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ABSTRACT
The problem of microwave tomography consists of finding

the electrical characteristics (permittivity and conductivity)

of a medium using scattered fields measured under various

conditions of illumination. Such inversion can be achieved

with a variety of techniques based upon the minimization of

an appropriate criterion. The popular current source inver-

sion (CSI) technique is one of those. In this paper, the CSI

technique is presented and its main limitations are underlined.

Then, in order to overcome these limitations, a generalized

form of CSI is developed. An analysis of the time consuming

operations of this new algorithm is done, and a new technique

is proposed; it proves to be faster than the other two methods,

the speed increase ranging between factors of 2 and 5. Per-

formance of the algorithms is illustrated with examples based

on synthetic data.

Index Terms— Microwave Tomography, Non-linear In-

version, Contrast Source Inversion

1. INTRODUCTION

In a microwave tomography (MWT) experiment, an object

under test (OUT) is illuminated under a variety of conditions

and for each of them, the field scattered by the OUT is ob-

tained at a set of measurement points. Using these measure-

ments, the objective is to reconstruct the conductivity and per-

mittivity distributions within the object.

MWT may prove to be particularly interesting in various

applications such as non destructive testing and biomedical

imaging. In the latter case, two of the most interesting ad-

vantages of MWT are the large sensitivity to the physiolog-

ical state of a patient and the high permittivity contrast be-

tween pathological and healthy tissues which, in many cases,

is much higher than the transmittance contrast of X-rays (e.g.,

for cancerous breast tissues, the permittivity contrast varies by

a factor of 5 in MWT while the variation is of about 10% for

X-rays) [1].
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In spite of such advantages, MWT uses long wavelengths

compared to the structural features of the OUT. Consequently,

usual ray propagation techniques are not suitable. Instead, an

integral equation formulation, which is highly non-linear and

ill-posed, must be used [2]. This significantly complicates the

resolution of the inverse problem.

In view of these characteristics, two types of techniques

have been proposed in literature. In the first one, the tomog-

raphy equations are linearized in some way [3, 4]. The re-

sulting algorithms are fast but lack accuracy for high contrast

scatterers, which makes them hardly suitable for biomedical

applications. The other types of algorithms solve the nonlin-

ear equations [4, 5]. They yield better solutions, but they may

present a high computation cost, which is a critical issue for

reconstruction of OUTs of realistic sizes.

The widespread CSI technique belongs the latter category

[4, 6]. The inversion is done by the minimization of a 2-term

criterion. It yields good results for high contrast OUTs and the

computational burden remains acceptable because CSI does

not rely exact resolutions of the direct problem. However,

this method presents limitations that will be underlined be-

low. In order to overcome them, we propose a new technique,

referred to as 2TC, that can be viewed as a generalization of

CSI. While proving faster than CSI, further improvements are

desirable for actual use in real life applications. Therefore,

after analysis of the time consuming stages of this method,

another technique, based on minimization of a three-term cri-

terion, is derived. Is efficiency and performance are illustrated

by results obtained with synthetic data.

2. CONTEXT

By using the theorem of equivalent volumes and the method

of moments (MoM) [7], we can derive the two discretized

equations of MWT [4]:

yi = GoXEi (1a)

Ei = E0
i + GcXEi (1b)

where y is the measured field vector. Matrices Go and Gc

represent discretized Green functions. Vector E and E0 re-
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spectively denote the total electrical field with and without

the OUT. X = diag{x} is a diagonal matrix whose elements

are the contrast values of the OUT. Index i refers to the i-th
emitter. The goal of MWT is to find the value of x. How-

ever, we note that the total field Ei is also an unknown of the

problem.

By substituting (1b) into (1a), we obtain:

yi = Go(I −GcX)−1E0
i (2)

which illustrates the non-linearity of the problem. One pos-

sible way of inverting the nonlinear problem is to solve (2)

directly [8]. This is quite complex due to the form of the equa-

tion. Another option is to solve (1a) under the constraint (1b).

This is done in [9] but is very time consuming. The simplest

way, from a calculation point of view, and probably the most

popular, is to minimize a criterion composed of the weighted

sum of two terms: (i) the square norm of the error on (1a)

and (ii) the square norm of the error on (1b) [10]. Note that

this approach can be implemented in several different man-

ners based upon equivalent representations of system (1). For

example, from the equivalent volume theorem, polarization

currents wi can be computed as:

wi = XEi (3)

which yields the following equivalent form of (1):

yi = Gowi (4a)

wi = XE0
i + XGcwi (4b)

3. TWO-TERM ALGORITHMS

3.1. CSI method

The widespread CSI method solves the MWT problem by

minimizing a two-term criterion based on (4). More precisely,

the CSI criterion FCSI is defined by:

FCSI =
∑

i ‖yi −Gowi‖2∑
i ‖yi‖2 +

∑
i ‖XE0

i − wi + XGcwi‖2∑
i ‖XE0

i ‖2
(5)

FCSI is minimized by alternately updating w and x, thereby

taking advantage of the quadratic structure of the criterion

with respect to (w.r.t.) each the unknown when the other one

is fixed. Each minimization step is performed through a sin-

gle iteration of a conjugate gradient (CG) algorithm. How-

ever, it can be shown that, due to the presence of unknown x
in the denominator of the second term of the criterion, mini-

mization of FCSI can lead to a degenerate solution (i.e., min-

ima reached for infinite values of components of x). In ad-

dition, the denominator of the second term of FCSI (which

depends on x) is not accounted for in gradient computations,

thereby raising doubts about the convergence properties of the

method.

3.2. 2TC method

We now present a new inversion technique based on a two-

term criterion, referred to as 2TC, which can be viewed as a

generalization of CSI. In order to avoid possible degenerate

solutions, the following simplified criterion is used:

F2TC =
∑

i

‖yi −Gowi‖2 + λ
∑

i

‖XE0
i −wi + XGcwi‖2

(6)

where λ is a weighting factor that has to be set by hand. Se-

lection of the value of parameter λ is similar to heuristic spec-

ification of a regularization parameter commonly used when

solving ill-posed inverse problems.

Efficient minimization of F2TC is carried out by solving

(6) w.r.t. w and x in an alternate manner. This allows us to

take advantage of the quadratic nature of F2TC w.r.t. w and

x, respectively. The update formulas for exact minimizer on

w and x readily take the following form:

(G′oGo + λA′A)wi = G′oyi − λA′XE0
i (7)

A = XGc − I
∑

i

Δ′
wi

Δwix =
∑

i

Δ′
wi

wi (8)

Δwi

�
= E0

i + Gcwi

where I is the identity matrix and the ·′ represents the trans-

posed conjugate operation. From a practical standpoint, solv-

ing (8) does not present any computational difficulty, thanks

to the diagonal structure of Δwi
. However, the normal ma-

trix in the left hand side of (7) depends on variable x; this im-

plies that solution of (7) requires the inversion of a full matrix

at every iteration, which is intractable in practice. In order

to overcome this difficulty, we propose to solve (7) approxi-

mately through a limited number of CG iterations. As shown

below the resulting procedure compares favorably with CSI.

It nonetheless presents the disadvantage of being based on

two intertwined iterative procedures, which limits its compu-

tational efficiency. We now derive a procedure based on a

three-term criterion which further reduces the computational

load.

4. THREE-TERM ALGORITHM

Our goal is to improve the convergence speed of the method

by eliminating the need for intertwined iterative procedures.

This goal can be achieved by solving a set of equations equiv-

alent to (1), but whose matrices do not depend on unknown

quantities. Such a set of equations can be easily derived from

(1) and (3). This yields the following equivalent system of

three equations:

yi = Gowi (9a)

Ei = E0
i + Gcwi (9b)

wi = XEi (9c)
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Using the same approach as in section 3.2, we infer that the

solution to (9) can be obtained through minimization of the

following three-term criterion (3TC):

F3TC =
∑

i

‖yi −Gowi‖2 + λ1

∑

i

‖E0
i − Ei + Gcwi‖2

+ λ2

∑

i

‖wi −XEi‖2 (10)

where λ1 and λ2 are two weighting factors. It should be un-

derlined that minimization of F2TC and F3TC may not yield

the same solution: while (9c) is exactly satisfied by construc-

tion in the 2TC method, it is only approximately satisfied by

the (3TC) technique. However, results will show that approx-

imate fulfillment of constraints is sufficient for obtaining sat-

isfactory results. It should also be mentioned that the 3TC

method involves three sets of unknowns instead of two, which

all have to be estimated in an efficient manner.

As before, F3TC is minimized iteratively through alter-

nate determination of one set of variables while the other two

remain fixed. Minimization of F3TC w.r.t. w yields:

(G′oGo + λ1G
′
cGc + λ2I) wi =

G′oyi − λ1G
′
c(E

0
i − Ei) + λ2XEi (11)

and we note that the normal matrix is independent from E
and x and can be determined solely from the physical charac-

teristics of the tomograph and of the weighting factors λ1 and

λ2. Thus, the normal matrix needs to be inverted once for the

whole procedure.

Similarly, the update equations for E and x take the fol-

lowing form:

(λ1I + λ2X
′X) Ei = λ1(E0

i + Gcwi) + λ2X
′wi (12)

∑

i

diag{E′i}x =
∑

i

diag{E′i}wi (13)

The normal matrices in (12) and (13) present a diagonal struc-

ture, thereby greatly simplifying the updates of E and x. There-

fore, the 3TC method meets the goal of eliminating inter-

twined iterations an the simple update formulas indicate that

a significant reduction in computation time could be achieved

with respect to CSI ans 2TC.

For comparison purposes, the calculation cost for one it-

eration of the 3TC method is O(3n2), while it is O(2Kn2)
for the 2TC method, where n is the number of unknowns and

K the number of GC steps needed to solve (7).

5. REGULARIZATION

In this section we very briefly introduce the concept of reg-

ularization. As indicated in the introduction, MWT is an ill-
posed problem with the consequence of a high sensitivity of

the solutions to measurement noise. Regularization is a well

known approach to alleviating the problem. Regularization is

commonly introduced through addition of a penalty term to

the estimation criterion. Here, we will only consider penalty

terms of the form:

λreg‖Dx‖2 (14)

where parameter λreg weight the importance of the penalty

term with respect to the other components of the estimation

criterion. Matrix D is chosen so as to favor desirable prop-

erties of the solution (e.g., smoothness) while lending itself

to easy insertion into the update formula of x. In the sequel,

methods will be compared with and without regularization.

6. RESULTS

In this section, we compare results obtained by the CSI, the

2TC and 3TC methods. This will highlight the efficiency of

the latter in the regularized case.

We use a 2D example. The unknown domain is square

with one wavelength side. The scatterer is formed by two

concentric square cylinders of value 1−0.5j and 0.5− j. We

use a 32 × 32 discretization, which yields 1024 unknowns.

There are 32 antennas, and each can act either as an emitter

or a transmitter. Data is obtained by simulation and a Gaus-

sian white noise is added such that the signal to noise ratio

(SNR) is equal to 20dB. Two performance criteria are consid-

ered: the quality of the solution and the computing time. The

first one is measured by the mean square error according to

RMSE = ‖x− xo‖2/‖xo‖2, where xo and x are the true and

reconstructed contrasts, respectively.

For all methods, the same stopping criterion on the iter-

ations is a threshold test on the norm of the gradient. For

the three unregularized methods, we have checked that such

a stopping criterion provides solutions that are nearly as good

as possible in terms of RMSE. On the other hand, the tuning

parameters of 2TC and 3TC are set so that their solutions are

as close as possible from that of CSI in terms of RMSE.

Method RMSE Time(s)

Without CSI 0.1472 165

Regularization 2TC 0.1457 107

3TC 0.4609 53

With CSI 0.1277 125

regularization 2TC 0.1269 109

3TC 0.1231 32

Table 1. Comparison between the three methods

On the one hand, the unregularized form of 2TC provides

a solution comparable to that of CSI, in significantly less time.

As expected, a coherent approach to the minimization of a

well-designed fidelity-to-data criterion yields a more efficient

method.

On the other hand, the unregularized form of 3TC is com-

petitive in terms of computing time, but not in terms of RMSE.
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Fig. 1. Real and imaginary parts of true contrast and regular-

ized 3TC solution.

According to our experience, the fact that neither (9b) nor (9c)

perfectly hold jeopardizes the behavior of the unregularized

solution. Fortunately, regularization allows to strongly en-

hance the RMSE of the 3TC solution. While all regularized

methods yield faster convergence or better solutions than their

unregularized versions, the 3TC solution is by far the fastest

to compute, while being comparable in terms of RMSE. It

is depicted in Figure 1. The global shape and the values

of the contrast are recovered. The reconstructed solution is

quite comparable to a low-resolution version of the true solu-

tion, which is not surprising given that MWT uses long wave-

lengths compared to the sharp variations of the true object.

7. CONCLUSION

The present paper is devoted to the specification of new meth-

ods for the resolution of MWT problems. Firstly, we analyzed

the well known technique of CSI. To make for its deficiencies,

we proposed a variation of it, which is also based on the mini-

mization of a 2-term criterion. This 2TC method is faster than

CSI, but it does not achieve an actual breakthrough in terms

of computing time. Therefore, we proposed a deeper modi-

fication of the criterion to minimize. Block coordinate-wise

minimization of our new 3-term criterion only involves sim-

ple operations. Although the efficiency of this 3TC technique

is disappointing when regularization is implicitly enforced by

early stopping of the iterative minimization scheme, it be-

comes highly competitive when a proper penalization term

is added to the minimized criterion.
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