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Abstract. SPOT satellites imaging instruments acquire rows of up to 6000 ele-
ments using a CCD linear array. The other dimension is obtained by the column-
wise scanning resulting from the motion of the satellite. In practice, the responses
of the detectors are not strictly identical along the array, which generates a stripe
effect in the direction of columns. Our aim is to perform the calibration of the
detectors response from the observed image, without supervision, in the restricted
case of perfectly linear responses.

In a Bayesian framework, we rely on a first-order Markov model for the im-
age and on a Gaussian model for the gains of the detector. The MAP estimate
minimizes a criterion, quadratic, convex, or non convex according to the chosen
Markov model.

In the quadratic case, MAP computation amounts to solving a tridiagonal lin-
ear system. In the other cases, we take advantage of introducing an equivalent
augmented half-quadratic criterion, which can be minimized by iterately solving
tridiagonal linear systems. Minimizing non convex criteria provides the best re-
sults, although convergence towards the global minimizer is not ensured in this
case.
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1. Problem Statement
1.1. IMAGE FORMATION

SPOT (Satellites Pour I’Observation de la Terre, earth observations satellites)
imaging instruments are designed to acquire complete rows of 3000 pixels in mul-
tispectral mode and 6000 in panchromatic mode, using a CCD linear array. The
other dimension is obtained by the column-wise scanning that results from the
motion of the satellite along its orbit (see Figure 1). In practice, the response of
the detectors are not strictly identical along the array, which generates a stripe
effect in the direction of columns that must be compensated for.

Figure 1. Image formation of SPOT satellite instrument.

1.2. DETECTORS MODEL

As a first approximation, the detectors response can be considered linear. Perfect
detectors having an identity response, imperfections then correspond to unknown
gains g, > 0, one for each column of pixels. The relation between the perfect data
(data from perfect detectors) = {@r,c}r=1..R,c=1..c (row r, column ¢) and actual
data ¥ = {yrc}r=1..-R,c=1..c can thus be written:

Yrc = GcTr,c (1)

which is a multiplicative relation. An equivalent relation can be written using the
logarithm of (1): logyr. = logg. + log z, .. For simplicity, we will note hereafter
y' = {y..} = {logyrc}, ' = {z} .} = {logz,.} and g' = {g.} = {logg.} which
leads to the additive relation:

Yre = 9o+ Ty 2)
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1.3. CALIBRATION

At the present time, identification of the gain of the detectors is performed during
calibration phase. During these phases, the satellites imaging instruments observe
a landscape that is as uniform as possible, such as the poles. In such experimental
conditions, even a simple empirical estimator (as will be presented in §2.1) can
give satisfactory estimated gains. Such a calibration system is used periodically to
check and, if necessary, adjust the detectors response.

The objective is to estimate the gains g = {gc}c=1..c from any SPOT image
(typically, of R = 6000 rows and C' = 6000 columns). Since the perfect data z, . are
unknown, such a problem is heavily indeterminate. On the other hand, we can rely
on statistical redundancy, since only C' unknown gains have to be estimated from
R x C measured pixels. The simplest approaches are based on empirical statistics
(§ 2.1), whereas our contribution explicitly introduces a model for the true scene z,
so that it can be integrated out of the problem to define and maximize a likelihood
function (§ 2.2 and § 2.3).

2. Gain estimation
2.1. EMPIRICAL ESTIMATES

From an empirical viewpoint, we can define estimates that converge towards the
true gains for an infinite number of acquired rows, in an ergodic stationary statisti-
cal framework. In such a framework, the empirical mean of a column
E Dore1Yrc = Jeg opei Tr,c is assumed to converge towards g.m, where m, =
E[X, ] is the mean of the perfect data, while the empirical mean of the whole
image% Zle 25:1 Yre converges towards m;E[g.] = m, (if we assume E[g.] =
1). Then one can define

R
P = C o1 Yre
c C R
Zc’:l Er:l Yr,!

which is expected to converge towards g..

However, as will be seen in §4.2, such an estimator is very sensitive to the
observed landscape for a limited number of rows. A more robust version can be
defined, in which the mean of the image is computed locally w.r.t. columns, using
a window {wg }g=—r..r- For columns c=L+1,...,C — L, let

)

R
a_ CLEDEE
¢ L R ’
Zg'—:c_[, (wc’—c Zr:1 yr,c’)

2.2. MAXIMUM LIKELIHOOD ESTIMATOR

If a probabilistic law with a density px is chosen for &, then a likelihood L(g ;y) =
py(y ;9) can be defined. Considering the multiplicative relation (1) as a change
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of variables between random vectors X and Y, we have

1 - s - -
py(y;9) = ciRpX(w)a with & = {Z,.} and &= & 3)
Hc:1 e 9ge

The additive relation (2) expresses an even simpler change of variables between
X' and Y

pyi(y' 19" =pxi (&), with & = {:Ef,’c} and a":lm =yl — 4.

2.2.1. Model for the image

In the following, we have adopted a basic Markovian structure for the image X,
which is widely used in the field of image restoration. The chosen model is a first-
order Markov field, with pairwise interactions restricted to differences between
neighboring pixels:

px(x) = exp {—% > bom - xn)} @)

m~n

where m ~ n means summation over all distinct pairs {m,n} of neighboring sites.
Note that such a model is improper since fw px () de = 400, but this happens
to be of no practical consequence in the present context.

Classically, one chooses ¢ as an even function, non decreasing on R*, such as

z? quadratic
|| L; norm

¢(z) = Vs2+x2 hyperbolic (5)
Szi—; non convex [1]

Whereas the first two have a uniform behaviour over R, (respectively, quadratic and
linear), the other two behave quadratically near zero while they are asymptotically
linear or constant, respectively. The change of behaviour roughly happens around
the threshold parameter s, as seen on Figure 2.

For the logarithmic version X', we have tested the same Markov model with
the four possible definitions for ¢.

2.2.2. Likelihood criteria
From the multiplicative relation (1), according to (3) and (4), the maximum like-
lihood (ML) estimate minimizes the criterion:

Tun(g) =7 300 (e - et ) o L5 (B ) s RS ().

e e Jet+1 e
(6)

The first and second terms correspond to horizontal and vertical neighbors, re-
spectively, and the last term to the change of variable in the probability law (3).
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Figure 2. Four functions defined by (5). The last two are depicted for s = 1.

In the additive framework (2), similarly, the maximum likelihood estimate min-
imizes the criterion:

1
Tun(9) = 7 D 6((0e = vre) = (gerr = Vrern)) (7)
r,c
in which only the terms corresponding to horizontal neighbors appear.

2.3. MAXIMUM A POSTERIORI ESTIMATE

Without additional information, the problem is still globally indeterminate, since
couples (ag,iz) are equally likely for any o > 0. In the additive framework,
because the Markov model (4) is invariant through the global translation  —
x — loga, (7) is invariant through the transformation g — ag, a > 0. In the
multiplicative framework, the Markov model (4) is scale invariant up to a change
of hyperparameter value (T, s), so that the indeterminacy is still present.

Modeling the gains as random variables of mean E[g.] = 1 provides an easy way
of alleviating the indeterminacy, so we are naturally led to Bayesian estimation
scheme. In particular, the maximum a posteriori (MAP) estimate maximizes the
posterior law pg|y-

Considering an i.i.d. Gaussian law for the gains or for the log of the gains (of
mean E[g!] = 0 in the latter case), the MAP estimate maximizes the criterion:

Tuar(g) = Jurle) + 5 3 (g~ 1)’ ®

in the case of the multiplicative relation, and:

1
Thrar(9') = T (') + %92 (92)° 9)
9 ¢

in the additive counterpart. Both criteria can be seen as penalized versions of
corresponding maximum likelihood criteria (6) and (7).
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3. Optimization
3.1. SPECIAL CASE OF ML FOR THE ADDITIVE RELATION

The computation of the maximum likelihood estimate in the additive case (2)
is particularly simple from the optimization viewpoint. Let us introduce dg! =
gL — gL,1. Then, criterion (7) reads

JJZWL((Sgl) = Z ¢(6gi - 5y£-c)7

TC

with &yl = Syl — dylm +1- Such a criterion is separable and each variable dg’ can
be computed as the minimizer of

Tz (89%) =) 689k — Syhc). (10)

In the special case of a Gauss-Markov model for the image ((4) for ¢(z) = z?),
the ML estimate of dg' can be computed explicitly as the empirical mean of Jy’.,
within column c. For ¢(z) = |z|, it can be computed as the median value of column
¢. For other choices of ¢, a unidimensional search algorithm as to be implemented
to compute the estimates.

3.2. QUADRATIC CASE ¢(X) = X2

Minimization of a quadratic criterion amounts to solve a linear system. In the
case of the additive relation (2), ML and MAP criteria (7), (9) are quadratic if we
consider a Gauss-Markov model (¢(x) = x2) for the logarithm of the image.

Such a condition is not sufficient to grant linearity in the multiplicative case.
Although attenuations @ = {ac}e=1..c, ac = 1/g. intervene linearly as arguments
of functions ¢, the change of variable also introduces a logarithmic term in (6)
or (8). Since the gains are known to be close to one, we can approximate log |a.| &
a.—1and 1/a. = 2 — a.. This leads to the following expressions

1 1
JML(a) = T Z(acyrc - ac+1yr,c+1)2 + T Z ag(yrc - yr+1,c)2 - Rzacy (1]-)
c

T,C T,c

Tuar(@) = Jur(@) + 5 Y (ac— 1), (12)

Finally, the minimizers of (7), (9), (11) and (12) can be computed at a very
low numerical cost as the corresponding linear systems are tridiagonal.

3.3. NON QUADRATIC CASES

The efficiency of non quadratic functions ¢ have been proved in the construction
of edge-preserving models for image restoration [1,2]. Although the optimization
is not as simple as in the quadratic case, one can take advantage of introducing
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augmented half-quadratic criteria as proposed in [3,2,4]. Such criteria are quadratic
functions of the main unknowns (i.e., pixel intensities in image restoration), but
they also integrate auxiliary variables, so that half-quadratic criteria are globally
non quadratic. Following Geman and Reynolds [3], the construction of such criteria
is based on the following duality theorem.
If ¢ is even, continuously differentiable and ¢(,/-) is concave on R, 3¢ such
that: . .
$(u) = inf(bu” + (b)) = bu’ + (b)

where 9(b) = sup(¢(u) — bu?) and

b hmu—> + ¢I(U)/2U ifu= 0,
b= { ¢I(“)/02U otherwise. (13)

In the present context, the unknowns are not pixel intensities but gain or
attenuation values. Half-quadratic criteria can be easily deduced from the ML (7)
and MAP (9) criteria and also from the approximate ML (11) and MAP (12)
criteria. The number of required auxiliary variables is 2(R — 1)(C — 1) for the
multiplicative relation:

1
Kun(ab) = 73 (hlacre = acpasnen)* +9(07)
T Z re(@c(Yre — Yria, C)) +4(by. RZac,
1
KMAp(a,b) = KML(a b)+2—2 (ac—l)z,

c

and only (R — 1)(C — 1) for the additive relation:

KﬁWL (gl7 b) = T Z brc yrc (gi-i—l - yi,c+1))2a

1 2
Kiap(g',b) Khy (g, b)+2 2 (gi) .

[

Minimization of such an augmented criterion can be performed by alternate
descent on the original unknowns and on the auxiliary variables [2,4].

— Minimization with respect to the original variables g' or @ when b is held
constant amounts to solve tridiagonal linear systems, akin to §3.2.

— Minimization with respect to the auxiliary variables b when g’ or a are held
constant can be performed separately for each b,. and the solution is explicitly
given by (13).

Moreover, in such an alternate minimization scheme, there is no need to store
auxiliary variables b, but only to update the tridiagonal system with their current
values. Compared to classical descent algorithms, such algorithms are easy to im-
plement since only a tridiagonal linear system is solved at each iteration, and no
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line search is required. Still, convergence is guaranteed for the hyperbolic case and
almost any other convex function ¢ [4]. In the case of non convex functions, the
same procedure can still be used but it can be stuck in a local minimum [5]. In
our context, convergence is reached in less than 20 iterations.

4. Simulations and results
4.1. IMAGES SIMULATIONS

To compare the different approaches we worked on simulated data, for which both
perfect data {z,.} and gains {g}} are known. We simulated the SPOT acquisition
process from a photograph with a resolution of one meter (see Figure 3). We
artificially placed a mirrored image next to the original one. The result is double
width image of C' = 1814 columns and R = 2380 rows.

noise

Photo ——={ Instrument N% e
Im

Figure 8. Simulated SPOT acquisition process.

The applied gains g* (see Figure 4) were generated randomly using an uniform
i.i.d. law on [0.975 ; 1.025], which corresponds to the order of magnitude of the gains
estimated during calibration phases. Of course, no mirroring has been accounted
for in the sampling of the gains.

9e [FFT{g;}|

1.05 T T T 2

1.5r

o5l I \“‘H\\‘
I

500 1000 1500 0 0.1 0.2 0.3 0.4 0.5

column c normalized frequency
Figure 4. Spatial and frequential representation of the simulated gains g .

Two indices have been used to quantify the quality of the estimated gains:

L (3 )
OR = 52 =-1), maxV:mcaX

& _ gc—i—l

[ 9:-4-1

)
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namely, normalized mean square error o g and visual mazimum maxy . The interest
of the latter is to provide the maximum calibration error between two neighboring
columns.

4.2. EMPIRICAL ESTIMATES

The gains are very badly estimated with the empirical estimate g° (o = 9.6%
and maxy = 2.89%) as it is very sensitive to the observed landscape. Indeed, one
can clearly see on Figure 5 that the mirroring effect performed on « is retrieved
on the estimated gains.

When the image mean is computed locally, relatively good results can be ob-
tained. We have computed g! with a rectangular window wy = 1/9,k = —4 - 4.
The corresponding indices are og = 0.79% and maxy = 2.19%, if columns near
the boundaries of the image are discarded. One could still try to improve such a
result, e.g. using other shapes than rectangular windows.

g 9

0 500 1000 1500 0 500 1000 1500

column ¢ column ¢

Figure 5. Spatial representation of the gains estimated empirically estimated with _32 and 33

4.3. ML ESTIMATES

As seen in § 3.1, the ML estimate for the additive relation (2) is interesting to study
as it leads to a set of C'—1 univariate minimization problems. The minimizers have
close-form expressions for ¢(x) = z? and ¢(x) = |z| but not for ¢s(z) = /52 + x2
and ¢(z) = 5.

Akin to the empirical estimation using g%, the obtained results are very sen-
sitive to the observed landscape. The very low frequencies of the gain (in the
range [0 ; 0.05]) are overestimated (see Figure 6). One can try to filter out very
low frequencies, although such a procedure is purely ad hoc. Performance of such
filtered estimates are gathered in TABLE 1 for best values of the threshold param-
eter s in the last two cases. Low frequencies in the range [0 ; 0.05] have been cut,
as depicted by Figure 6. Such results clearly show that edge-preserving models
(p(z) = Vs2 + 22 and ¢(z) = sgi—zg)) outperform the two simpler alternatives.
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without filtering with filtering
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\
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normalized frequency normalized frequency
Figure 6. Frequential representation of the gains estimated with the ML estimate, with

¢(z) = x2, in the additive case.

o(x) s OR maxy
x? 0.75% 1.85%
|| 0.72%  2.70%

vsZ+z2 001 053% 0.90%
2
sgmw 0.05 0.49% 0.68%

TABLE 1. Performance of filtered ML
estimate for the additive case.

Since only univariate criteria (10) have to be minimized in the additive ML
case, one can easily study the unimodality of such criteria, even in the non convex
case of ¢s(x) = SQi—QwZ Figure 7 depicts one such criterion for three different
values of parameter s. For s = 0.05, which gave the better results, the criterion
is unimodal. For large values of s (e.g., s = 0.5), the criterion is even near to
quadraticity. For small values of s (e.g., s = 0.01) local minima appear. The shape
of i, (69) =, #(6g — 6y,) can be studied more precisely using an asymptotic
viewpoint: if we assume that dy, are all samples from a random variable Y, then
we can expect that the basic asymptotic statistical result

Vig. lim — 3" 66— 6yr) = Bay[(6g — o))

almost surely. Let us also assume that the probability law of §Y admits a density

fsv:
Esy [6(6g — 6Y)] = / 6(69 — u) foy (w)du = (& * f5v)(89).

Hence, JY;; converges to a smoothed version of fsy for a sufficiently high number
of processed rows. Since f5y can be expected to be a nicely unimodal function, J4,,
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will tend to a unimodal criterion provided that ¢ is unimodal. In the finite data
case, since we have J4;; = ¢* > dsy, if 6, denotes the shifted Dirac distribution
around u, unimodality of J4,; can be reached if ¢ is smooth enough, even if it is
not convex.

Jir(z), s=0.5 Jir(z), s=0.05 Jr(z), s =0.01

(or = 0.68%, maxy = 1.72%) (or = 0.49%, maxy = 0.68%) (ocr = 1.24%, maxy = 4.97%)

350 2300)
300 2000 2200
250) 2100
200 1500 2000
150| 1900
100| 1000 1800

50 1700|

_a®
2422

Figure 7. Representation of J4,; (0g%) = > #(0g. — dyk.) with ¢s(z) =
columns and various values of s.

for 5 different

We do not report ML estimation results for the multiplicative relation (1), since
they also tend to overestimate low frequencies of the gain sequence, while this case
does not benefit from the same structural simplicity as the additive counterpart.

4.4. MAP ESTIMATES

In the case of MAP estimation, neither the additive nor the multiplicative rela-
tions yield a separable criterion. However, the additive relation (2) still provides
a simpler estimation structure. Firstly, no approximation is required to obtain
quadratic or half-quadratic criteria. Secondly, there is one hyperparameter less in
the additive structure, since T and o7 only intervene through the ratio T'/o? (in
the following, we have chosen T = 1). Finally, we have found experimentally that
results obtained for the multiplicative relation are not as good as for the additive
one, so we will not comment on them hereafter.

TABLE 2 gathers the best results (with respect to s and ag) obtained for
different functions ¢. Such results were obtained without any post-filtering opera-
tion, contrarily to ML estimation. Once again, edge-preserving functions provide
significantly better results, and the non convex behaviour of ¢(z) = 521—22 reveals
preferable to any other choices.

It is interesting to study the frequency representation of the estimated gains
with respect to the parameter 03. The resulting spectrum is plotted on Figure 8

for ¢(z) = Sﬁ—gﬁz with s = 0.05, for three contrasted values of 03. As expected,
for large values of 03, MAP estimation becomes equivalent to ML estimation and
leads to overestimated very low frequency components. For values of 03 around
the optimum tuning, it appears that low frequency components are slightly un-
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¢ s 0’3 OR maxy

z? 8e~% 0.63% 1.54%
VsZ+zZ 0.01 3e~* 049% 0.88%
ﬁ 0.05 5e=5 0.43% 0.50%

TABLE 2. Results obtained with the MAP
estimator for the additive relation.

derestimated. At very low frequencies, it is very difficult to separate between the
contributions from the gains and from the landscape.

2 __ —6 2 __ -5 2 __ —4
o, = e o, = de o, = de
(cr = 0.58%, maxy = 1.03%) (0r = 0.43%, maxy = 0.50%) (or = 0.54%, maxy = 0.56%)

H

1.5]

05 Wl ‘H “\

ol
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

normalized frequency normalized frequency normalized frequency

Figure 8. Frequency representation of the gains estimated using MAP in the additive case, for
three values of o7 (T = 1).

5. Conclusions and perspectives

Imperfect detectors in a CCD linear array generate a stripe effect when the array
is used to scan images. This is a non negligible source of degradation in SPOT
satellite imaging system. Accurate estimation of each detector response is required
in order to compensate for the imperfections. In the present paper, a statistical self-
calibration method has been proposed to perform linear correction. Self-calibration
means that no specific training data is required, in contrast with current procedures
that involve periodical calibration phases.

Our approach is based on a statistical spatial model for the observed image. The
best results are obtained with a Markov model for the logarithm of pixel intensities,
associated to a non convex energy, when a posterior likelihood is maximized with
respect to the logarithm of detector gains. The corresponding prior is a simple
i.i.d. centered Gaussian law.

We are presently extending our contribution to a generalized non-linear model
for the detectors response. It makes the detectors response g. depend on the current



STATISTICAL SELF-CALIBRATION OF SPOT 13

pixel intensity x,., according to the following three parameter model:

9e(xre) = (e — Bee™ ™" )Zpe, ac =1, B =0, 7. > 0.
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