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Abstract

We propose a method to reduce the noise and to eliminate the effects of the inhomogeneity of the Radio-Frequency
(RF) pulses and of the sensivity of the RF reception, particularly in the case of MR T-weighted images acquired
with a low-field MRI system. In T-weighted images the effects of the pulse inhomogeneities vary with the tissues.
Consequently the bias field is not strictly multiplicative and depends on the content of the image. In our approach,
the MR signal is modeled as a sum of contributions of all the tissues present in the object. For the sake of generality,
each pixel is assumed to contain an unknown proportion of each tissue, which thereby enables the method to cope
with partial volume effect. The number of tissues composing the object as well as the MR characteristics of each
tissue are assumed known. Several images with different acquisition parameter values are also needed. A penalized
least-square criterion is proposed to estimate the RF emitted field, the RF sensitivity reception and the proportion of
each tissue. The criterion incorporates smoothness regularization terms for both RF fields and for the proportion of
each tissue in a view to reduce noise. We solve the optimization problem using a conjugate gradient algorithm within
a block coordinate descent iterative scheme. Results based on simulation and on real MR images of fish acquired on
a 0.2 T MRI demonstrate the effectiveness of the method.
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1. Introduction

Magnetic resonance imaging (MRI) is an ad-
vanced technique providing valuable information
in various application domains. In clinical appli-
cations, the sensitivity of MRI to tissue differen-
tiation makes it the procedure of choice for de-
tecting abnormalities or lesions in most parts of
the body. However, the applications in industry
are widespread. For example, the nuclear magnetic
resonance (NMR) technique is sufficiently flexi-
ble to be used to measure the water/fat ratio in

foods (Hills, 1998) or to study fluids in porous ma-
terials (Blümich, 2000). MRI can be used for visual
inspection, as it is usually done in clinical exami-
nations. In addition, quantitative information can
be measured in the images. The quantitative infor-
mation can be extracted using image segmentation
or measurements directly based on the signal inten-
sity. However, the process of magnetic resonance
(MR) image formation introduces various artefacts
that may corrupt a truly quantitative evaluation.
A correction algorithm is then needed to overcome
this problem.

The targeted application of our correction method

21 August 2007



is the quantification of the anatomic distribution of
fat tissues in fish. Because of the links between loca-
tion of fat stores and product quality, precise data
on distribution in different body compartments and
within muscles are needed (Robb et al., 2002). MRI
is a convenient technique to acquire these data. It
easily provides 3D information and allows to differ-
entiate between lipids and muscle using T-weighted
images. In this study, low-field MRI was used for the
images acquisition. Low-field MRI (i.e., using mag-
netic field values lower than 0.5 T) is not widely used
in clinical applications. However, even though the
signal-to-noise ratio (SNR) is lower than for high-
field MRI, low-field MRI is able to achieve a diag-
nostic accuracy comparable to high-field scanners in
many clinical cases (Merl et al., 1999). Besides its
cost-effectiveness, low-field MRI can be “open de-
signed” thus improving the patient comfort and al-
lowing the access for interventional purpose (Daa-
nen et al., 2000; Sequeiros et al., 2007). Moreover,
artefacts linked to the strength of the field are less
important at low-field than at high-field.

To further examine the question of artefacts, let
us briefly recall the process of MR image formation:
the MR signal is the sum of the radio-frequency (RF)
signals issued from all the protons positionned in the
permanent magnetic field B0, and experimenting a
sequence of pulses of RF magnetic field. This signal
is acquired through a coil. A linear gradient of mag-
netic field G(r) that depends on the position r is
added to B0. According to the Larmor law, the re-
sulting signal frequency f0 of the protons located on
position r is proportional to B0 + G(r), so that the
spatial density of the protons can be recovered by
Fourier transform of the MR signal (Haacke et al.,
1999).

RF inhomogeneities induce unwanted intensity
variations of the signal, and their correction is the
major issue addressed within this paper. On the
other hand, all sources of uncontrolled modification
of B0+G(r) may induce mislocalization errors. This
is the case for the susceptibility difference between
tissues, or between tissues and air, which induce
local B0 variations, the gradient non-linearity and
the intrinsic inhomogeneity of B0. Moreover, the
chemical-shift of fat protons induces a difference
between the signal frequency of fat and water pro-
tons, even if they are actually located at the same
position. Contrary to the high-field case, all these
phenomenons can be neglected at low-field provided
the images are acquired in the zone where B0 is ho-
mogeneous. Since we worked with a low-field MRI,

we only considered RF inhomogeneities.
RF inhomogeneities are induced by two main

sources:
– The sensitivity of the RF reception (RFR) coil is

not homogeneous.
– Spatial inhomogeneities of the RF emission coil,

coupled with off-resonance phenomenon linked to
B0 inhomogeneities, produce spatial variations of
applied RF pulses (RFP), which in turn influence
the signal intensity (Sled and Pike, 2000).
The inhomogenities due to RFP and RFR influ-

ence the image formation process in two different
ways. The RFR effect can be considered as a multi-
plicative bias, while the influence of RFP depends on
the proton longitudinal relaxation times T1, partic-
ularly in spin-echo T-weighted images (Wang et al.,
2005). T-weighted images are widely used in MR
applications. The reason is twofold. Firstly, the con-
trast between tissues with different T1 (such as fat
and muscle, or gray matter, white matter and cere-
brospinal fluid) is enhanced in such images. Sec-
ondly, because the acquisition time of T-weighted
images is reduced, due to the use of low values of
TR.

Different approaches to the global problem of RF
inhomogeneities can be found in the literature. Re-
views can be found in Belaroussi et al. (2006); Hou
(2006); Vovk et al. (2007). Some of them try to re-
move low-frequency variations of the signal. This is
done with homomorphic filtering in Koivula et al.
(1997); Brinkmann et al. (1998) or with a more so-
phisticated method where the bias field and the in-
tensity distribution of true tissues are iteratively es-
timated (Sled et al., 1998). These approaches are
not suited to applications where low-frequency vari-
ations of the signal are due to actual variations in the
object. In order to incorporate a priori information,
many authors proposed methods for the estimation
of the bias field based on tissue segmentation. The
expectation-maximization algorithm (EM) is used
in Wells et al. (1996) to alternately estimate the bias
and the statistical characteristics of each tissue. This
algorithm was improved in Guillemaud and Brady
(1997) thanks to the modeling of partial volume. EM
was also chosen in Prima et al. (2001), where ad-
ditional morphological information was taken from
an atlas. Finally, some authors consider a Markov
Random field model to describe spatial correlations
(Zhang et al., 2001; Van Leemput et al., 1999). All
such methods make the assumption that each pixel
contains only one kind of tissue. While this is well-
suited to the important case of cerebral imaging,
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it does not correspond to the general situation, as
found for example in MRI muscle examination (Mar-
den et al., 2005), or in food products analysis such as
fish (Toussaint et al., 2005) or bread (Grenier et al.,
2003).

Finally, some authors proposed to use additional
images in their correction scheme. In Condon et al.
(1987); Tofts et al. (1994); McVeigh et al. (1986);
Tincher et al. (1993) images of phantoms were used
and considered as exact images of the bias field.
An interesting hybrid approach is proposed in Fan
et al. (2003) in the particular case of surface coils.
An additional body coil image is used. It is sup-
posed homogeneous but with low signal intensity.
These methods do not make any assumptions on the
objects. However, akin to the methods previously
cited, they model the bias on the intensity using a
smoothly varying, multiplicative field. As a conse-
quence, they neglect the dependence between the T1

of the tissues and the RFP inhomogeneities.
In this paper, we introduce a method that makes

no assumption on the morphology of the imaged
object. Moreover the particular effect of the RFP
inhomogeneities linked to the T1 is taken into ac-
count. As a price to pay for generality, several im-
ages under varied acquisition conditions are needed,
either measured on the object of interest, or on a
phantom composed of the relevant tissues. More-
over the tissues composing the object are supposed
to be known. The signal of a voxel is modeled as the
tissues contributions. Partial volume effect, that is
the mixture of several tissues inside a voxel, is thus
taken into consideration. The method estimates the
tissue proportions, the RFR and the RFP inhomo-
geneity maps. It is based on the minimization of a
regularized criterion. This criterion contains terms
that account for data fidelity to the model and reg-
ularization terms which ensure smooth solution for
RFR and RFP maps and for the tissue proportion
map. A special regularization scheme is used for the
tissue proportion maps in order to allow large inten-
sity variations at the boundaries between regions.
The use of the regularization terms allow to reduce
the noise and thus to both correct and denoise the
images in a unified approach. As our approach is
based on the estimation of the tissue proportion in
each voxel, it can be considered as a signal decom-
position tool. It provides new quantities of interest
which are the tissue proportions. Even though the
initial objective was to estimate images free from
artefacts, the tissue proportion map can also be con-
sidered as a result of the method.

The paper is organized as follows. In Section 2,
the mathematical model behind our method is de-
scribed. The signal model is first presented in the
case of a unique tissue. Then, it is extended to the
general case of partial volume voxels, and a penal-
ized least square approach is proposed to estimate
the unknown quantities. In Section 3 the solution of
the resulting optimization problem is detailed. Sec-
tion 4 details the conditions of simulation and of ex-
perimentation and section 5 is dedicated to results.
First we present simulation results and finally re-
sults obtained on real images of a fish, acquired on
a low-field imager. They demonstrate the efficiency
of the method to quantify the proportion of fat and
muscle with a view to a food product application.
Finally some perspectives are proposed in Section 6.

2. Problem formulation

2.1. Signal model

2.1.1. Case of a one-tissue homogeneous object
In the simplified case of an homogeneous object

containing only one tissue and under hypotheses de-
tailed in Collewet et al. (2002), noting L the num-
ber of pixels, the noise-free spin-echo intensity s` at
pixel ` = 1, . . . , L can be modeled by:

s` = R` Of(η`, θ, T1)

with θ = (α, β,TR),

f(η`, θ, T1) =
1− E1

2
sin η`α (1− cos η`β)

1− E1 cos η`α cos η`β
, (1)

where E1 = exp(−TR/T1). R = (R`) represents the
reception coil sensitivity, η = (η`) the attenuation
factor for the nominal pulse angle, α the flip angle,
β the angle of the refocusing pulse, O the constant
reference, such that the signal for (R,η, α, β) =
(1,1, 90◦, 180◦) is equal to O(1 − E1), and T1 the
longitudinal relaxation time of the tissue.

R and η respectively represent the sensitivity of
the reception coil, RFR, and the spatial inhomo-
geneity of the RF pulses, RFP. In what follows, all
2D arrays indexed by `, such as η and R, will rather
be treated as L× 1 vectors.

Would the signal s` be free from any inhomogene-
ity, it would read:

s∗` = Of(1, θ, T1).

Therefore, the actual noise-free version s` takes the
following form:
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s` = s∗`R`
f(η`, θ, T1)
f(1, θ, T1)

= s∗`M`N`,

where

M` = R`
sin η`α (1− cos η`β)

sinα (1− cos β)
(2)

is a purely multiplicative bias component since it
does not depend on the imaged tissue, while

N` =
1− E1 cos α cos β

1− E1 cos η`α cos η`β
(3)

is a non-multiplicative bias since its value depends
on T1 through E1, and consequently on the tissue
itself.

Actually, there is also a dependence of R and η on
the geometry and composition of the imaged object.
However, in the case of low-field MR systems, such
a dependence is rather weak (Sled and Pike, 1998).
For the sake of tractable analysis, it will not be taken
into account here.

Figure 1 shows the values of the non-multiplicative
bias term N` as a function of η` and the ratio
TR/T1, in the case of T-weighted images with
TR/T1 < 1.5, for α = 90◦ and β = 180◦. A prelimi-
nary study showed that the range for η in a 0.2−T
MR system equipped with a head coil was between
0.85 and 1.15. This is due both to RFP inhomo-
geneity and to systematic reduction of the flip angle
decided by the constructor to reduce the energy re-
ceived by the patient. For values of η around 1, the
bias field is equal to 1 and corresponds to no signal
inhomogeneity induced by the RFP inhomogenities.
For values of η greater than 1, the bias increases
up to 1.15 for low values of TR/T1. For values of η
lower than 1 the bias decreases down to 0.9 and is
the lowest for low values of TR/T1. In the presence
of several tissues with different values of TR/T1, as
envisaged in the following, this clearly corresponds
to a non-multiplicative behavior since the different
tissues will yield signal components with different
functions N`i, without proportionality relation be-
tween them. For instance, TR/T1 is equal to 1.4 for
fat and 0.28 for muscle, for TR = 140 at 0.2T .

Depending on the accuracy required, it may be
necessary to correct the images from this non-
multiplicative bias. However, this bias depends on
the T1 of the tissue inside each voxel. Moreover,
several tissues (two in most cases), with different
T1 values, may be present in the voxels. So, in order
to cope with realistic situations, the model of the
signal must be extended to the case of objects that
are made of several components (or tissues).
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Fig. 1. Value of the non-multiplicative bias term (3) as a
function of η` and TR/T1 for α = 90◦ and β = 180◦.

2.1.2. General case of an object composed of several
tissues

Let us consider an object composed of I tissues
(e.g., fat, muscle, grey and white matter, ...), in the
case of a spin-echo sequence where the additivity of
the signals is valid. Then, for each pixel `, the signal
can be modeled by:

s` = R`

I∑
i=1

k`iOif(η`, θ, T1i) + n`

where f is still defined by (1), k`i ∈ [0, 1] is the pro-
portion of tissue i in pixel `, Oi the constant refer-
ence of tissue i, T1i the longitudinal relaxation time
of tissue i and n = (n`) the noise component. θ =
(α, β,TR) can be considered as a vector of known
parameters chosen by the MR operator. Finally, if
the pixels are all assumed to be fully filled with tis-
sues, i.e., the case of pixels partially containing air
is excluded, the following relation is verified:

I∑
i=1

k`i = 1, ∀` = 1, . . . , L. (4)

Our goal is to retrieve the signal s∗ that would
be issued from a perfect MR system, that is, for
(R,η,n) = (1,1,0):

s∗` =
I∑

i=1

k`iOif(1, θ, T1i).

Since R and O = (Oi) are linked multiplicatively,
all couples (CR, O/C) (with C > 0) are equivalent
from the measurement viewpoint. To raise this un-
determinacy, we propose to assume that the quanti-
ties Oi are known, since they can be measured dur-
ing a calibration step. For example, the intensity of
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regions containing only one tissue can be measured
manually once for all with pixels filled with tissue i
in the center of the system where R and η can be
assumed equal to 1. We also rely on a sufficiently
good knowledge of T1i, since relaxation times can be
precisely measured using NMR experiments. Thus
the remaining unknown variables are R, η and k =
(k`i), which amounts to I+2 images, i.e., (I+1)×N
scalar unknowns given constraint (4). In order to
build reliable estimates, we propose to acquire J ≥
I + 1 images sj = (sj`), using different values for
the triple θ. Such a procedure necessarily increases
the acquisition time compared to the acquisition of a
single image. There are several ways of circumvent-
ing this problem. On the one hand, images of phan-
toms acquired once for all can be used as one part
of the J images. On the other hand, it is possible
to decrease the number of signal averagings. Signal
averaging is typically used in MRI to increase the
SNR. As shown later in the article, the regulariza-
tion scheme reduces the noise effect and thus it may
allow the use of images at a lower SNR, acquired in
a shorter time.

2.2. Cost function definition

R and η depend on the antennae configuration
but can be considered smooth, since they are gov-
erned by the Biot-Savart law. The magnetic field
created by an antennae does not exhibit high fre-
quency spatial variations. In a view to reduce the
noise, some regularization on the tissue proportions
k can also be introduced. However, it should be care-
fully designed, so that large variations of the signal
be not penalized at the boundaries between distinct
regions of the object. In the sequel, we adopt an ap-
proach so-called edge-preserving in the field of image
restoration.

Thus we propose to estimate R, k and η using a
penalized least-square approach:

(R̂, k̂, η̂) = arg min
R,k,η

J (R,k,η) subject to (4),

where

J (R,k, η) =
J∑

j=1

λj

L∑
`=1

(
sj` −R`

I∑
i=1

Ojik`ifij`

)2

+ γR ‖DR‖2 + γη ‖Dη‖2 + γk

∑
c∈C

φ
(
‖dt

ck‖
)
. (5)

with fij` = f(η`, θj , T1i), φ(u) =
√

δ2 + u2, and ‖·‖
denotes the usual L2 norm. Oji corresponds to the

constant reference of tissue i for signal j. Parame-
ters λj , γR, γη and γk are positive weights, and δ
is a scalar. C represents the set of the pairs of adja-
cent pixels c = {r, s}, with r < s for an arbitrary
ordering. dc is the L×1 finite difference vector such
that dt

ck = [kr1 − ks1 , · · · , krI
− ksI

]t. Finally, D =
[d1, · · · , dC ]t is a C × L matrix, where C = #C.

The first term in (5) accounts for data fidelity, the
second and third terms respectively ensure a smooth
solution for R and η and the fourth term tends to
decrease the noise in k while allowing rapid varia-
tions. Indeed, function φ has a quadratic behavior
near 0 and an asymptotically linear behavior (see
Figure 2). For large values of ‖dt

ck‖, that is for large
values of differences between the vector proportion
of adjacent pixels, the regularizing term will be lower
than it would have been using a quadratic regular-
ization. This allows to penalize variations of k de-
pending on the value of these variations.

0 δ

Fig. 2. Variations of φ(u) =
√

δ2 + u2, δ > 0.

3. Solution to the optimization problem

3.1. Block coordinate descent

We propose to resort to a block coordinate descent
(BCD) approach to compute R̂, η̂ and k̂. BCD al-
gorithms are guarantied to converge towards a local
minimizer of the criterion, under large mathemati-
cal conditions (Bezdek et al., 1987).

(i) While η and k are held at their current value,
a fixed number of iterations of a conjugate gra-
dient (CG) algorithm are performed to mini-
mize J with respect to (w.r.t.) R.

(ii) While R and k are held at their current value,
a fixed number of iterations of a CG algorithm
are performed to minimize J w.r.t. η.

(iii) While R and η are held at their current value,
a fixed number of iterations of a CG algorithm
are performed to minimize J w.r.t. k, subject
to constraint (4).
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Steps (i), (ii) and (iii) are performed repeatedly,
until the norm of the gradient of J w.r.t. (R,η,k)
becomes sufficiently small, i.e., ‖∇J (R,η,k)‖ ≤ ε.

3.2. Minimization w.r.t. R (Step (i))

Let ◦ denote the Hadamard (i.e., entrywise) ma-
trix product, and δj the L × 1 vector with entries∑

i Ojik`ifij`, for ` = 1, . . . , L. Then, it is straight-
forward to express the gradient component ∇RJ
under the following form :

∇RJ (R,k, η)

= 2
J∑

j=1

λj δj ◦ (δj ◦R− sj) + 2γRDtDR, (6)

with sj = (sjl). Equation ∇RJ (R,k, η) = 0
amounts to solving a L × L linear system. It is ac-
tually more efficient to adopt a CG approach, and
even an overrelaxed version of CG, in a view to
accelerate the convergence of the algorithm. The
update equation then takes the following form

R(n) = ωR̂(n) + (1− ω)R(n−1),

where n is the iteration number, R̂(n) (respectively,
R(n)) is the result of the non-relaxed version of CG
after a given small number of iterations, and ω is
the relaxation parameter. Convergence is ensured if
ω (0, 2), and it is faster if ω ∈ (1, 2) (Press et al.,
1988). We empirically set ω = 1.8.

3.3. Minimization w.r.t. η (Step (ii))

J is a complex, possibly multimodal function of
η. Therefore, the minimization result may be sen-
sible to the initial point. The components of η are
expected to vary between 0.6 and 1.3, so it is reason-
able to choose η = 1 as initial point. The CG algo-
rithm is then used to determine a search direction.
The gradient component ∇ηJ takes the following
form:

∇ηJ (R,k, η)

= 2R ◦
J∑

j=1

λj δ′j ◦ (δj ◦R− sj) + 2γηDtDη, (7)

where δ′j is a L×1 vector with entries
∑

i Ojik`if
′
ij`,

and f ′ij` = ∂fij`/∂η`. The explicit expression of the
latter term is omitted here, since it is lengthy but
easy to establish.

On the other hand, we have been unable to deter-
mine a closed form for the optimal stepsize in the

prescribed direction. Therefore, a suboptimal step-
size strategy has been rather adopted, based on the
fact that the Hessian of J w.r.t. η is upper bounded,
as shown in Appendix. According to Böhning and
Lindsay (1988) and Lange et al. (2000), such a con-
dition ensures that J admits an upper quadratic ap-
proximation. Therefore, Assumption A.3 of Labat
and Idier (2007) is fulfilled, so that the local con-
vergence of the resulting CG algorithm is granted,
according to (Labat and Idier, 2007, Theorem 4.1).

3.4. Minimization w.r.t. k (Step (iii))

Step (iii) corresponds to the minimization of J
as a function of k. Since φ is strictly convex, it can
be easily shown that J is strictly convex w.r.t. k,
and therefore, a unimodal function of k. Again, we
used a limited number of CG iterations with the
suboptimal stepsize strategy proposed in Labat and
Idier (2007).

The following expression of the gradient compo-
nent ∇kJ (displayed as a L× I matrix) can be de-
rived:

∇kJ (R,k, η) =2
J∑

j=1

λjVj ◦
(
(δj ◦R− sj)1t

I

)
+ 2γk

∑
c∈C

φ′
(
‖dt

ck‖
)

‖dt
ck‖

dcd
t
ck. (8)

where 1I is the I × 1 unit vector, and Vj is a L× I
matrix with entries OjiR`fij`.

To take constraint (4) into account, a simple
and efficient solution is to replace the gradient
∇kJ by its projection onto the hyperplane defined
by (4) (Luenberger, 1997), i.e.,

gk = ∇kJ −∇kJ 1I1t
I/I.

The resulting CG scheme is ensured to converge to
the unique minimizer of J as a function of k, under
constraint (4).

See Table 1 for the detailed algorithm.
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R← 1L % Initialization

η ← 1L %

k← 1L1t
I/I %

repeat % Main loop

%---------------------------------------------
% Step (i): linear CG w.r.t. R
%---------------------------------------------

gR ← ∇RJ % ∇RJ is given by (6)
for nR = 1 : NR do

ρR = ‖gR‖2
if nR = 1 then

pR ← −gR

else
pR ← −gR + (ρR/ρold

R )pR

end if
wR ← 2

∑
j

λjδj ◦ δj ◦ pR + 2γRDtDpR

µR ← ρR/pt
RwR

R← R + µRpR

gR ← gR + µRwR

ρold
R ← ρR

end for
Rold ← R← ωR + (1− ω)Rold

%---------------------------------------------
% Step (ii): Polak-Ribiere nonlinear CG w.r.t. η
%---------------------------------------------

for nη = 1 : Nη do
gη ← ∇ηJ ; % ∇ηJ is given by (7)
if nη = 1 then

pη ← −gη

else
βη ← (gη − gold

η )tgη/‖gold
η ‖2

pη ← −gη + βηpη

end if
µη ← −pt

ηgη/pt
ηMpη % M is sparse and

η ← η + µηpη % computable once

gold
η ← gη % for all using (15)

end for
%---------------------------------------------
% Step (iii): Polak-Ribiere nonlinear CG w.r.t. k
%---------------------------------------------

% Here, for all matrix M,
−→
M stands for a column

% vector with elements taken columnwise from M
for i = 1 : Nk do

gk ← ∇kJ −∇kJ 1I1
t
I/I % ∇kJ is given by (8)

if nk = 1 then
pk ← −gk

else
βk ← (−→gk −−→gk

old)t−→gk/‖−→gk
old‖2

pk ← −gk + βkpk

end if
∀c, qc ← φ′(‖dt

ck‖)/‖dt
ck‖

D ← 2
∑

j
λj‖
−−−−−→
Vj ◦ pk‖2 + γk

∑
c
qc‖dt

cpk‖2

µk ← −−→pk
t−→gk/D

k← k + µkpk

gold
k ← gk

end for
until ‖∇J (R, η, k)‖ ≤ ε % End of main loop

Table 1
Block coordinate descent algorithm

4. Material: images and algorithm
parameters

The proposed algorithm has been tested on both
simulated and real images. The simulated and real
acquisition conditions are presented first. Then the
algorithm parameter values are given, and finally
the estimation results are provided and commented.

4.1. Acquisition conditions

We chose to use images of fat fishes (such as
salmon and trout) to evaluate the performance of
our estimation method. Fish is made of two tissues,
fat and muscle, with approximatively known T1.
From NMR measurements, it was evaluated that
T1 ≈ 110 ms for fat and T1 ≈ 500 ms for muscle. In
such a case of two tissues, the minimum number of
images required is three.
– A single image s1 was acquired on the ob-

ject of interest, and the corresponding acqui-
sition parameters were θ1 = (α1, β1,TR1) =
(90◦, 180◦, 140 ms), which provides T-weighted
images with a high contrast between fat and
muscle.

– Two other images (s2, s3) were measured once for
all on a cylinder filled with oil. The acquisition pa-
rameters were, respectively: θ2 = (α2, β2,TR2) =
(60◦, 180◦, 700 ms) and θ3 = (α3, β3,TR3) =
(120◦, 180◦, 700 ms).

4.2. Definition of a mask to exclude background
voxels

In the acquired images, the background voxels do
not fulfill constraint (4), since no tissue is present
there. The corresponding data can be easily detected
using a simple threshold test, and we propose to ex-
clude them from the correction process. Mathemat-
ically, it simply amounts to reduce the size of the
dataset and of the unknown maps R, k and η, and
to redefine the set of difference vectors (dc) accord-
ingly. Then, the new criterion to be minimized takes
an expression similar to (5). Therefore, this modifi-
cation remains implicit in what follows.

4.3. Algorithm parameters

No prior information was assumed on the values
of the maps R, η, k1 and k2. Each of them was
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initialized as a constant image: R(0) = η(0) = 1, and
k

(0)
1 = k

(0)
2 = 1/2. A fixed number of five iterations

was adopted for each of the three CG loops.
One keypoint of our method is the choice of

the hyperparameters λj ,γR, γη, γk and δ. Accord-
ing to the probabilistic interpretation of criterion
J , λj corresponds to the inverse of the noise
variance for the jth image. The noise variances
can be estimated directly from the images using
the method proposed in Nowak (1999). In order
to choose the remaining parameters γR, γη, γk

and δ we run successive simulations with γR and
γη ∈ {0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8}, γk ∈
{0, 1, 1e1, 1e2, 1e3} and δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.
The sets of value for γR, γη and γk were chosen em-
pirically since no probable value can be inferred a
priori. On the contrary, the value for δ can be com-
pared with the value of ‖dck‖ which corresponds
to the difference between the tissue proportion of
one pixel and of the pixels of the corresponding
clique C. Indeed, δ can be considered as a threshold
above which the φ function is no more quadratic. As
ki represents tissue proportion ∈ {0, 1}, we chose
values from 0.1 to 0.6 for δ.

For the simulations, we stopped the coordinate
descent when the evolution of the estimation error
was smaller than a threshold. We defined the esti-
mation error εk as the L1 error norm between the
actual values kact and the estimated values kest ex-
pressed in %:

εk = 100
L∑

`=1

I∑
i=1

|kact
`i − kest

`i |.

We stopped when |(εk(n) − εk(n − 1))|, with n the
number of iterations, became lower than 10−2 and
we limited the number of iterations to 1000.

For the results using real images, we stopped the
coordinate descent when ‖∇J (R,η)‖ became lower
than ε = 3L × 10−2 and we limited the number of
iterations to 1000.

4.4. Comparative algorithm using a direct approach

In order to evaluate the performance of this cor-
rection method, let us compare it with an existing
method proposed in Collewet et al. (2002). The lat-
ter is restricted to particular values of the acquisi-
tion parameters, and it is based on the inversion of
the observation equations under noise-free hypothe-
sis. Using θ2 and θ3 previously described to acquire
images on an homogeneous object with T1 ≈ 100

ms, we can consider that E1 ≈ 0 since T1 � TR.
Moreover, since α3 = 2α2 and β3 = β2, we obtain,
up to the presence of noise:

1 = k`1 + k`2

s1` = R`

2∑
i=1

k`iOifi1`

s2` = R` Oh sin η`α2 (1− cos η`β2)
s3` = R` Oh sin 2η`α2 (1− cos η`β2)

where Oh is the constant reference of the homoge-
neous product. With the prior knowledge of T11, T12,
O1, O2 and Oh, we can easily deduce k`1, k`2, η` and
R` from this system of equations:

η` =
1
α2

arccos
s3`

2s2`

R` =
s2`

Oh sin η`α2 (1− cos η`β2)

k`1 =
1
R`

s1` −O2f21`

O1f11` −O2f21`

k`2 = 1− k`1

(9)

This method is clearly of restricted application.
However, it has the advantage to be very simple
to implement and of very low computational cost.
It will be subsequently referred to as the “direct
method”, in contrast with the inverse problem res-
olution approach proposed in this paper.

4.5. Material for simulated images

A virtual image s1 of a trout was built from a
real fish, using the direct method applied to an MRI
acquisition at a high SNR value. It is depicted on
Figure 3. The highest gray levels correspond to fat
tissues and the lowest to muscle. Due to the trout
physiology and to the relative thickness of the slices,
many pixels contain both fat and muscle. Let us
remark here that such a configuration is definitively
not suited to segmentation based approaches.

Two additional images (s2, s3) were computed,
simulating an image acquired on an homogeneous
product. R and η were also taken from a real ex-
ample. Gaussian noise was added to the three im-
ages. Noise in MR magnitude images is governed by
a Rician distribution (Sijbers et al., 1998). However,
for SNR values larger than 3 dB, which is the case
in most applications, it can be considered as white
Gaussian. The standard deviation of the added noise
was respectively 100 for s1 and 30 for s2 and s3.
Less noise was added to the latter two, since they
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Fig. 3. s1 used for the simulations.

correspond to images acquired one for all, and thus
they can be acquired with a longer acquisition time.
This values are to be compared with the signal val-
ues. The mean signal values were respectively 650,
2000 and 2200 for s1, s2 and s3.

4.6. Material for real images

We also tested our algorithm on real images.
s1 was acquired on a trout, and (s2, s3) on a cylin-

der filled with oil. The MRI system was a 0.2 T im-
ager (Open, Siemens). The fish was kept refrigerated
at 5◦C to avoid signal variations due to temperature.
Five different images s1

1, . . . , s
5
1 of the same slice of

the fish were actually acquired after a translation of
22.5 mm between each acquisition, along the z axis
(i.e., perpendicularly to the slice plane).

Two levels of noise were obtained with two differ-
ent numbers of signal averagings, in a view to ex-
plore the performance of the denoising capacity of
our algorithm. No averaging was performed for one
set of images, called hereafter “high-noise images”,
while a second set of so-called “low-loise images”
was obtained after ten averagings.

The field of view was 200 mm × 200 mm and the
matrix size was N = 256× 256. The slice thickness
was 4 mm for s1 and 10 mm for s2 and s3. The latter
value was used to increase the SNR. Since s2 and
s3 were acquired on an homogeneous object, it was
not at the expense of a lower resolution.

The quantities Oi were directly measured on s1: a
region filled with fat was manually selected, and the
corresponding mean intensity was computed. Simi-
larly, a region physiologically known as very low-fat
(less than 1%) was chosen to compute the muscle
signal.

5. Results

5.1. Simulation results

5.1.1. Influence of the hyperparameters
We run the simulations for all the combinations of

the parameters. The best results (i.e., corresponding
to the lowest value of εk) were found for

γR = 1e5, γη = 1e3, γk = 1e1, δ = 0.3. (10)

Figure 4 shows the evolution of the error for γk = 1e1

and δ = 0.3 in function of γR and γη. Note that the
scales are in logarithm for γR, γη and γk. Figure 5
shows the evolution of εk for γR = 1e5 and γη = 1e3

in function of γk and δ.
Figure 4 shows a limited sensivity of the L1 error

norm εk w.r.t. γR and γη. The sensitivity w.r.t. γη

is indeed very low: from the lowest to the highest
value of γη, εk only varies from 4.5 to 7%. It is more
sensible to γR, since too large values of γR produce
quite large error values. Finally, the influence of the
accuracy of estimation of R on the results is more
important than the estimation of η. This can be
easily deduced from the expression of k`1 in function
of R` and η` in system (9): the sensitivity of k`1 in
function of R` is higher than in function of η`.

Figure 5 shows a relatively higher sensivity to the
value of γk, although the choice of this parameter
gives the same error when varying from 1 to 100. On
the other hand, parameter δ seems to have a very
limited influence on the result.
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Fig. 4. Contour plot of L1 error norm εk for γk = 1e1 and
δ = 0.3 in function of γR and γη .
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Fig. 5. Contour plot of εk for γR = 1e5 and γη = 1e3 in
function of γk and δ.

In fact, the L1 error norm only gives a rough indi-
cation on the performance of the algorithm. In par-
ticular, results of same L1 error norm may corre-
spond to images with quite different aspects. This
is illustrated in Figure 6. The three images were ob-
tained with γR = 1e5, γη = 1e3 and γk = 1e1. From
left to right, the value of δ was 0.1, 0.3 and 0.6, re-
spectively. The resulting L1 error norm was then
4.7, 4.4 and 4.7. As expected, the image obtained
with the smallest value of δ seems less noisy, and it
exhibits more homogeneous regions, while the im-
age obtained with the largest value of δ seems more
noisy. The issue of defining the most appropriate er-
ror measure is obviously application dependent, and
it is not in the scope of this article. Anyway, the L1

error norm remains useful as a rough indicator of
the algorithm performance. On the other hand, we
can rely on reproducibility to address the question
of hyperparameter selection: as long as objects with
similar structures are observed using similar acqui-
sition parameters, the same hyperparameter values
will tend to produce equally good (or bad) results.
Therefore, in the following tests, the hyperparam-
eters have been maintained constant at the values
given by (10).

5.1.2. Comparison of the results for different
configurations

Table 2 makes a comparison of performance be-
tween the proposed method, the unregularized ver-
sion (i.e., γR = γη = γk = 0), the version without
the estimation of the non-multiplicative bias field

Fig. 6. (k1l) estimated with γR = 1e5, γη = 1e3 and
γk = 1e1. From left to right: δ = 0.1, 0.3 and 0.6. The cor-
responding L1 error norm is 4.7, 4.4 and 4.7.

(i.e., step (ii) is skipped), and the direct method.

Relative L1

error norm

Complete method 4.4%

Unregularized version 7.4%

Without estimation of η 6.6%

Direct method 7.4%

Table 2
L1 error norm for different configurations.

A proper choice of hyperparameter values pro-
vided a minimum value of L1 error norm of 4.4%.

Without any regularization, the error raised up to
7.4%. That is, regularization provides a gain of 3%.
In the context of food-product applications, such a
gain is far from negligible. A variation of 1% in a
tissue proportion inside the product is relevant, for
instance to study the genotype effect on the growth
of fish.

In the case where the non-multiplicative bias field
is not estimated, the error was 6.6%. This points out
the interest to take account of the non-multiplicative
part of the model in real situations comparable to
the simulated one.

Finally, the direct method produced an error of
7.4%, as the unregularized version of the proposed
method. This is not surprising since the general goal
of the latter is to minimize the first term of J , while
the former cancels it in the studied case (up to the
approximation E1 ≈ 0).

5.2. Image results

5.2.1. Correction results on noisy images
The two left-hand images of Figure 7 are two of

the five images acquired on the same slice of the
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trout, at different positions in the MR system, in
the high noise situation. The two corresponding cor-
rected images are at right-hand side.

Fig. 7. From left to right: Original images acquired from at
0mm and 45 mm from the centre of the MR system, and
corresponding corrected images.

The effects of the RF inhomogeneities are clearly
visible on the original images. In particular, the im-
age at 45 mm is of lower amplitude. After correction,
the two images exhibit a similar range of grey levels.
Moreover, the level of the noise is lower in the cor-
rected images while the existing structure keeps vis-
ible thanks to the edge preserving restoration. His-
tograms of signal intensity are presented in Figure 8
for the five raw images, and in Figure 9 for the five
corrected images. The histograms of the raw images
significantly differ one from each other due to the
inhomogeneities, while they are very much alike for
the corrected images. As expected, each image ex-
hibits a narrower histogram once corrected.

 0

 200

 400

 600

 800

 1000

 1200

 200  400  600  800  1000  1200  1400

nu
m

be
r o

f p
ixe

ls

signal intensity (a.u.)

-45 mm
-22.5 mm

0mm
+22.5 mm

+45 mm

Fig. 8. Histograms of signal intensity for the five original
images.

Figure 10 shows the histograms of grey levels of
the five images after only partial correction: only R
was estimated and compensated for, while η was as-
sumed equal to one. This configuration is equivalent
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Fig. 9. Histograms of signal intensity for the five corrected
images.

 0

 200

 400

 600

 800

 1000

 1200

 200  400  600  800  1000  1200  1400

nu
m

be
r 

of
 p

ix
el

s

signal intensity (a.u.)

-45 mm
-22.5 mm

0mm
+22.5 mm

+45 mm

Fig. 10. Histograms of the five noisy images corrected without
the estimation of η.

to the modeling of the inhomogeneities by a multi-
plicative bias field. The result shows that it is not
sufficient to estimate the multiplicative bias R only.
This is especially true in the areas that contain more
muscle, since TR/T1 is lower in such areas, and thus
the non-multiplicative bias is higher.

5.2.2. Effect of regularization
In order to quantify the effect of regularization,

the results obtained with high-noise images were
compared to the results obtained in the low-noise
case. Figure 11 shows the L1 norm of the difference
between k1 estimated in the high-noise case (with
and without regularization) and in the low-noise
case (without regularization). Since proportions es-
timated from low-noise images have been used in-
stead of the unknown, true proportions, the values
of the gains should be considered as relative rather
than absolute. Depending on the position, the gain is
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between 2.8 and 3.2% thanks to regularization. This
represents a significant and homogeneous improve-
ment, which confirms the simulated study, where a
gain of 3% was obtained using the regularization
scheme.
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Fig. 11. L1 error norm, between k1 obtained with high-noise
images (with and without regularization) and k1 obtained
with low-noise images (without regularization).

6. Conclusion

We have proposed a correction method for inho-
mogeneities of RF pulses and RF reception in MRI
systems. It is based on a model of the measured sig-
nal as a sum of contributions of different tissues,
which accounts for the fact that different tissues
yield different responses regarding the RF pulse val-
ues, particularly in the case of T-weighted images.

Here, we did not make the assumption of piecewise
constant regions in the image. Actually, the latter as-
sumption can be considered as valid in the foremost
application of cerebral imaging, but it is oversimpli-
fying in other contexts, such as food-product appli-
cations. Therefore, our approach is rather based on
the processing of several images, acquired at differ-
ent measurement parameter values.

A penalized least-squares criterion was defined
to balance a data fidelity term and regularization
terms for the RF pulses and reception maps. A non-
quadratic regularization was applied to the image
content, in order to reduce the noise while preserv-
ing the edges. The resulting method proved to be ef-
ficient on a fish slice with a two-tissue model, using
a set of three images, two of which being acquired
on an oil phantom.

Simulation results showed that our method de-
creases the L1 error norm from 7.4 to 4.4% on the

estimation of the tissue proportion, compared to
a classical method based on a direct computation.
These results showed that regularization improves
the performance of the method and that the estima-
tion of the non-multiplicative bias field has a signif-
icant impact. We have also shown that the choice of
the hyperparameters is not critical. Finally, results
on real images acquired on a fish confirmed the sim-
ulation results.

In order to improve the method and to enlarge the
potential applications, several points remain to be
explored. First, the acquisition time is a key point
in MRI. Our method needs at least I + 1 images,
with I the number of existing tissues. One possi-
bility is to use images acquired on phantoms once
and for all, which does not penalize the acquisi-
tion time. However, inhomogeneities due to patient-
specific geometrical and electrical properties are not
accounted for by phantom images. Fortunately, the
mismatch between objects and phantoms is limited
in low-field imaging. However, it remains a source of
systematic error that would disappear if all images
were acquired on the object. Then, shorter acquisi-
tion times should be used. This can be done with
shorter TR or with fast spin-echo sequences to get
additional, less accurate images, but in lesser time.
As our approach is regularized, we can hope that a
certain level of degradation in the data will not af-
fect the quality of the results.

Another keypoint of the method is the required
knowledge of several constants. In particular, we are
currently studying the possibility to estimate the
constant references Oi jointly with the other un-
known quantities.
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7. Appendix: the Hessian of J w.r.t. η is
upper bounded

The object of the present appendix is to show that
the criterion J defined by (5) has an upper bounded
Hessian ∇2J (η) = (∂2J /∂ηk∂η`), i.e., that there
exists a constant, symmetric, positive definite ma-
trix M such that M −∇2J (η) is positive semidef-
inite for any η. This mathematical condition is a
prerequisite to ensure the convergence of easily im-
plemented algorithms, either of the quasi-Newton
type (Lange et al., 2000), or of the CG type (Labat
and Idier, 2007).

As a function of η, the objective function J de-
fined by (5) takes the following form:

J (η) =
L∑

`=1

J`(η`) + γη ‖Dη‖2 + cη (11)

where cη does not depend on η, and

J`(η) =
J∑

j=1

λj

(
sj` −

I∑
i=1

Cij`f(η, θj , T1i)
)2

(12)

with Cij` = R`Ojik`i. From (11), it is easy to express
the Hessian of J w.r.t. η under the following form:

∇2J (η) = diag
(

∂2J`

∂η2
`

)
+ 2γηDtD. (13)

Let F d
ij(η) = ∂df(η, θj , T1i)/∂ηd. According to (12),

the second derivative of J` is given by:

∂2J`

∂η2
=

J∑
j=1

λj

(
I∑

i,k=1

Cij`Ckj`Mikj(η))

− 2sj`

I∑
i=1

Cij`Nij(η)

)
where Nij(η) = F 2

ij(η) and

Mikj(η) =

2F 1
ij(η)F 1

kj(η) + F 2
ij(η)F 0

kj(η) + F 0
ij(η)F 2

kj(η)

Now, let us denote fmax = maxη f(η) and fmin =
minη f(η) for any function f that depends on η.
Then,

∂2J`

∂η2
6 b` (14)

with

b` =
J∑

j=1

λj

(
I∑

i,k=1

Cij`Ckj`µikj` − 2sj`

I∑
i=1

Cij`νij`

)
and

µikj` =

{
Mmax

ikj if Cij`Ckj` > 0
Mmin

ikj otherwise

νij` =

{
Nmax

ij if Cij` < 0
Nmin

ij otherwise

Finally, let

M = diag(b`) + 2γηDtD. (15)

From (13) and (14), it is obvious that M−∇2J (η)
is a positive semidefinite matrix.

In practice, the quantities Mmax
ikj , Mmin

ikj , Nmax
ij

and Nmin
ij can be approximately computed and

stored once for all, using a fine discretization of η
between a lower and an upper bound. Finally, let
us remark that the quantities Cij` = R`Ojik`i are

14



expected to be positive, so that the computation
of Mmin

ikj and Nmax
ij should be useless. However, we

have chosen not to enforce the inequality constraints
R` > 0 and k`i ∈ [0, 1] in the minimization process,
for the sake of simplicity. Therefore, Cij` > 0 is
most often true, but not always.
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