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ABSTRACT. The estimation of the parameters of a mixture of Gaussian
densities is considered, within the framework of maximum likelihood. Due to
unboundedness of the likelihood function, the maximum likelihood estimator fails
to exist. We adopt a solution to likelihood function degeneracy which consists
in penalizing the likelihood function. The resulting penalized likelihood function
is then bounded over the parameter space and the existence of the penalized
maximum likelihood estimator is granted. As original contribution we provide
asymptotic properties, and in particular a consistency proof, for the penalized
maximum likelihood estimator. Numerical examples are provided in the finite
data case, showing the performances of the penalized estimator compared to the

standard one.

Key words: Bayesian estimation, mixtures of normal distributions, penalized maximum

likelihood, strong consistency.

1 Introduction

Mixture distributions are typically used to model data in which each observation is assumed to
come from one of p different groups, each group being suitably modeled by a probability density
belonging to a parametric family. They are well fitted for clustering the observations together
into groups for discrimination or classification: the mixture proportions then represent the
relative frequency of occurrence of each group in the population. Mixture models also provide

a convenient and flexible class of models for estimating or approximating distributions.

The first attempts to analyze a mixture model are often attributed to Pearson (1894) but,

as stated in Butler (1986), Newcomb (1886) predated Pearson’s work. Since then, mixture



models have been used in a large range of applications. In particular, independent mixture
models well fit several problems in signal and image processing. An example of application
of mixtures in biological (plant morphology measures) and physiological (EEG signal) data
modeling is presented in Roberts et al. (1998). In Champagnat et al. (1996) a Bernoulli-
Gaussian mixture model is adopted in a deconvolution problem. McLachlan and Basford
(1987) highlights the important role of mixture models in the field of cluster analysis and
Biernacki et al. (1997) propose a model selection criteria applied to multivariate real data
sets. Markovian mixture models are also commonly used, as in Ridolfi (1997), where an

application to medical image segmentation is considered.

In our study we consider mixture densities of p univariate normal densities, with p known,

defined as

hy(;7) = Y 7 f (3w, o) (1)

k=1

where

V2moy, 207}

are normal densities with mean yu; and standard deviation 0. Let us introduce the parameter

2
f (@5 pg, 0n) = ! eXp{—M}, k=1...p

set of the mixture

F={7:(7T1,...,Wp,ul,...,up,al,...,ap) /
P

0<m <1, Zﬂ'kzl, —00 < i < 400, 0k>0} (2)
k=1

with the true parameters defined as v, € I'.

We consider the i.i.d. random variables X, ..., X,, having the density A (z, ).

In order to characterize a mixture of densities, 7.e. to estimate its parameters, several
approaches may be considered, as the ones exposed in McLachlan and Basford (1987), Stephens
(1997) or McLachlan and Peel (2000). The Maximum Likelihood (ML) framework is among

3



the most commonly used approaches to mixture parameter estimation, and it is the approach

we consider here, with a likelihood function given by

B (X1, -0 X ) =Hh1 (Xi57) (3)

Unfortunately the likelihood function of normal mixture models is not a bounded function on I
(Kiefer and Wolfowitz, 1956, Day, 1969). Hence, a global maximum likelihood estimate always
fails to exist. In addition, the unboundedness of h,, causes failures of common optimization
algorithms, as the EM algorithm (Redner and Walker, 1984) and quasi-Newton algorithms

(Fowlkes, 1979).

In a general framework, the question of consistency of the maximum likelihood estimator
(MLE) has been investigated by several authors (see, for example Wald, 1949 and Wolfowitz,
1949, Chanda, 1954). Asymptotic results are mainly based on Wald’s technique, the latter
having two essential parts: one dealing with any compact interior set and the other handling
boundary points assuming that the density function goes to zero whenever parameters ap-
proach to a boundary point. Therefore, as pointed out by Cheng and Liu (2001), Wald’s
approach cannot be adopted directly whenever the likelihood does not tend to zero on the
boundary points of the parameter space. Hence, the mentioned asymptotic results are not
available in the case of mixtures of Gaussian distributions since the likelihood function is not

even bounded on the boundaries.

In order to avoid such a problem, authors commonly consider local estimates or restrained
parameter spaces. Once a maximum likelihood estimate is properly defined it is possible to
analyze its statistical properties.

Peter and Walker (1978) prove that, given any sufficiently small neighborhood of the true

parameter, with probability one, the MLE 4, exists, it is unique and it is (locally) strongly



consistent, i.e. 4, — 7o in probability for n — oo .

Redner (1981) proves that the MLE exists and it is globally consistent in every compact

parameter subset T of I that contains Yo

given %, | hy, (3,) = maxh, (v), 7, — 7 in probability, for n — oo
el

Hathaway (1985) proposes a constrained maximization of the likelihood function under the
condition

mino;/o; > ¢>0 (4)
ij

where ¢ is a fixed constant. Condition (4) corresponds to a (non compact) restrained param-
eter set. Hathaway’s constrained MLE is proved to be strongly consistent provided that the
condition (4) is also satisfied by the true value 7. As well as a theoretical MLE, Hathaway

provides a constrained EM algorithm for its computation.

Feng and McCulloch (1996) assume that o; = 1, Vi. Thus, they do not consider the full
parameter space I'. Further, the true parameter point is assumed to be on the boundary of
the considered parameter space. In these conditions, they prove the existence of a consistent
local MLE without constraining the parameter space I'. However, as stated by Cheng and Liu
(2001), their consistency result assumes some complicated conditions which are rather difficult

to check.

In this paper, we consider a solution to likelihood degeneracy on the set I' defined in (2),
which was proposed by Ridolfi and Idier (1999, 2000), but which has not yet been proved to be
consistent. Up to the authors knowledge, it is the only specific solution to likelihood degeneracy
defined on I'" that is available in the literature. It consists in penalizing the likelihood function.
The corresponding penalized likelihood is bounded. Hence, the penalized likelihood function

does not degenerate in any point of the closure of parameter space I' and, therefore, the



existence of the penalized maximum likelihood estimator is granted.

As stated in Good and Gaskins (1971), a penalized approach may be interpreted within a
Bayesian framework. According to such an interpretation, the penalized likelihood function
corresponds to the a posteriori density and the penalized maximum likelihood solution to the

maximum a posteriori estimate.

Bayesian contributions to mixture models are already popular in the scientific community.
In contributions such as Biernacki et al. (1995), Stephens (1997, 2000), Richardson and Green
(1997) and Roberts et al. (1998), the mixture model considered has an unknown number of
components and the Bayesian approach is specifically aimed at solving the problem of model
order estimation, i.e. to estimate the number of mixture components. In the case of mixtures
with a fixed number of components, a Bayesian approach to parameter estimation based on a
Bayesian sampling scheme is proposed by Diebolt and Robert (1994) and Escobar and West

(1995), where the latter focus on the estimation of the mixture proportions 7y, ..., .

Wallace and Freeman (1987) propose a Minimum Message Length estimator which, for a
wide range of mixture models, is close to, if not exactly equal to, a Bayesian estimator of the
maximum a posteriori type. Indeed, as stated by Wallace and Freeman (1987) and Roberts
et al. (1998) minimizing the message length is closely similar to maximizing the posterior
probability of the estimate. Hence, such an estimator can be interpreted as a penalized
estimator, with the penalizing term being appropriately defined within the specification of the

MML approach.

However, to the best of our knowledge, the degeneracy problem has not yet been addressed,
neither within the Bayesian framework, nor using the MML approach. Indeed, none of the
mentioned contributions specifically tackle the degeneracy problem and are mostly oriented

to the model order estimation.



In the present paper, as original contribution we provide statistical asymptotic properties
of the penalized MLE. In particular we prove that such an estimator is strongly consistent and
asymptotically efficient, and we compute the rate of convergence. Finally, we provide some

numerical examples.

2 Penalized Likelihood

Let Xi,..., X, be ii.d. random variables with density given by (1), where the parameters =y

belong to set I' defined in (2).

Let T’ denote the set I' along with the limits of its Cauchy sequences in the sense of the

Euclidean distance.

The likelihood function (3) is unbounded on I'. This is due to the fact that variance
parameters appear in the denominator: for o; — 0 and p; — x;, the function A, is not

bounded. Consequently, the MLE cannot be defined.

In order to avoid such a problem, we consider a penalized likelihood function defined as

fn(Xla---,Xn;’y):hn(Xla---,Xn;’Y)Hg(o-j) (5)

Jj=1

The function ¢ is chosen so that f, is bounded over the parameter space I'. More precisely

we assume that the function g satisfies the following condition:

1
1) lim —g (o) =0, for all n

o—0 o™
which ensures that, for n fixed, the maximum argument of the penalized likelihood, i.e. the
penalized MLE
Y = ar%érrlaxfn (X1, Xn3y)

exists.



We are concerned with the consistency of such an estimator. In order to prove the consis-

tency we require that g also satisfies the following conditions:

2) g (o) is many-to-one from (0, +00) onto (0, G], G < oo;

3) g is increasing in an open interval (0, d) of the origin which has a non null measure;

4) g is continuously differentiable on (0, c0).

where assumption 4) is used in order to apply Redner’s (1980) results on the consistency of a

penalized estimator over a compact set.

We have already discussed the existence and consistency of local MLE over I'. Moreover,
from Redner (1980), we know that if a likelihood function has a strongly consistent maximizer
over a compact set, then, penalizing it with a penalty term that is continuously differentiable
and that has a bounded logarithm, does not alter its asymptotic property. By considering the
conditions stated on our penalizing term g, we can apply Redner’s result on every compact
set that excludes a neighborhood of o = 0. Hence, the problem lies in a neighborhood of the
origin of the parameters o, where the MLE does not exist and, therefore, Redner’s property

does not apply.

As a consequence, we focus our study of asymptotic properties in a neighborhood of the
origin of the parameters o. The idea is to prove that there exists a constant n > 0, not
dependent on n, so that the probability that the penalized likelihood f,, is maximized by a
o € [0,n) is zero. It is clear that we are not interested in o € [, +00) since for such an interval

Redner’s theory applies.



From (5), let us consider f,, and extend its definition to T by continuity :

0 if o, = 0,400 or g = +o0
fo (X1, Xy y) =

P (X1, .05 X5 ) H§:1 9(95)  otherwise

Let v = (7r01, e TOpy KOs -+ - 5 HOpy T015 - - .,aop) € I' be the true value of parameter and
let us define the Banach space

H = L' (hi(z,%))

The operator Ey will denote the expectation in the space H.

3 Preliminary Results

In this section we give some lemmas that will be useful in the proof of the main theorems.

Consider a random variable X with density A (x, ), then the following lemmas hold :
Lemma 3.1 If {v,,} CT and v* €T is such that nlg%o Ym =7, then
fi(@am) =2 fi(@,9"),  form— oo
Proof. Trivial.
Lemma 3.2 There exists n > 0 with the property
n<og; Vi=1,...,p (6)
such that

Eglog fi (X,7) < Eglog f1 (X, 7) Vyel | jfllinpaj € [0,7) (7)

.....



Proof. For any v € T, we define v = log f1 (X, ) — log fi (X, 7). We will prove that

Given v € I', we can write

ol _ LX) _ 9(9) , _11.9(9)
EH [e ] h EH |:f1 (X’fyo):| B /I;hl (‘/E”Y)}:[lg(o_oj)dx _31:[1 (aoj)

9

Let us define the function w : (0, +o0c) — (0, 5]

_g(o)
wl(9) =G
Then
w (o)
EH [6”] = J
H w (Ojo)
p
We take v such that w (v) = H w (0j,)- Note that the existence of v € (0, +00) is granted
j=1

by the many-to-one character of the function w. In order to define n and to prove the inequality
of equation (6), we have to consider two cases
1) v < 4. Then, we set n = v;
2) v > 6. Then, if w (v) < w (), from the one-to-one character of the function w over (0, J)
it exists n € (0,0] such that w (n) = w (v). Else, if w (v) > w (§) we take n = 4.
In both cases
win) <w(oy) Yi=1l...p ®

When oo, > 6, k € {1,...,p}, we straightforwardly have n < og;. In the other case, i.e.
when og, < 0, k € {1,...,p}, from equation (8) we have n < og;. Therefore, the inequality of

equation (6) holds.

10



If _IIlliIl o; € (0,n), then, by taking the definition of w and the assumption 3) on g into
§=1,p

account, we have

w (minj=y, ;)

Ey [¢'] < max (1,

)zl Vyel | _HlliIl o; € (0,n)

w (1) j=1p
If we now consider the definition by prolongation of I' (for o; = 0, v = —00), we obtain
Egle’] <1 VyeT | min o;€][0,n)

J=1,...p

From Lemma 3.1 and by considering that x < e* V z € IR implies Eg [z] < Eg[e®] V z € R,
we have

Ey[v] <Egle’] <1 Vyel | _Hllin o; €[0,n)
J=L,--up

We can write Ey [v] = Egy [loge’] < 1, and since the function log is concave, by applying
Jensen’s inequality we obtain

Ex [v] < logEy [¢"] < 0

Thus

Eylv]<0 Vyel | .rrllin o; €0,n)
J=Tyesp

which is equivalent to (7). O

For v € I" let us define the following functions

w1 (xﬁ rY’ p) = sup'y”h/’f'y‘(p fl (‘T’ ,Y,) p > 0
Wy (T1, -y Ta3 Yy P) = SUP_yicp fr (@1, T03 )

We shall now prove the following lemma

Lemma 3.3 For all v € T we have

/1)1{% Ey [logw; (X, 7, p)] = Ex [log f1 (X, 7)] 9)

11



Proof. By means of Lemma 3.1 and by exploiting similarities with the work of Wald

(1948), we have

lim By [log (max (1, ws (2,7, p)))] = Ex [log (max (1, f1 (z,7)))] (10)
and

lim By (log (min (1, w1 (, 7, p)))] = En [log (min (1, f1 (z,7)))] (11)
Hence, the equality (9) is a consequence of (10) and (11). 0

Let us now introduce two more lemmas which will be useful to characterize the speed of

convergence of the penalized estimator.

p—

First, note that since m, =1 — i1

7T], the vector v contains 3p — 1 parameters

t
Y= (ﬂ-la"':’n—p—laula""upvo-la'"70p:)

We will address these 3p — 1 elements with v, l =1,...,3p — 1.
Let us define
p
u(X;7) = h(X;7) [ [ go)""
j=1
and let us denote by ¢(*) the s-order derivative of the penalizing function g. In the following,

0/0v will denote the vector of partial derivatives 9/0vy;, l = 1,...,3p — 1, with respect to the

elements v, [ =1,...,3p— 1 of 7.

Hence, by means of simple computations, we have the following two lemmas:

Lemma 3.4 The means, the variances and the covariances of (0logu(X;~)/07) are

R B Rl IS
1 :
ma j=3p—-1 ifl=2p,...3p—1
ng(oo;)
. ) . )
Varg [M} — Vary [aloghl(X ,fyo)] _E, [mog hl(X,%)}
8% 67l 871

12



foralll=1,....3p—1.

(12)

o (310gU(X;%) 010gU(X;%)> _ [510gh1(X;%)510gh1(X;%)
ovy y - EH
O Mm o OVm

foralll,me {1,...,3p— 1}, l # m.

Lemma 3.5 Let A= {(l,1) /l € {2p,...,3p — 1}} be an index set. Then, ¥V I,m € {1,...,3p— 1}

and j = 3p — | we have

E, [_ L Ou(Xjm0) du(Xs7) 1 GQU(X;%)}
u?(X;7) O 0Ym u(X;%)  070Vm
- _F 310gh1(X;’70)810gh1(X;’70) 1 9(2)(‘70]') 9(1)(00j) ? 1
=-Epy 5 P + — N Y. (Lm)eA
Vi Yom n | g(oo;) g%(o9;)

4 Main results

Strong consistency of the penalized MLE is stated by means of the following two theorems.
They follow the structure of the theorems proved by Wald (1949) for the classical MLE over

a compact set.
Theorem 4.1 Let S be a closed subset of T such that
S={yeT / 3Fje{l,...,p} sothato; €[0,n)}

and such that vy ¢ S. Then

P(limsup S (X, Xni ) :0)=1
n—=00 NS fn (X1,..., Xn; M)

Proof. If we take the definition of f,, for o, = 0 into account, we may consider only the

case mino; > 0. By means of the Lemma 3.2 and 3.3, to each point v € S we can associate a

positive value p, such that

En [logw (X, 7, py)] < Eg [log f1 (X, 7)] (13)

13



Since the set S is compact, it can be covered by a finite number of open balls. Hence, the

theorem is proved if we can show that

p (lim logwy, (X1, ..., Xn; 7, py) —1og fu (X1, ..., Xn;70)] = —oo) =1 (14)

n—0oQ

Let us denote with S (7, p) the ball with center v and radius p. Given n, it exists ¥ € S (v, p,)

such that

wn (X1, .., X037, py) :logjﬁ(xg.“,k%;img
fn (Xla---aXn;’YO) fn(Xla---an;’YO)

For 7 such as 3 j € {1,...,p} with 53(”) =0, then

log

Wy, (XI: .. .,Xn;")/,p,y)
to = —00 15
S (X X ) (15)

Ifgj(-n) >0,V je{l,...,p}, we have

fn (Xla"' ny Y = hl Zafy( )) fl (Xlaﬁ(n))
1 1 +logl 2 7
o8 Jn (X1, Xm% Z % T (X m) hi (Xi; %) o8 Ji (X157)

Let us separately analyze the two right terms of the previous equation.

Since the function £, is continuous with respect to v on T, if (™ is such that 35](-") — 0 a.s.,

for n — oo, the relation (15) implies

lo — —00 a.s. forn —
8 fn(Xl,---aXn;’Yo)

If ¥™ is such that 60 > &; > 0,Vj = 1, ..., p, Vn, let us note Z; (™) = hy (X33 7™) /by (Xs;70)-
Since the function A, is continuous with respect to v, we have Z; ﬁ(”)) < Z;=h (X3 Vs(i))/hl (Xi;7)
with

,}/5(i):arg sup h1(Xz';’Y')
7' €S(7,p)

But Ex[Z;] = 1. By Jensen’s inequality, we have Eg [log Z;] < log(Ex[Z;]) = 0. Thus

Eg(logZ;] <0 for i=2,...,n

14



By the strong law of large numbers, we have

zn:log Z; 2% —0

€ n—00
=2

fi (X;7™)

Let ¥ =log = 5 30)

. The relation (13) implies E(Y") < 0, then
P(logY = 400) =0

Thus

Wp, (Xla'--aXn;’Yapfy) a.s.
1 — — 1
o8 fn (X17"'7XTL;70) n—00 o ( 6)

We remark that the arguments used for the first term do not apply if we consider only the
log-likelihood function h,. In fact, the supremum of A, does not exist, and consequently 7"

does not exist either.
Then, equation (14) follows from equations (15) and (16). O

In order to take into account the problem of label switching (Redner, 1981, McLachlan and
Peel, 2000, p 118), we follow Redner’s (1981) approach. Hence, we consider Cy = {y € ' /
i (-,7) = hi (-,7%)} and we denote by I' the quotient topological space obtained from I' by
identifying Cy with a point 7. However, for the sake of simplicity, we will keep denoting r by

[' and 7, with v and we will implicitly refer to the topological space.

Theorem 4.2 Let ¥, =7, (X1,...,X,) €T be a function of X1,..., X, such that

fn (Xla e 7Xn77n)
In (Xl, ce ,Xn;%)

>p>0, V X1,...,X,, Vn

Then
P(lim 7,1:70) -1

n—oo

Proof. 1t is sufficient to prove that

ve>0 P(lim7, =7 | |7l <e)=1
n—oo

15



We suppose that there exists a limit 7 of the sequence {7, } such that ||7—|| > €. Since the
penalized MLE is strongly consistent over [n, +00)” (see Redner, 1981), the only possibility is

that min @, € [0,7). But, since ||J — || > ¢, then, using Wald’s technique, we obtain

J=1,..0p
fn (X1: s 7Xn7,y)
sup >p>0 (17)
Yslv—0|>€ fn (Xla s aXna 70)
According to Theorem 4.1, the event (17) has probability zero. O

From the previous result, by considering p = 1, we obtain the following corollary:

Corollary 4.1 The penalized mazximum likelthood estimator is strongly consistent, i.e. the

point v, which mazimizes f, is such that v, 22 Yo-

Let us now consider the speed of convergence and the efficiency of the penalized estimator.

First of all, we suppose that

T #0 and  (ug, 0%) # (nj,05) fork #j, Ve=1,..,p (18)

in order to have a non-singular information matrix

(mﬁsm»<mﬁxm»1

Theorem 4.3 If the parameters satisfy the condition (18) and the penalizing function is such

I(v) = En

that

99 (0)
g(o)

1 bounded for s =1,2,3 and for allo € {001, .. .,O'Op}

then, \/n(3,—0) is asymptotically normally distributed with mean zero and covariance matriz

I(vo) ™. Moreover, the penalized estimator ¥, is asymptotically efficient.

Proof. Since 7, is consistent, we write Taylor’s expansion of dlog f,,(7,)/07, in a neigh-

borhood of 7y, up to the second order. Hence, we obtain the vector equation

— alogfn(i’n) — alogfn(’yﬂ) + (5 t 82 logfn(fVO)

PR 9
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The vector R, (y,7) has the components
Ry (1), = (1 =) B (0 =), k=1,....3p-1

M) il € {1,...,3p—1}

where By is a square matrix with elements By, ;y = (
’ 071070k

and 7,7 is an intermediate point between 7, and 7.
Let us define the vector Ty = By (7,7 — 7o) and the matrix T,(v,)) = (1%, 5, -.., T3p-1).
By multiplying equation (19) by 1/n, and by considering that the penalized log-likelihood

function can be written as

p n
log fo(r) = " log [hl i) [T oo l/n] — S tog fu(Xi )],
=1 j=1 =1

we obtain

t 1 01 Xi; 10%log f, 1 -1
Vi =)' = [ﬁ;%] {‘E%W—%Tn(%f) (20)

Let us now focus on the first term in brackets of (20). By means of Lemma 3.4, application

of the central limit theorem on the set of random variables (0logu(X;;7)/0M)1<ijcn | =

1,...,3p— 1 leads to

log u(X; 1 9@ (a9, 1 X;v)]?
Za ogu(Xisy) 1g (JOJ)]lei)N 0.Ey [3 og b ( ,70)}
i1 oM n g(og;) T oo o

fori=1,...,3p—1, with j =3p — L.

Since ¢(Y)(09,)/g(00;) is bounded, from equation (12) of Lemma 3.4 we have

1 & 0logu(Xi;v) ¢ 0log h1(X;70) dlog hy(X;70) t
%; a0y v (O’EH [( 0 ) ( o ) D 2

Concerning the terms in the second factor of (20), 8%log f,(70)/07? is equal to

S ont () (5 i ()

=1

17



Then, from Lemma (3.5) and the strong law of large numbers, we obtain

10%10g fu(0) as. dloghi(X;7) Y [ dloghi(X;7) )"
——— - 22
R ( 0y )( 0y ) 22)

For the second of the two, since g®® (cq,)/g(0¢;) is bounded, we have

T (07) = o(1) (23)

By taking relations (21), (22) and (23) into account, the asymptotic variance of v/n (7, — 7o)
is I(yo) "
Concerning the asymptotic efficiency of ¥, let us consider the k-component %, of #,.

Then, its efficiency is given by

aloga#vz(%) )} "~ var ()]

_ {nEH (—810“%’“()(”0)]_1 [nEH (—moghl(X;'V") (1—|—0(1))} 1

eOn) = [

5 Remark on generalization

Let f (z;0,€) be a density over I R that degenerates, with respect to the parameters &, in a

finite number of points A,...\; of its parameter space, i.e.
iféE— N, i=1...d, then f(x;0,§)— oc.

Let v; (z,€), i =1...d, be the speed of degeneracy, i.e.

iy 1 @36,6)

=constant >0 Vrel R, i=1...d.
e—=x v (x,€)

18



The method given in this paper can be extended to establish the global consistency of

penalized MLE for the p-mixtures
p
D et (w5 0k, &)
k=1

1
provided that the condition on the penalizing term g: liII(l) —g (o) =0, V n is reformulated
o—0 g"
1
as follows lim ————¢(§) =0 Vz el R, i=1...d, and that the other conditions and
E—=X; V; (.’E, 5)

properties that involve the neighborhood of the origin are reformulated for the neighborhoods

of the points A\;, 1 =1...d.

6 Numerical Examples

We present two numerical examples based on simulated data from a two-class mixture model.
Both are inspired from an example found in Hathaway (1986). Results of our penalized
approach are compared to the ones obtained from the standard maximum likelihood approach,

and to the ones obtained from Hathaway’s constrained approach.

In all cases, parameter estimation is achieved by local maximization of the likelihood
function via the EM algorithm of Dempster et al. (1977).

Hathaway’s constrained estimation is performed by means of a constrained version of the
EM algorithm (Hathaway, 1986).

Concerning the penalized approach, following Ridolfi and Idier (2000), we adopt the in-

verted gamma distribution as penalizing function g

|
g(a):%ﬁexp{—%} a>0, >0

Local maximization of the penalized likelihood function is then achieved by means of a pe-
nalized version of the EM algorithm (Ridolfi and Idier, 2000). Note that, as stated by Hero
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and Fessler (1993), penalizing the likelihood function does not alter asymptotic convergence
properties of the EM algorithm, i.e. as the number of iterations tends to infinity, the resulting
penalized EM algorithm converges to a local maximum of the penalized likelihood function. In
addition, Green (1990) provides the convergence rate of the penalized EM algorithm, proving

that it converges at least as quickly as the standard one.

For each example, we estimate the parameters on the basis of a data set of fifty observations
Z1,-..%50, which have been randomly generated from a two-class Gaussian mixture model. In
order to statistically analyze the estimation, we generate 400 such data sets, obtaining 400
estimates of the parameters, and in particular 400 estimates of (01,02). Due to the effect
of label switching (see McLachlan and Peel, 2000, page 118), we are not able to correctly
assign each parameter estimate to the right class. Hence, the estimates of o; and oy will be

simultaneously represented, obtaining a total of 800 values.

Ezxample 1.  For the first example we consider a mixture model characterized by the
parameters

7T01:0.5 7T02:0.5 ,u01=0 [1,()2:3 0'0%:1 0'()%:9

Concerning Hathaway’s constrained approach, in order to assure that the true parameters
belong to the constrained parameter space, we set (¢, €) = (0.25,0.2). Successively, we choose
the parameters of the penalizing function in order to obtain penalized variance estimates

comparable with the constrained ones. On an experimental basis we choose (o, §) = (0.4,0.4).

The results of the estimation of the variance parameters are represented in the histograms
of Figure 1(a), 1(b) and 1(c), respectively for the standard, the constrained and penalized
maximum likelihood approach. The performances of the EM algorithm for the different ap-

proaches are summarized in Table 1.
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From the histogram corresponding to the standard approach (Figure 1(a)) we can observe
a spreading of the estimates toward the singularity (¢? = 0 hence logo? = —oc). Indeed,
as described in the Table 1, the standard EM converges 3 times to a singular point. From
the histograms corresponding to the constrained and the penalized approach (Figure 1(b) and
Figure 1(c)), and from the minimum estimated values of o (Table 1), we can observe that
they both solve the degeneracy problem and that, for the present mixture model, the results

are very similar.

Ezample 2. For the second example we consider a mixture model characterized by the

parameters

o1 =05 mo=05 po; =0 oy =1 052=0.04 0p>=9

The values of the parameters of the constrained and the penalized approach are kept the

same as in the previous example, i.e. (¢, €) = (0.25,0.2), and («, 8) = (0.4, 0.4), respectively.

The performances of the EM algorithm for the different approaches are summarized in

Table 2.

As expected, Table 2 shows that the standard approach is still affected by the degeneracy
problem. On the other hand, the behaviour of Hathaway’s approach critically depends on
the fact that the constrained domain actually contains the true parameter value 6,. Here,
the quality of the estimation is poor, since 0g;/09s = 1/15 < ¢ = 1/4, i.e. the true variance
parameters do not belong to the constrained parameter space. On the contrary, the penalized

approach still gives a meaningful point estimate, as in the previous example.
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7 Concluding remarks

We have provided asymptotic properties and in particular a consistency proof for the penalized

maximum likelihood estimator proposed by Ridolfi and Idier (2000).

Among consistent estimators, we argue that the penalized maximum likelihood estimator

outperforms Hathaway’s (1985, 1986) constrained maximum likelihood estimator.

Firstly, the choice of the constraint c is critical in the latter. In this regard, as mentioned
in McLachlan and Peel (2000) finding the “good” rate of decrease of ¢ as a function of the
sample size is an open issue. Such a problem does not affect the penalized approach, since the
effect of the penalizing term naturally disappears as the sample size n increases to infinity.
Moreover, as exemplified in Section 6, choosing the parameters of the penalized approach is
not a critical question.

Additionally, as stated by Ridolfi and Idier (2000), choosing the inverted gamma distribu-
tion as a penalty term introduces remarkably few and trivial changes in the EM re-estimation
formulas. In comparison, Hathaway’s constrained approach is not as simple to implement,

since it does not result from an obvious alteration of the standard EM re-estimation formulas.
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Figure 1: Histograms of the estimates of the variance parameters. The dashed line indicates
a rupture toward infinity of the x axis, while the two solid lines indicate the true values of

log o2, i.e. logog, and logoj,.
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Table 1: Results of the parameter estimation by mean of the standard, the constrained and the

penalized EM algorithm (Exzample 1).

minimum estimated value of 02 | average number of iterations

standard EM 0 (3 occurrences) 114
constrained EM 0.229 103
penalized EM 0.187 110
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Table 2: Results of the parameter estimation by mean of the standard, the constrained and the

penalized EM algorithm (Example 2).

minimum estimated value of 0? || average number of iterations

standard EM 0 (4 occurrences) 52
constrained EM 0.131 44
penalized EM 0.042 48
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