy = ngn( exp J27TZ

ogESH

fmax on

Consider det U as a function of parameter fy.x, det Uy =
GN(fmax)a with

Gn(z) = Z sgn (o) exp (j2ra,z),

og€ES,

where o, = 1/P ZN kit

Function G is the ﬁnlte sum of trigonometric functions with
frequencies «,, weighted by £1. Let us show that at least one
frequency among all o, appears exactly once in the definition of
Gn:as {kn},, and {t, },, are strictly increasing sequences, the
frequencies a, range from a;, = 1/P 22:01 kptn_1—_n to
Qmax = 1/P 25;01 knt, and, e.g., value ayy.y is reached only
once among all a,,, for ¢ = [0,...,N — 1]. Thus, the function
Gy cannot be zero on any interval.

Let Z denote the set of values of f,,,.x for which W does not
satisfy the URP, that is, for which there exists a submatrix Uy
made of N columns of W, such that det U = 0. Z is the finite
union of sets of isolated points. Thus, Z only contains isolated
points.
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