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On Global and Local Convergence of
Half-Quadratic Algorithms

Marc Allain, Jérôme Idier, and Yves Goussard

Abstract—This paper provides original results on the global and
local convergence properties of half-quadratic (HQ) algorithms re-
sulting from the Geman and Yang (GY) and Geman and Reynolds
(GR) primal-dual constructions. First, we show that the conver-
gence domain of the GY algorithm can be extended with the ben-
efit of an improved convergence rate. Second, we provide a pre-
cise comparison of the convergence rates for both algorithms. This
analysis shows that the GR form does not benefit from a better
convergence rate in general. Moreover, the GY iterates often take
advantage of a low cost implementation. In this case, the GY form
is usually faster than the GR form from the CPU time viewpoint.

Index Terms—Algorithms, asymptotic rate, convergence anal-
ysis, half-quadratic (HQ) iterations, image reconstruction, image
restoration, robust statistics.

I. INTRODUCTION

THE SOLUTION to many image restoration and recon-
struction problems is defined as follows:

(1)

where is an estimation criterion (or objective
function) that must be minimized. The solution can rarely
be expressed in closed form, and its approximate evaluation
is generally carried out with an iterative numerical procedure.
In the past 12 years, several such procedures based on the no-
tion of Fenchel duality [1] have been proposed [2], [3]. The ap-
proach consists of reformulating problem (1) as the minimiza-
tion of an augmented criterion which presents a half-quadratic
(HQ) structure. Minimization of HQ objective functions can
be implemented easily using an iterative block-relaxation pro-
cedure. Each iteration is naturally expressed in closed-form,
thereby avoiding the determination of a stepsize parameter using
a nested, line-search procedure. Such a simplification gives an
appealing, ready-made feature to the resulting algorithms. This
is a major reason to the ever-growing use of algorithms based
on HQ constructions. Several signal and image processing ap-
plications are concerned, such as synthetic aperture radar [4],
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magnetic resonance imaging [5], and spectrometry [6], to men-
tion some recent examples.

Currently, two types of derivations, respectively referred to
as the Geman and Reynolds (GR) and Geman and Yang (GY)
constructions, yield two distinct forms of HQ criteria. Since
their introduction in the early 1990s, these constructions and
the corresponding algorithms have been mainly used in the area
of penalized image reconstruction and restoration. However, in
the field of robust statistics, essentially the same algorithms
have been proposed without introducing HQ criteria, but by lin-
earizing the optimality condition of problem (1) [7]. Global con-
vergence of these algorithms, referred to as Iterative Reweighted
Least-Square (IRLS) and Residual Steepest Descent (RSD), re-
lies on the construction of a local quadratic model that bounds
criterion from above. Therefore, these procedures appear as
special cases of generalized Weiszfeld algorithms introduced as
early as 1937 [8].

In this paper, we show that convergence for the same algo-
rithms can also be studied in the general framework of uncon-
strained optimization. This approach provides new results on the
impact of some parameters associated with either the GR or the
GY construction. More precisely, two original results are pre-
sented: 1) a relaxation of the global convergence conditions of
GY algorithms which yields faster algorithmic forms, and 2) a
precise direct comparison of the asymptotic convergence speeds
of GR and GY algorithms which provides guidelines for selec-
tion of one form or the other according to the characteristics of
the problem at hand.

In this paper, the objective function in (1) is assumed to
take the following form:

(2)

where is a convex quadratic form that can be expressed as

(3)

In the previous expression, is a symmetric, posi-
tive semidefinite matrix, and denotes the transpose operator.
Function is defined as

where is a scalar function, and where and , re-
spectively, denote an matrix and a vector with
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real components. Notation is used to denote the th compo-
nent of any vector . The previous framework is general enough
to encompass a wide class of imaging and data processing prob-
lems for which a penalized least-squares solution is sought: typ-
ically, the solution is defined as the minimum of a compound
criterion that can be expressed as follows:

(4)

where and , respectively, denote the observed data
vector and a linear operator that models the data formation
process, e.g., a convolution matrix in image restoration [2], [3],
[9], [10], or a projection operator in tomographic reconstruction
[11]–[13]. The role of the penalization term , whose weight
is set through regularization parameter , is to guarantee the
uniqueness of the solution, its robustness with respect to (w.r.t.)
observation noise and its fidelity to some priors [14]. In image
restoration, one may choose to obtain locally smooth solutions
by penalizing the intensity differences between adjacent pairs
of pixels, i.e.,

(5)

where is a difference operator between pairs
of neighboring pixels and where

typically represents an edge-preserving function, e.g., norm
with , Huber, hyperbolic, or Geman and McClure
functions [7], [15]–[17]. Note that our convergence analysis
can be extended to the inhomogeneous case in a
straightforward manner. This allows one to address signal pro-
cessing applications such as autoregressive modeling [18] or
digital filter synthesis [19].

The paper is organized as follows. In Section II, the two algo-
rithms studied in the paper are defined precisely; the two classical
convergence analysis frameworks are also briefly presented in
order to put our work in perspective. Section III is dedicated to the
study of the global convergence of the GR and GY algorithms;
original convergence results are derived using unconstrained op-
timization tools. In Section IV, the asymptotic convergence speed
of the algorithms is investigated as well as some issues related
to the cost of implementation. Numerical examples are used to
illustrate some of our results. Finally, a discussion of this work
and conclusions are presented in Section V.

II. STUDIED ALGORITHMS: DIFFERENT

MATHEMATICAL STANDPOINTS

A. Iterative Scheme of Interest

We first introduce the two matrix operators and
that will help us define the algorithms studied in this paper. We
have

(6)

where is a free parameter, and

(7)

with . For the sake of simplicity, we
borrowed notations from the HQ framework: the “GY” and
“GR” subscripts refer to the HQ constructions presented in
Section II-B. Provided that operators (6) and (7) are invertible
and bounded, two iterative forms of interest are now defined.

Given an initial vector , the following algorithm will be
called GY iterative scheme:

(8)

where is the gradient of for the current
update, and is a constant stepsize. Let us also define the
GR iterative scheme as follows:

(9)

with . Notice that both schemes are Newto-
nian iterations with a constant stepsize [20, Chap. 3].

B. Half-Quadratic Formalism

We now provide brief background information on the HQ for-
malism. The reader is referred to [2] and [3] for pioneering con-
tributions, or to [21] for a synthetic overview. Within the HQ
framework, an augmented criterion is first
introduced. It is related to by the relation

where is a vector of dual variables. By con-
struction, is quadratic w.r.t. when remains constant, hence
the terminology “half-quadratic.” Moreover, the minimizer of

w.r.t. when is constant can be expressed in closed-form
in commonly found HQ constructions. Such properties naturally
lead to relaxation schemes for the optimization of , i.e., the
HQ criterion is minimized along the primal and dual variables

in an alternate fashion. More generally, over- or under-re-
laxed updates can be introduced:

(10a)

(10b)

where

(11)

and the parameters , are relaxation coefficients. The ex-

pression of and depends on which of the GY [3]
or GR [2] construction is chosen. Both versions were initially
introduced for optimizing nonconvex criteria with simulated
annealing. Subsequently, they have been mainly used in de-
terministic relaxation framework for convex or nonconvex
optimization.

The following two subsections give a brief overview of GY
and GR HQ constructions, respectively.
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1) GY HQ Construction: Let be the scalar function defined
by . The “scale parameter”
is a free parameter that modifies the convergence properties of
GY algorithm. Provided that the following convexity condition
holds:

is convex (12)

it is possible to introduce an augmented HQ criterion
(for an exact definition of , see [3]). According to [21, Lem.
1], the set of values of that fulfill (12) is an interval ,
where

is convex (13)

Given the structural properties of , the updating scheme
(11) admits the more explicit formulation [21, Sec. III-A]

(14a)

(14b)

When , i.e., without dual over- or under-relaxation,1 sub-
stituting (14a) into (14b) yields that (10b) coincides with (8);
see [22]. Within the HQ framework, the algorithm (14) has been
proposed in [23] under the name of LEGEND. Convergence re-
sults derived from structural properties of are presented in
[21]; provided that (12) holds strictly and is strictly convex
with the additional condition

(15)

is shown to exist and to be strictly convex and continuously
differentiable . Then, the relaxation scheme (10) converges
to according to [21, Sec. III-C] if and be-
longs to

(16)

Finally, let us mention that the GY construction can be further
generalized to a larger family of algorithms [24].

2) GR HQ Construction: Another type of HQ construction
was introduced by Geman and Reynolds [2]: it yields an aug-
mented HQ criterion provided that fulfills the following
three conditions:

is even (17a)
is (17b)

is concave (17c)

According to [21, Sec. IV-A], alternate minimization of
reads as follows:

(18a)

(18b)

1Choosing � 6= 1 is of marginal interest: on the one hand, convergence is not
proved for � > 1. On the other hand, practical evidence indicates that � < 1

slows the convergence rate down.

For , substituting (18a) within (18b) yields that (10b)
coincides with (9); e.g., see [4, p. 627]. Within the HQ frame-
work, the resulting algorithm was proposed by Charbonnier et
al. under the name of ARTUR [16], [23]. Provided that con-
dition (17c) holds strictly and that is convex and fulfills the
additional technical conditions

(19a)

(19b)

then (10) converges to for and . In the
nonconvex case, weaker results can still be obtained according
to [25].

C. IRLS, RSD, and Majorizing Quadratic Approximations

Another way of introducing GY and GR iterative schemes
relies on the notion of local quadratic model. More precisely,
let us introduce the following second-order approximation of
in the neighborhood of :

(20)
where is positive definite (PD). Then, let an
iterative scheme be defined as follows:

(21)

where

When , the iterative scheme (21) is clearly of the
GY type (8). Similarly, it is a GR scheme (9) when .
Such schemes were introduced in the late 1970s in the context of
robust estimation, under the name of residual steepest descent
and iterative reweighted least-square algorithms, respectively.
In the literature on robust estimation, the majorizing character of

w.r.t. is the essential element used to prove the convergence
of iterative schemes such as (8) and (9) (see [26, A-7] and [7,
Sec. 7.8]). More precisely, we have the following result, which
extends [27, Lem. 4.3] to cope with both GY and GR schemes.

Proposition 1: Let be defined by (2) where is a convex,
function. If [resp. ] and assumption

(12) [resp. (17)] holds, then

(22)

Proof: See Appendix A.
The majorization approach traces back to generalized

Weiszfeld algorithms [8], [27], [28]. It is a powerful framework
to analyze important algorithmic structures such as EM type
algorithms [29], in which cases the majorizing approximation
is not necessarily quadratic. Specifically, quadratic majorizing
approximations have also been fruitful in image reconstruction
or restoration [30]–[33].

The majorization framework provides slightly weaker con-
vergence conditions than the HQ setting. In particular, conver-
gence can be proved for GY and GR schemes without tech-
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nical conditions (15) and (19a), respectively (see [24, Sec. X.4],
whose study is based on [28]). Yet, convergence conditions can
still be weakened within a more general framework, as shown
in the next section.

III. NEW CONVERGENCE RESULTS

In this section, we introduce general tools to study constant
stepsize, gradient related iterative schemes, as found in a fun-
damental contribution such as [35]. We then check that GY and
GR algorithms are special cases of such schemes. We finally de-
duce new global convergence results, which bring a substantial
improvement in the GY case.

In this section, it is assumed that is a function, i.e., non-
differentiable penalization functions fall out of the scope of
our study. More specifically, this excludes as found
in image restoration using total variation regularization, unless
nondifferentiability is gradually introduced (e.g., see [36]).

A. Preliminary Results

Let us begin by giving some background results about New-
tonian schemes [20, Chap. 3]. Given an initial vector , one
generates a sequence defined by

(23)

where is a PD operator, and
denotes the stepsize for the current direction . For

sake of brevity, let us introduce the following compact notations:

In the sequel, the triplet will be called an iterative
scheme. The goal is to build series and such that con-
verges (preferably rapidly) to . Here, we focus on descent
methods, i.e., on iterative schemes such that is nonin-
creasing with . This property does not suffice to ensure that

converges to ; however, the following additional properties
on sequences and will lead to convergence [35, Chap. 14]:

is gradient related to (24a)
is admissible in a sense precised below (24b)

Property (24a) means that all subsequences extracted from
remain bounded, and that none of them asymptotically becomes
orthogonal to . The following proposition gives useful suf-
ficient conditions to ensure that is gradient related to [35,
Sec. 14.4.1].

Proposition 2: Let be on a compact set , and
be a PD operator for which

such that

If is generated by (23), then is gradient related to .
Property (24b) is relative to a stepsize rule that ensures, for

all iterations , that is neither too large (otherwise could

Fig. 1. Illustration of Armijo inequality: for any strictly descending direction
���, (25) selects those values of � > 0 for which the decrease of J is at least
a fraction ! of the value resulting from the local linear approximation at the
current point.

diverge) nor too small (otherwise could converge to a nonsta-
tionary point2). Checking Armijo inequality is a simple solution
to prevent from being too large. It corresponds to

(25)

where is independent of (see Fig. 1).
Additionally, the backtracking technique [37, p. 29] prevents

the values of to become too small: the principle is to test
(25) using candidates of the form , ,
where and are constant parameters (they must
not vary with ). The retained value for is the largest (i.e.,
the first found) for which (25) holds. Here, we adopt Bertsekas’
definition of Armijo rule, which incorporates the backtracking
technique [37, p. 29].

Definition 1 [Armijo Rule]: Let be a function and
an iterative scheme. The sequence is admissible for

in the sense of Armijo if there exists ,
and such that, for all , is obtained by the
backtracking technique on inequality (25).

If is gradient related to and is admissible for
in the sense of Armijo, then every accumulation point is a sta-
tionary point [37, Prop. 1.2.1]. However, such a result does
not provide a global convergence guarantee, and the following
proposition is of practical interest.

Proposition 3: Let be a function bounded from below
and coercive.3 Let be gradient related to and be admissible
in the sense of Armijo. If the local minimizers of are isolated,
then converges to a local minimizer for any . Moreover,
if is strictly convex, then converges to the global minimizer

for any .
Proof: See Appendix B.

The boundedness assumption is a minimal prerequisite for
a correctly formulated optimization problem. Coerciveness is
also fairly natural, since it ensures that is minimized for finite
solutions. Given the structure (2) of the criterion, this property
holds either if is invertible, or if is invertible and
is coercive.

If is strictly convex and coercive, global convergence oc-
curs; in our context, these conditions hold if

is invertible (26a)
is strictly convex coercive (26b)

2Stationary points are those that cancel rrrJ .
3Coerciveness means that J(xxx) tends to infinity for any xxx that tends

to infinity: lim J(xxx ) = 1 for all series fxxx g such that
lim kxxx k = 1.
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Finally, the only pathological case of practical interest left out
by Proposition 3 is when some local minimizers form a con-
tinuum. In this case, global convergence to a single minimizer
is not granted, see [37, p. 73] for further considerations on such
singular problems.

Clearly, admissibility of is a cornerstone for convergence
of a gradient related sequence (see Proposition 3). In the fol-
lowing, the Armijo rule will be used to establish the convergence
of the HQ iterations.

B. Armijo Rule for Constant Stepsize Iterative Schemes

According to (8) and (9), it is clear that GY and GR algo-
rithms are iterative schemes (23) with constant stepsizes. In the
sequel, iterative schemes with constant stepsizes are denoted

, where is the stepsize. GY and GR schemes
are more specifically denoted and , re-
spectively. Let us now investigate conditions on such
that the Armijo rule holds for .

Proposition 4: Let be a constant stepsize iterative
scheme. If such that

(27)

then the constant sequence is admissible in the sense of
Armijo.

Proof: See Appendix C.
In the sequel, a constant stepsize is said to be admissible in

the sense of Armijo if (27) holds for some .
The following proposition shows that (22) implies (27), i.e.,

admissibility in the sense of Armijo is a potentially weaker con-
dition than the majorization tool introduced in Section II-C.

Proposition 5: Let be defined by (20), and for all , let

(28)

If inequality (22) holds, then Armijo inequality (27) is true for
.

Proof: See Appendix D.

C. Convergence Analysis for GY Algorithm

For , we establish now that is gradient related to
, and that is admissible in the sense of Armijo, under suitable

conditions.
Proposition 6: If (26a) holds, then the GY scheme generates

a series that is gradient related to .
Proof: See Appendix F.

Proposition 7: Let be with a –Lipschitz4 deriva-
tive. Then is admissible in the sense of Armijo for the GY
scheme if belongs to

(29)

Proof: See Appendix G.
Based on the previous two propositions, Proposition 4 readily

applies, and convergence for the GY iterations is ensured, ac-
cording to Proposition 3.

4function f : IR ! IR is said to beL-Lipschitz if 9L > 0 : 8uuu; vvv 2 IR ,
kf(uuu) � f(vvv)k � Lkuuu� vvvk.

Fig. 2. Comparison between the new extended convergence domain � and
the standard convergence domain � � � obtained using either the HQ
framework or the majorization approach. The depicted restricted domain
� � � is relative to comparison between convergence rates (see Section IV).

For a nonconvex criterion, these convergence results are diffi-
cult to compare with previous works. Nonetheless, a direct com-
parison in the convex case is possible, provided that a useful
equivalence between condition (12) and the Lipschitz character
of is established.

Lemma 1: Let be a convex, function. The following
two assertions are equivalent:

is convex (30a)

is Lipschitz with (30b)

Moreover, if (30) holds, then , is strictly
convex and for all .

Proof: See Appendix E.
Lemma 1 shows that (30a) and (30b) are equivalent means to

ensure that GY iterations can be made convergent under suitable
conditions. However, it should be noted that the HQ framework
(and the majorization approach) provides more stringent con-
vergence conditions in comparison with our analysis. Whereas
the former requires that belongs to [cf. (16)], the latter
establishes convergence in a significantly extended domain
[cf. (29)]; see Fig. 2. Moreover, extending the convergence do-
main has an important practical interest: it will be checked in
Section IV that the best convergence rate is usually achieved in
the extended part of (i.e., in ). Finally, remark that
technical condition (15) is not required in our analysis (it was a
prerequisite in the HQ framework only).

D. Convergence Analysis for GR Algorithm

The framework of Section III-B applies to GR scheme as
well. However, it is not as fruitful as in the GY case, since it
does not significantly weaken existing convergence conditions
as obtained in the convex case by [27, Lem. 4.3], or in the non-
convex case by [25]. To save space, convergence of the GR it-
erations is now established for the convex case only.

Proposition 8: If (26a) holds, and is a convex, even, and
function such that , , then the GR

scheme generates a series that is gradient related to .
Proof: See [34, p. 181].

Proposition 9: Let be an even and function such that
is concave on . Then is admissible in the sense of

Armijo for the GR scheme if .
Proof: See [34, p. 181].
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Based on the previous two propositions, Proposition 4 readily
applies, and convergence for the GR iterations is ensured in the
convex case, according to Proposition 3.

IV. CONVERGENCE SPEED

Until now, the speed of convergence of GY and GR schemes
has been scarcely addressed. In [27], it is established that
the convergence order of the GR algorithm is linear. More
recently, a similar result has been proved for the GY algorithm
by Nikolova et al. [38], [39]. On the other hand, very few
comparison results exist between the convergence rate of both
schemes, except [39, Sec. 4.2], which compares bounds on
quotient-convergence5 rates. Akin to previous works devoted
to the convergence speed of EM type algorithms [30], [31],
the present study rather relies on root-convergence6 factors, for
which closed-form expressions are available.

In this section, iterations are granted to converge to the global
minimizer or to a local one, according to Proposition 3; in the
sequel, is introduced as a generic notation for the minimizer
reached by the iterations.

A. Asymptotic Convergence Factors

In the whole section, it is assumed that is twice continu-
ously differentiable. In order to study the convergence speed of
constant stepsize iterative schemes , let us define the
application according to

(31)

which allow to recursively define from a one-step stationary
iteration

(32)

in the terminology of [35, Chap. 10]. Let us also introduce the
following spectral radius:

(33)

where is the identity matrix and is the Hessian matrix of

(34)

Then, the linear convergence theorem [35, Th. 10.1.4] ensures
that root-convergence of (32) is at least linear, and that is
the corresponding rate, provided that (recall that the
convergence speed decreases as the convergence rate increases).

Following [37, A.13], let us remark that (33) also reads

(35)

5We say that the convergence in quotient is at least linear with a convergence
rate  if there is a constant  2 (0; 1) such that kxxx �xxx k � kxxx �xxx k
for all k sufficiently large.

6We say that the convergence in root is at least linear with a convergence rate
� if there is a constant � 2 (0;1) such that lim sup kxxx �xxx k � �;
see [35, Sec. 9] for an extensive discussion of both convergence rates.

Fig. 3. Consequences of inequalities (37) and (38) on the root-convergence
rates (35) for (a) GR scheme versus GY scheme for a 2 (0; a], and (b) for GY
scheme with two different values a and a ; a � a of the scale parameter.

with

(36)

where and are respectively the smallest and
largest eigenvalue of a given square matrix. From (35), it ap-
pears that is a piecewise linear function of (see Fig. 3).

The following proposition ensures that for both GY
and GR schemes.

Proposition 10: Let [resp. ] be defined
by (33) for [resp. ]. Inequality

[resp. ] holds under the conditions
of Propositions 6 and 7 [resp. Propositions 8 and 9].

Proof: See Appendix H.
Regarding linear convergence of the GY scheme, previous

results (based on quotient-convergence factors) were limited to
[38], [39], whereas ours is available over .

In the purely quadratic case , both GY and GR
schemes can reach a superlinear convergence since they identify
with Newton iterates for suitable values of tuning parameters:
on the one hand, for , and on the other hand,

for and .
In realistic nonquadratic cases, the convergence order is only

linear and the two algorithms have distinct convergence rates.
Convergence rates are significant elements for measuring the
overall efficiency of algorithmic structures. The convergence
rates of GY and GR schemes are more thoroughly analyzed in
the following two subsections. Nonetheless, it must be kept in
mind that convergence rates are not the only elements to con-
sider. First, they are meaningless about the algorithmic effi-
ciency during earlier iterations. Second, they do not take the
computational cost per iteration into account. The latter ques-
tion is discussed in Subsection IV-C.
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The following proposition provides basic inequalities to com-
pare the convergence rates of GY and GR schemes.

Proposition 11: Let , [resp. , ] the
smallest and largest eigenvalues of [resp.

]. We have

(37a)
(37b)

and

(38a)
(38b)

Proof: See Appendix I.
Given (35) and (37), Fig. 3(a) depicts the evolution of

and as functions of within . Fig. 3(a) also displays the
minimizer

(39)

of and , respectively. Note that the corresponding
optimal rate takes the following expression:

Similarly, Fig. 3(b) depicts the evolution of for two
distinct values and of the scale parameter. Remark that
Fig. 3(b) is not only valid within but in the whole set .

Inequalities or
are not true in general. Nonetheless, some

restricted inequalities can be established on the basis of Propo-
sition 11, according to the following corollary.

Corollary 1: We have the following inequalities:

if

(40a)

(40b)

if (40c)

(40d)

where (see Fig. 2).
Proof: See Appendix J.

Corollary 1 provides some useful information. In particular,
it appears that

• is only true under restrictive condi-
tions (numerical examples, e.g., Fig. 7, confirms that this
inequality is not always true);

• is never optimal for the GR scheme, which corrobo-
rates the empirical observation that over-relaxation yields
faster convergence;

• similarly, is never optimal for the GY scheme;

Fig. 4. Transmission tomography example. (a) Binary phantom xxx , and
(b)–(d) three reconstruction results xxx , xxx , xxx obtained by minimization of
criterion (4), with � = 5, and s = 1, s = 0:1, and s = 0:01, respectively.

• according to (40c), is never optimal for the GY
scheme if , which covers many useful
cases where corresponds to a finite difference matrix
(since usually holds then).

According to the latter point, exploring the extended part of
the convergence domain (i.e., ) could yield faster versions
of GY scheme in practically important cases. However, we have
been unable to establish mathematical inequalities between con-
vergence rates when . Hence, we proceed with our study
using numerical examples.

B. Numerical Simulations

In this subsection, the behavior of the asymptotic rates
and is illustrated through a transmission

tomography problem.
1) Problem Formulation: Tomographic reconstruction from

a small number of projections is an ill-posed inverse problem.
Hence, a regularized solution is computed through the mini-
mization of the compound criterion (4), where is a sparse
matrix produced by the Radon transform of a pixel-based ob-
ject; see [40].

Data consists of 36 noisy projections generated from the
synthetic binary object7 presented in Fig. 4(a); the additive noise
is Gaussian and white, with a zero mean and unity standard de-
viation. This corresponds to an empirical signal-to-noise ratio
close to 20 dB.

The penalization term is given by (5), where corre-
sponds to a first-order difference operator. The chosen convex
“edge preserving” function is given by
(see Fig. 5), in which case, .

The solution of the reconstruction problem is computed
by an iterative scheme (either GY or GR). The adopted stopping
rule is , where we have chosen

. Such a value was empirically determined as a limit of

7A small-sized imaging problem was chosen in order to allow the computa-
tion of the spectral radius arising from the root convergence rate expression.
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Fig. 5. Edge preserving function  (u; s) =
p
u + s . For u 2 [�s; s],  

roughly behaves like the quadratic function s+ u =2s. For larger values of u,
it has rather a linear behavior.

numerical reliability (lower values of may produce unstable
iterates).

2) Results: The results represent the typical behavior of the
algorithms as observed on a larger set of experiments. The re-
constructions , , and shown, respectively, in Fig. 4
were produced with and three distinct values of param-
eter . In each case, the level sets of
computed from (33) are shown in Fig. 6, where the symbols ,

, and locate the best rate for , , and , respectively.
These rates and the rate for the GR iterations are gathered in
Table I. Finally, Tables II and III, group the number of iterations
and the CPU time (the cputime command within MATLAB)
needed for convergence, respectively.

For reconstruction , the penalization behaves almost
like a quadratic function since the dynamic in the image is much
lower than the “threshold” . Hence, as it was noticed in
Section IV-A, the best rate is achieved for , with nearly
zero (i.e., superlinear) if is equal to one; cf. Table I.

As the parameter decreases (solutions , and ),
takes more values in the low curvature areas. The point
moves away from , reaches the hyperbolic boundary of the
convergence domain [Fig. 6(b)], and follows it from left to right
[Fig. 6(c)].

The “intermediate” situation is of practical interest since
it represents a satisfactory tradeoff between the convergence
speed of the algorithm and the edge-preserving behavior of the
objective function. It should be underlined that a significant re-
duction in the asymptotic rate of the GY algorithm when
can be expected precisely in this situation. Note also that even a
limited decrease in the rate can significantly reduce the number
of iterations needed for convergence. For instance, the compu-
tation of needs 30% more iterations when the rate changes
from 0.782 to 0.771 .

For reconstruction , the optimum rate in is very close
to the best rate in . In this case, choosing outside can
only produce marginal benefit.

The convergence rate greatly deteriorates when the maximum
curvature (the Lipschitz constant) of the problem increases.
Hence, small leads to slower convergence for both algo-
rithmic forms. However, the GR rate seems to be more robust
suggesting that the curvature information captured by matrix

TABLE I
VALUES OF CONVERGENCE RATE � CORRESPONDING TO REMARKABLE

POINTS IN FIG. 6(a)–(c), RESPECTIVELY

TABLE II
NUMBER OF ITERATIONS FOR CONVERGENCE CORRESPONDING TO TABLE I

TABLE III
CPU TIME IN SECONDS FOR CONVERGENCE CORRESPONDING TO TABLE I

allows to better deal with “quasi-nondifferentiable” ;
see also [39, Sec. 4.2].

In practice, the rate also greatly depends on the tuning of the
regularization parameter. For ill-conditioned problems, for in-
stance, a better rate should arise as the parameter grows pro-
vided that the penalization improves the condition number. Our
analysis does not convey insight on this important problem, and
further investigations are required.

In these numerical examples, the best rate is always achieved
by the GR scheme (cf. Table I). This is the most common sit-
uation in practice; however, some counter-examples show that
inequalities (40a) and (40b) cannot be generalized to . For in-
stance, minimizing criterion (4), with and ,
reaches an under-regularized tomographic reconstruction (not
shown here) with the rates and de-
picted in Fig. 7.

C. Asymptotic Rate and Computation Burden

From Table III, GY iterates benefit from a faster convergence
w.r.t. the CPU time since their computation cost is much lower
[the inverse of was computed once for all in the update
(14b)].

For more realistic problem sizes, computing the inverse of
is untractable. However, often enjoys structural

properties that lead to low-cost updates. This is the case for
some denoising [24], [41] and deconvolution problems [39],
[42]. Moreover, approximately solving each linear system (14b)
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Fig. 6. Level sets of � (�; a) computed from (33) on a 200 � 200 grid covering all the domain � . These level sets are associated with the reconstructions
xxx , xxx , and xxx shown in Fig. 4. The dashed line corresponds to a = a; according to Corollary 1, the best rate achieved in � , � , and � corresponds to the
symbol e, s, and r, respectively.

Fig. 7. Counter-example to the conjecture: “the best optimum rate is always
achieved by the GR iterates.”

allows one to adapt the GY form to more general problems, for
instance in the fields of deconvolution [43] and tomography
[16], [25].

These elements reveal that the convergence rate only partly
measures the “merit” of an algorithm. A direct extension of the
quotient-convergence rate is now introduced in order to take
into account both the convergence rate and the computation
burden per iteration. Let us recall that an algorithm with linear
quotient-convergence rate satisfies the following inequality
[35, Sec. 9]:

w.r.t. a norm on . Therefore, if each iteration costs
operations, the convergence rate per operation is a natural
means for taking the computer burden into consideration.

Note, however, that it is not clear that a similar measure can
be introduced so simply from the root-convergence rate. Nev-
ertheless, it has been verified in practice that the quantity
is a good indicator of the CPU time needed for an algorithm

Fig. 8. (a) Number of iterations and (b) CPU time needed for convergence
in monoton relationship with (a) the convergence rate and (b) the rate per
operation.

with root-convergence rate. The tomographic problem pre-
sented in Section IV-B can be used as an example. For both
algorithmic forms (nine instances for the GY scheme and three
for the GR scheme, cf. Table II), Fig. 8(a) depicts the number
of iterations needed to achieve convergence as a function
of the convergence rate (Table I). These points follow the
same monotonic curve. This was expected since the number
of iterations depends only on the convergence rate and is inde-
pendent of the considered algorithm. The relationship between

and is easily deduced from Fig. 8(a) and reads
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, which is the theoretical relationship expected for the
quotient-convergence rate. The CPU time

(Table III) depends on the rate and on the computa-
tion cost of the algorithm. In contrast, the rate per opera-
tion is in a monotonic relationship with and
does not depend on the algorithm since ,
as shown in Fig. 8(b). Hence, two iterative forms with distinct
rates and computation costs can be formally compared by mean
of the rate per operation.

V. CONCLUSION

The GY and GR iterative forms are remarkable since they
benefit from global convergence without line-search and from a
decent asymptotic rate. In this paper, our main objective was to
sharpen our knowledge of the convergence properties of these
algorithms. Standard results from unconstrained optimization
were used in order to perform a new analysis. Most of the new
results concern the GY form. First, the sufficient conditions for
global convergence of this algorithm can be noticeably weak-
ened. Second, our study shows that faster forms exist with the
GY algorithm. Moreover, the GY is a very attractive choice
when matrix can be inverted at a low cost. For many
imaging problems, however, the fast inversion of is not
possible, and we are presently developing distinct HQ forms in
order to preserve both the numerical efficiency and the global
convergence without line-search; see [24] for an example.

APPENDIX

Hereafter, the notation (resp. ) indicates that
is a positive definite (resp. positive semidefinite) matrix.

A. Proof of Proposition 1

Since and is quadratic, it is easy to deduce the
following expression of from (20):

(41)

with if and
if , respectively. It remains to

show that (41) is nonnegative under assumption (12) [resp.,
(17)]. In the case , the proof is almost identical to
that of [27, Lem. 4.3], and it will not be reproduced here.

In the other case , let us first notice that (41) also
reads

where and . On the other hand,
let us remark that is –Lipschitz with according to
(13) and to Lemma 1. Then, the descent lemma [37, Prop. A.24]
yields

which shows since .

B. Proof of Proposition 3

Since is coercive and bounded from below, all the level
sets are compacts, and convergence toward at least one accu-
mulation point is granted, according to Cauchy Theorem. The
gradient related character of being assumed, it can be shown
that every accumulation point is stationary [37, Prop. 1.2.1]. If

has only isolated mimina, convergence to multiple stationnary
point would contradict the “capture theorem” [37, 1.2.5], and
converges to a single stationnary point . Finally, is the
global minimizer in the strictly convex case, since this prop-
erty ensures that every stationary point is the global minimum.

C. Proof of Proposition 4

Condition (27) ensures that (25) holds with for
and for all subsequent iterations. Moreover, it is obvious

that can be considered as obtained from the backtracking
technique. Hence, the constant series is admissible in the
sense of Armijo.

D. Proof of Proposition 5

For , the majorizing character (22) of reads:

In particular, let us consider , as a solution of the
normal equation (28):

The latter identifies with the Armijo inequality (25) for
.

E. Proof of Lemma 1

Function is since is . For all
, , ,

(42)

where the latter equality holds because is nondecreasing.
From (42), it becomes obvious that (30a) and (30b) are
equivalent, i.e., is nondecreasing if and only if is

–Lipschitz. Finally, strict convexity of holds for
[21, Sec. III-B], and it is clear from (42) that the

Lipschitz inequality becomes strict.

F. Proof of Proposition 6

Proposition 6 is a consequence of Proposition 2. Since matrix
remains constant during the iterations, its

eigenvalues take constant finite values. Moreover, since
and , then if and only if .

G. Proof of Proposition 7

Let , and let
. In order to show (25), our

goal is to establish the stronger condition (27), i.e.,
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for some . It is easy to obtain
with

where and .
On the one hand, if

since . On the other hand, since is -Lipschitz, the
descent lemma [37, Prop. A.24] yields

The latter bound is nonnegative provided that
.

Finally, the condition ensures that
and , so that

.

H. Proof of Proposition 10

1) GY Algorithm: We would like to show that
for all (i.e., such that and ).

Let and , respectively, denote the smallest and largest
eigenvalue of . According to (35)

if
otherwise.

In the first case, the conclusion is obvious since . In
the other case, it remains to show that . Let us define

(43)

Two situations are to be distinguished, whether (i.e.,
) or not.

1) If , then since ac-
cording to (13). Then

and the conclusion holds since .
2) If , we have since

. According to (6), we also have

which yields that . In conjunction with
, we can conclude that .

2) GR Algorithm: A paraphrase of the first part of the proof
valid for the GY case suffices to conclude in the GR case. In
particular

(44)

is positive semidefinite since , [44, Sec. II].
Hence

I. Proof of Proposition 11

In order to establish (37), the keypoint is the positive semidef-
initeness of

(45)

since , [44, Sec. II] and .
Then is also positive semidefinite (which is
yielded by left and right multiplication of (45) by and

, respectively) as well as . In
turn, the latter result implies (37b), since

where is a normalized eigenvector of associ-
ated to . Similarly, as a con-
sequence of (45). Then, (37a) holds since

where is a normalized eigenvector of associated
to .

Finally, the proof of (38) is a paraphrase of the above deriva-
tion, after the substitution of and by for ,
respectively.

J. Proof of Corollary 1

In this appendix, we borrow some notations and results from
Appendices H and I. Moreover, Fig. 3 is useful to visualize the
following derivations.

Given (35) and (37a), (40a) stems from the fact that
implies . The latter follows

from

where and are defined by (43) and (44), respectively,
both matrices being rank-deficient positive semidefinite (hence,

in both cases).
In order to prove assertion (40b), let us first recall that

and . Moreover, we also have
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Given (39), it is now clear that and .
Hence, implies in both cases. Finally,
(40b) is a direct consequence of (37a).

Straightforward adaptation of the latter proofs yields (40c)
and (40d), respectively.
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