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Abstract In this paper, we propose a fast numerical
scheme to estimate Partition Functions (PF) of sym-
metric Potts fields. Our strategy is first validated on
2D two-color Potts fields and then on 3D two- and
three-color Potts fields. It is then applied to the joint
detection-estimation of brain activity from functional
Magnetic Resonance Imaging (fMRI) data, where the
goal is to automatically recover activated, deactivated
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and inactivated brain regions and to estimate region-
dependent hemodynamic filters. For any brain region,
a specific 3D Potts field indeed embodies the spa-
tial correlation over the hidden states of the voxels
by modeling whether they are activated, deactivated
or inactive. To make spatial regularization adaptive,
the PFs of the Potts fields over all brain regions are
computed prior to the brain activity estimation. Our
approach is first based upon a classical path-sampling
method to approximate a small subset of reference
PFs corresponding to prespecified regions. Then, we
propose an extrapolation method that allows us to
approximate the PFs associated to the Potts fields
defined over the remaining brain regions. In compar-
ison with preexisting methods either based on a path-
sampling strategy or mean-field approximations, our
contribution strongly alleviates the computational cost
and makes spatially adaptive regularization of whole
brain fMRI datasets feasible. It is also robust against
grid inhomogeneities and efficient irrespective of the
topological configurations of the brain regions.

Keywords Markov random field · Potts fields ·
Partition function · fMRI · Bayesian inference ·
MCMC · Detection-estimation

1 Introduction

In medical image analysis, one is often interested in
recovering spatial structures. A simple but suboptimal
approach to enhance signal-to-noise ratios (SNR) con-
sists in spatially smoothing the datasets at the expense
of a loss of spatial resolution. A more challenging
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approach works on the unsmoothed data by the intro-
duction of prior knowledge on the sought spatial struc-
tures. Spatial information is usually embedded in local
interaction models such as Markov Random Fields
(MRFs), which depend on a set of hyper-parameters.
For instance, in symmetric Potts models, the temper-
ature level controls the amount of spatial correlation.
In the present fMRI application [1, 2], which aims to
jointly detect the cerebral activations and estimate their
dynamics from the 4D signal, the MRF definition is
region-specific. Indeed, the Hemodynamic Filter (HF)
modeling the impulse response of a brain activation in
the fMRI signal, is assumed to be invariant only locally.
Neuroimaging data is accordingly segmented into �

functionally homogeneous irregular parcels [3], the or-
der of � being several hundreds. This leads to a region-
based analysis where � independent HFs are identified.
Each model yields a HF shape estimate and spatial
mixture models (SMM) are jointly expressed on the
amplitude of the HF for every stimulus type to perform
activation detection. SMMs in turn imply the involve-
ment of discrete Potts fields to model spatial cor-
relation. Therefore, several hundreds of temperature
levels are automatically estimated, since such para-
meters may be different when considering different
brain regions and their hand-tuning is reasonably un-
achievable. In [2], an unsupervised and adaptive reg-
ularization scheme dedicated to two-class Potts fields
and SMMs has been developed. Here, we extend this
framework to L-class Potts fields with a direct applica-
tion in functional brain imaging that aim to segregate
activating, non-activating and deactivating voxels.

Section 2 is dedicated to the formulation of the
partition function (PF) estimation problem for Potts
fields. In Section 3 several techniques of PF estimation
are presented. The main contribution of this paper lies
in Section 4 where a fast extrapolation technique for
Potts fields PF estimation is proposed and validated
both in the 2D and 3D context. The 2D situation offers
the opportunity to provide a ground truth to the PF
computation for the two-class Potts fields. The 3D
extension is of particular importance since it matches
our application setting. The application to the Joint
Detection Estimation (JDE) of brain activity in fMRI
is presented in Section 5. Conclusions are drawn in
Section 6.

2 Problem Statement

Let us consider a grid characterized by a set of sites
s = {i = 1, . . . , n}. A label qi ∈ {1, . . . , L} is associ-

ated to each site i ∈ s where L denotes the number
of classes. A pair of adjacent sites i and j (i �= j) is
denoted by i ∼ j and is called a clique c. Equivalently,
we denote the neighborhood of i as the set Ni =
{ j ∈ s/ i ∼ j and i �= j}. The set of all cliques allows
us to define an undirected graph denoted by G. Let
q = (q1, q2, · · · , qn) ∈ {1, . . . , L}n be the set of labels
associated to s. In what follows, we assume q to be
distributed according to a symmetric Potts model:

Pr(q|β) = Z (β)−1 exp (βU(q)) , (1)

where U(q) = ∑
i∼ j I(qi = q j) is the global “negative

energy” and I(A) = 1 whenever A is true and 0 oth-
erwise. The Gibbs distribution (1) defines a Markov
random field (Hammersley-Clifford theorem [4]) and
thus satisfies the two properties:

∀q, Pr(qi | qs\{i}) = Pr(qi | q j, j ∈ Ni) and

∀q, Pr(q | β) > 0.

The inverse temperature β ≥ 0 controls the amount
of spatial correlation between the components of q

according to G. The partition function (PF) Z (β) reads∑
q∈{1, ..., L}n exp (β U(q)) and depends on the geometry

of G. Its exact evaluation in a reasonable amount of
time is impossible except on tiny grids [11]. Robust and
fast estimation of Z (β) is thus a key issue for numerous
3D medical imaging problems involving Potts models
and more generally discrete MRFs. Due to our appli-
cation, we applied the methods we present using 2 and
3-class Potts fields on 3D grids having a 6-connectivity
system. The formula we present can however be used
on general L-class Potts fields.

3 Partition Function Estimation

Several approaches have been designed to estimate a
single PF [5–7]. Path-sampling [6] is an extension of
importance sampling for estimating ratios of normaliz-
ing constants, by considering series of easy-to-sample
unormalized intermediate densities. Such a strategy
was proven efficient to tabulate the PF for 2-class
Potts fields; see [8] for details. Algorithms with poly-
nomial time complexity [7, 9] provide efficient alter-
natives to a single PF estimation. However, none of
them is able to perform numerous PFs estimation for
Potts fields of variable size and shape in a reason-
able amount of time. Since several hundreds of such
grids are manipulated in our fMRI application, fast
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estimation of multiple PFs is necessary. To this end,
after presenting some PF estimation techniques in this
section, we propose in Section 4, a hybrid scheme which
consists in resorting to path-sampling to get log-scale
estimates (log ẐGp(β))p=1:P in a small subset of refer-
ence graphs (Gp)p=1:P out of the brain regions to be
analyzed and then in using extrapolation formulas to
obtain log Z̃T (β) for the large remaining set of regions,
each of them referenced by a test graph T for the sake
of notational simplicity.

3.1 Path-sampling Method

The path-sampling method is based on an importance
sampling strategy [6]. It consists in studying distribu-
tions of interest using samples generated from other
well-chosen distributions, called importance distribu-
tions. In the context of L-class Potts fields, we can use
path-sampling to estimate Z (β) for β around β0 using:

Z (β) � Z (β0)
1

M

M∑

m=1

exp (βU(qm))

exp (β0U(qm))
. (2)

where Z (β0) is supposed already known and the
{qm, m = 1...M} are distributed according to P(q | β0)

and sampled using the Swendsen-Wang algorithm [10].
Note that, to avoid numerical overflow, Eq. 2 is usually
used in logarithmic scale. In what follow, log-PF refers
to the logarithm of a partition function. The PF of a
Potts field can then be estimated robustly on a dense
grid of β values by estimating iteratively the values of
Z (βk) using Z (βk−1), where βk = k�β, k ∈ {0, · · · , K},
the first value Z (0) being explicitly given by Z (0) =
Ln, where n is the number of sites in the field. More
details are given in [8].

3.2 Partition Function Estimation Using
the Mean-field Theory

For comparison purpose, we recall here the background
theory of mean-field approximation, developed for the
general case of non-symmetric Potts fields, into a set
of equations for the estimation of partition functions
of symmetric Potts models. For a thorough analysis of
the general framework the reader may refer to [9]. In
this context, we use the following notations. The nega-
tive energy of a symmetric Potts model is equivalently
defined by: U(q) = U(w) = ∑

i∼ j w
t
iw j where each wi

is a binary vector of length L having only one non-zero
component corresponding to the value of qi (e.g., qi = l

implies wil = 1 and wil′ = 0 for l′ �= l). The negative
energy can then be written as:

U(q) = U(w) = 1

2

n∑

i=1

wt
i

∑

j∈Ni

w j. (3)

Let ω = {ωi, i ∈ s}, where
∑

l ωil = 1, be the mean field
associated to variables W = {Wi, i ∈ s} at a given in-
verse temperature β. The mean field approximation
Pr MF(w) of the Gibbs distribution (1) is defined as:

Pr MF(w | β) =
n∏

i=1

Pr
i

MF(wi | β) (4)

where Pri
MF(wi | β) = Pr(wi | β, ωNi) and Pr i

MF(wi | β)

denotes the conditional probability of wi given ω j =
ω j for all j ∈ Ni. It follows straightforwardly an ex-
pression of Pr MF as a Gibbs distribution of the
form (1): Pr MF(w | β) = exp

(
βU MF(w)

)
/Z MF(β)(β),

where U MF and Z MF(β) denote the energy and the par-
tition function, respectively, and are easy to compute
given the factorization property (4). Their expressions
are given in Appendix C. Using symmetries for all i =
1, . . . , n and considering ω = {ωi, i ∈ s} as the means of
the variables W = {Wi, i ∈ s} in a L-class Potts model
and at a given inverse temperature β , we can write:

ωil =
exp

(

β
∑

j∈Ni

ω jl

)

∑

l′
exp

(

β
∑

j∈Ni

ω jl′

) ,

∀i ∈ 1, · · · , n and ∀l ∈ 1, · · · , L (5)

The mean field approximation consists in solving this
fixed point equation iteratively. Note that this equation
can be solved sequentially over the sites. After con-
vergence we use the solution ω to define (4). Interest-
ingly, as developed in [9] and shown in Eqs. 17 and 20
of Appendix C, the mean field allows us to estimate
the PF:

Z MF(β) =
n∏

i=1

L∑

l=1

exp

(

β
∑

j∈Ni

ω jl

)

, (6)

It can be shown (see Appendix C) that a better approx-
imation is given by:

Z GBF(β) = Z MF(β) exp

(

− β

2

n∑

i=1

L∑

l=1

ωil

∑

j∈Ni

ω jl

)

, (7)
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The corresponding log-PF estimates log Z MF(β) and
log Z GBF(β) are defined by directly taking the log in the
above equations.

3.3 Linear/bilinear Regression Schemes
for Potts Fields

In [8], the authors have proposed a linear regres-
sion procedure to estimate quickly the log-PFs of 2-
class Potts models for test grids, each of them being
referred by T . This approach consists in estimating,
first, the log-PFs of P reference Potts fields defined
on the grids Gp using a robust approach such as the
path-sampling. The log-PFs are computed for values
of β: βk = k�β. A linear regressor âk of the log-
PF as a function of the number of cliques in T is
then computed, for every regularization level βk. Esti-
mates of log Z̃T (β) are then linearly computed using
the estimated regression coefficients and the number
of cliques in T : log Z̃T (βk) = âkcT at each regular-
ization level βk. A bilinear extension of this tech-
nique, which takes both the number of cliques cGp

and sites sGp in the grid into account, has been devel-
oped in [11]. The regression coefficients (̂ak, b̂ k and
ĉk) are obtained by minimizing the least square crite-
rion

∑P
p=1 ‖ log ẐGp(βk) − akcGp − b ksGp − ck‖2. Then,

βk-dependent bilinear extrapolation formula applied
to any 3D Potts field defined on a test grid T :
log Z̃T (βk) = âkcT + b̂ ksT + ĉk. Note that the log-PF
estimates for β values outside the β-grid are obtained
using linear interpolation between its two closest val-
ues on the β-grid. This extension was shown efficient
to compute accurate estimates for small and irregular
graphs1 such as those appearing in our fMRI applica-
tion. Indeed, as illustrated in Fig. 1, at a fixed number
of cliques, the larger the number of sites, the larger the
log-PF whatever the regularity of the reference graphs.
The dependence of log ZGp on sGp at constant cGp be-
comes much more important at small β values. Hence,
the bilinear extension of [11] significantly improved
estimation performance for small and irregular grids.
However, the accuracy of linear/bilinear log-PF extrap-
olations strongly depends on the homogeneity and the
number of reference grids: the less homogeneous the
reference set, the larger the approximation error. These
reasons motivate the development of a more reliable
and versatile approach.

1Here, irregular refers to equally spaced Cartesian graphs of non-
parallepipedic shape.

Figure 1 Examples of log-PF values for β = 0.5 as functions of
the number of cliques c and sites s. The projection onto a plane
c = constant is depicted to show the dependence on s.

4 Fast and Robust Extrapolation Technique

4.1 Method

Our extrapolation technique proceeds in two steps:
1) Akin to [8], reference log-PFs log ẐGp(βk) are
estimated using path-sampling. The topological
configurations of the reference grids (Gp)p=1:P can be
inhomogeneous to cover diverse situations that may
occur when dealing with a brain parcellation. 2) For
any test grid T , the quantity log ZT is approximated
from a single reference log-PF estimated out of
(log ẐGp(β))p=1:P selected by an appropriate criterion.
Let ni be the number of neighbors for site si of T .
We then define rT = σn,T /μn,T as a measure of grid
homogeneity where μn,T is the mean of the si over
T and σn,T is the corresponding standard deviation:
the smaller rT the more regular T . Our topological
similarity measure, given by LT (Gp) = ‖rT − rGp‖2,
helps us to choose the closest reference grid Gref to T
in combination with the approximation error criterion
AT (β,Gp) defined by:

AT (β,Gp) = ‖ log ZT (β) − log Z̃T (β,Gp)‖2

/ ‖ log ZT (β)‖2

with log Z̃T (β,Gp) = cT
cGp

(log ẐGp(β)−log L)+log L,

(8)

where (cT , cGp) and (nT , nGp) are the number of cliques
and sites of the L-color Potts fields defined over T
and Gp, respectively. The reference grid Gref is exhibited
using a min-max principle, which consists in minimizing
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Figure 2 Path-sampled estimates of the reference log-PFs
log ẐGp(βk), p = 1 : 4 in green. Log-PF estimate found by path-
sampling for the test field log ẐT in red (ground truth). Our
extrapolation method based on Eq. 8 provides a log-PF estimate
log Z̃T represented by crosses-line (+) and superimposed with
the ground truth.

the maximal approximation error A(β,Gp) with respect
to all reference grids (Gp)p=1:P. In Appendix B, it is
shown that A(0,Gp) = maxβ A(β,Gp), ∀Gp, whenever
the grid homogeneities in Gp and T are similar. Hence,
we get:

Gref = arg min
(Gp)p=1:P

AT (0,Gp) subject to LT (Gp) ≤ ε (9)

and AT (0,Gp)
�= ‖(nT − 1)−cT (nGp −1)/cGp‖2/n2

T

(10)

where ε > 0 is a positive threshold fixed by hand. Once
Gref has been identified, the log-PF estimate in T is
thus given by log Z̃T (β,Gref) according to Eq. 8. Our
extrapolation formula (8) is interestingly built up ac-
cording to two principles: 1) an unbiased asymptotic
approximation error2 and 2) an exact approximation of
(log ZT (β))′ for β → 0+. These principles are summa-
rized in Appendix A. The choice of Gref can then be
seen as the choice of the grid, out of Gp, for which the
approximation error at β = 0 and β close to the phase
change will be minimized using Eq. 8. The method is
illustrated in Fig. 2 with P = 4 reference log-PFs of
3-class Potts fields and one test field. It appears that
log Ẑref is the closest curve above the ground truth
log ẐT (in red) and that our log-PF estimate log Z̃T
represented by crosses (+) is superimposed on the
path-sampled curve.

2limβ→+∞ AT (β,Gp) = 0.

4.2 Assessment of the Method

4.2.1 Binary 2D Fields

We first validate our approach in a situation where the
log-PF admits a closed form expression. This situation
exists thanks to Onsager’s contribution [12], who de-
rived an explicit expression for the log-PF of the 2-
class Potts model on any 2D square grid under cyclic
boundary constraints:3

log Z (β) = n(β + log [2 cosh β] + ψ [u(β)]) (11)

where u(β) = 2 sinh β/ cosh2 β and ψ is a one dimen-
sional log-elliptic integral:

ψ(u) = 1
2π

∫ π

0
log

[(
1 +

√
1 − u2 sin2 x

)
/2

]
dx (12)

Therefore, the huge summation in Eq. 1 is equivalent
to this far simpler one dimensional equation. Note that
Onsager formulation depends on the graph through the
number of sites n. This suggests that another possi-
ble way to compute the log-PF is to determine for a
small cyclic grid, say the 3×3 grid, the log-PF log Z9(β)

and then set, for all N > 9, log Z (β) to log Z (β) =
N/9 log Z9(β). The log-PF log Z9(β) can be computed
exactly as shown in [9]. It follows that the log-PF of a
cyclic square 2-class Potts fields can be written as:

log Z (β) = n
9

log (102 exp (6β) + 144 exp (8β)

+ 198 exp (10β) + 48 exp (12β)

+ 18 exp (14β) + 2 exp (18β)) (13)

This expression presents the advantage to be much
easier to estimate than the formulation of Onsager and
provides a good approximation to the log-PF when
compared to Onsager formula. In Fig. 3, we compare
the estimation computed using Eq. 11 with the path-
sampling and extrapolation approaches on a 2-class
Potts field defined over a 30×30 regular grid having
cyclic boundary constraints. We also compare the log-
PF estimates obtained using the mean field and GBF
approximations. It is shown that our extrapolation tech-
nique (red) is as accurate as possible since our esti-
mate is superimposed on the estimate obtained using
the path-sampling, considered as the ground truth (in
blue). Moreover, it appears that these numerical ap-
proaches are very close to the accurate log-PFs given by
Eqs 11 and 13. One can note that the log-PFs estimation

3in 2D, the right is connected to the left and the top to the bottom.

Author's personal copy



330 J Sign Process Syst (2011) 65:325–338

Figure 3 Red: True log Z (β) computed by Eqs. 11–12 for a 2D
2-class Potts field defined over a 30 × 30 cyclic regular grid.
Blue: path-sampling estimate i.e., log Ẑ (β). Yellow: log-PF ob-
tained using the sum of exponentials (Eq. 13). Green crosses (×):
Extrapolation estimates log Z̃ (β) from a reference set made up
by 250 grids of various size and shape. Green dashed line: log-PF
obtained using the GBF approximation of Eq. 7. Magenta crosses
(+): log-PF obtained using the mean field approximation of
Eq. 6.

obtained Eq. 13 is very close to the one obtained using
Onsager’s approach but is not equal. This could be
due to approximation errors in Onsager’s formula in
very small fields. As explained in [9], the mean field
approximation of the log-PF is not accurate, but its
GBF generalization is below and close to the ground
truth. Small oscillations of this latter approximation for
large values of β are due to mean field approximation
having not completely converged.

4.2.2 2- and 3-class 3D Potts Fields

For validation purpose, we compared in [1] the log-PF
estimates of 2-class Potts fields computed using our ex-
trapolation techniques with those obtained using path-
sampling, considered as the ground truth. This clearly
shows that the bilinear and extrapolation methods out-
perform the linear one and that the extrapolation tech-
nique allows to mix successfully a much larger range
of reference grids than the linear and bilinear tech-
niques. The extrapolation techniques provided indeed
accurate log-PF approximations for a large range of
grids by always using the same reference grids. Table 1
shows that by using the same experimental protocol,
the extrapolation technique also provides accurate log-
PF approximations for 3-class Potts fields such as those
used in our application.

Reference and test graphs are either regular or ir-
regular. A total of 15 regular and large (more than
103 sites) reference graphs are considered with cubic,

Table 1 Mean maximal relative approximation error over regu-
lar and irregular test graphs using the extrapolation technique on
2- and 3-class Potts fields.

Test grid 2-class 3-class

Regular Small 0.639 2.76
Medium 2.77 2.80
Large 3.68 3.70

Irregular β = 0.2 0.375 0.633
β = 0.3 0.281 0.959
β = 0.4 0.621 0.747
β = 0.5 0.693 1.80

Errors are given in percents.

planar and curvilinear shapes. Irregular grids were ex-
tracted from regular bounding boxes in which Potts
field configurations were drawn using the β dependent
Swendsen-Wang algorithm [13]. In each bounding box,
we extracted the largest connected component of sites
having the same label as an irregular graph so that,
the larger β the more regular and larger the created
graphs. Irregular reference graphs were then computed
using 170 bounding boxes of increasing size (from 103 to
153 sites) and regularization levels β within the range
[0.2, 0.7]. Regular test graphs are divided into three
subsets: 30 of them are small (less than 103 sites), 30
are medium size (between 103 and 153 sites) and 30 are
large (more than 153 sites). Irregular test graphs are also
subdivided into three subsets. Each of them contains
30 graphs obtained from bounding boxes of 163 sites,
for β = 0.2, 0.4 and 0.5, respectively. For each graph T ,
the difference between our approximation and the PS
estimate | log Z̃T (β) − log Z PS(β)|/ log Z PS(β) is com-
puted for each value of β. The maximum of these
differences is considered and the average of such max-
ima is given in Table 1.

For both 2- and 3-class Potts fields the log-PF ap-
proximations are accurate. They are however slightly
better for 2-class Potts fields than 3-class Potts fields
in general. Note that in both cases, these results can
be still improved by adding reference grids very close
to the test grids in the database of reference grids.
Similarly if no reference grid of the database is adapted
to a test grid, this can be detected immediately by a
large approximation error at β = 0 or too different grid
homogeneities. Note that we also computed the log-PF
estimates on the test grids using GBF approximations.
In comparison with the ground truth, we obtained gen-
erally 6% and 10% of maximum relative approximation
error for 2- and 3-class Potts fields respectively. These
maximum approximation errors were mostly observed
for β values around the phase change, as presented in
Fig. 3.
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Figure 4 Monte Carlo
validation (100 realizations)
for β-estimation on observed
2D 2-class Potts fields defined
over (a) 10×10 and (b) 50×50
grids. Black: the ground truth
is given by the first bisector.
Red: ML estimate β̂ ML relying
on our log-PF extrapolation
method. Blue: ML
path-sampled estimate β̂ ML.

(a) (b)

4.3 A Monte Carlo Study to Hyper-parameter
Estimation

The last validation we examined addresses the estima-
tion of the inverse temperature level (i.e., β-estimation)
in the Maximum Likelihood (ML) sense either from
our log-PF estimate or from its path-sampled coun-
terpart. This study has been conducted directly on
observed 2D 2-class Potts fields. At each temperature
level βk = k�β with �β = 0.1, we generated indepen-
dently 100 2D Potts fields defined over the same grid.
We tested different grid sizes (from 102 to 502) and
showed that the number of voxels only influences the
error bars on the β estimate. For a Potts field defined
by Eq. 1, the ML estimate β̂ ML is given by β̂ ML =
arg maxβ

[
βU(q) − log Z (β)

]
. In Fig. 4, we compared

two ML estimators corresponding to the path-sampling
and extrapolation method for estimating the log-PFs.
As illustrated in Fig. 4, our extrapolation technique (red
curve) retrieves the true regularization parameter for
β < 0.7. For 0.7 < β < 1, a very small bias is observed
while for larger values, a more significant error oc-
curs in comparison to a more precise path-sampling
scheme (blue curve).

5 Application to fMRI Data Analysis

5.1 Problem Statement

5.1.1 Parcel-based BOLD Signal Modeling

Our extrapolation algorithm was applied to the spa-
tially adaptive regularization of the region-based Joint
Detection-Estimation (JDE) of brain activity intro-
duced in [14, 15]. The JDE approach relies on a
prior parcellation of the brain into P = (Pγ )γ=1:� func-
tionally homogeneous and connected parcels [3] illus-
trated in Fig. 5. Every parcel Pγ comprising voxels

(V j) j=1:J is characterized by a single hemodynamic filter
hγ . Within a given parcel Pγ , voxel-dependent and
stimulus-related fluctuations of the BOLD signal mag-
nitude are encoded by � = (am

j ) j=1:J,m=1:M, the response
levels (m stands for the stimulus type index). The fMRI
time course measured in voxel V j then reads:

y j =
M∑

m=1

am
j xm � hγ + b j,

where xm stands for the mth binary stimuli vector and
b j stands for the noise component [14]. Within the
Bayesian framework, prior probability density func-
tions (pdfs) are introduced on (�, h) [14].

5.1.2 Bayesian Inference

The Bayesian approach developed in [15] introduces
proper priors on the unknown parameters (hγ ,�) in
order to recover a robust estimate of brain activity (lo-
calization and activation profile). Akin to [15, 16], the
prior density for the HRF remains Gaussian, hγ ∼
N (0, vhR) with R = (Dt

2D2)
−1, which allows us to esti-

mate a smooth HRF shape since D2 is the second-order
finite difference matrix that penalizes abrupt changes.
Moreover, the extreme time points of the HRF can be
constrained to zero if necessary [16].

Regarding the NRLs �, according to the maximum
entropy principle we assume that different types of
stimulus induce statistically independent NRLs i.e.,
p(A | θa) = ∏

m p(am | θm) with θa = (θm)m=1:M. Vec-
tor θm denotes the set of unknown hyperparameters
related to the mth stimulus type. However, for cer-
tain classes of paradigms (e.g.,, attention and motor
dual tasks; priming effects, ...) this assumption may be
questioned. In such cases, a between-condition prior
covariance matrix could be introduced, the difficulty
lying in the choice of a relevant correlation model to
limit the computational complexity.
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Figure 5 Parcel-based regional BOLD model. The size of each
parcel Pγ varies typically between by a few tens and a few hun-
dreds of voxels: 80 � Jγ � 350. The number M of experimental
conditions involved in the model usually varies from 1 to 5. In
our example, M = 2, the NRLs (a1

j ,a
2
j) corresponding to the

first and the second conditions are surrounded by circles and
squares, respectively. Note that our model accounts for asynchro-

nous paradigms in which the onsets do not necessarily match
acquisition time points. As illustrated, the NRLs take different
values from one voxel to another. The HRF hγ can be sampled
at a period of 1 s and estimated on a range of 20 to 25 s (e.g.,
D = 25). Most often, the LFD coefficients � j are estimated on a
few components (Q = 4).

Let qm
j be the allocation variable that states whether

voxel V j is activating (qm
j = 1), deactivating (qm

j =
−1) or non-activating (qm

j = 0) in response to stim-
ulus m. The NRLs still remains independent condi-
tionally upon qm. This means that p(am | qm, θm) =
∏

j p(am
j | qm

j , θm) for every condition m. Spatial mix-
ture models (SMM) are introduced to favor the re-
covery of activating and deactivating clusters. In this
case, the marginal density p(am) does not factorize over
voxels and reads:

p(am | θm) =
∑

qm

⎡

⎣
Jγ∏

j=1

f (am
j | qm

j , θm)

⎤

⎦ Pr(qm | θm). (14)

Spatial correlation is directly incorporated in the prob-
abilities of activation through a hidden three-class Potts
MRF Pr(qm | θm), as already done in image analy-
sis [17, 18] or in neuroimaging [19, 20]. For math-
ematical convenience, Gaussian densities are consid-
ered for modeling the conditional distribution of the
NRLs: f (am

j | qm
j = i) ∼ N (μi,m, vi,m). Parameters μi,m

and vi,m define the prior mean and variance of class
i = 0, ±1, respectively for the mth stimulus type. The
set θm comprises four prior mixture parameters θm ={
μ0,m, μ±1,m, v0,m, v±1,m, βm

}
.

Samples of the full posterior pdf p(h,�,�, � |�)

are simulated using a Gibbs sampler algorithm and
posterior mean estimates are then computed from these
samples. Here, we introduce the sampling of parameter
βm, which is achieved using a symmetric random walk
Metropolis-Hasting step: At iteration k, a candidate
β

(k+1/2)
m ∼ N (β(k)

m , σ 2
ε ) is generated and is accepted (i.e.,

β(k+1)
m = β

(k+1/2)
m ) with probability: α(β(k)

m → β
(k+1/2)
m ) =

min(1, Ak,k+1/2), where the acceptation ratio Ak,k+1/2

follows from Eq. 1:

Ak,k+1/2 = p
(
β

(k+1/2)
m |q(k)

m

)

p
(
β

(k)
m |q(k)

m
) = p

(
q(k)

m |β(k+1/2)
m

)
p
(
β

(k+1/2)
m

)

p
(
q(k)

m |β(k)
m

)
p
(
β

(k)
m

)

= Z
(
β(k)

m

)

Z
(
β

(k+1/2)
m

) exp
((

β(k+1/2)
m − β(k)

m

)
U

(
q(k)

m

))
,

using Bayes’ rule and considering a uniform prior for
βm. The βm sampling step then requires to estimate
ratios of Z (.) or log-PF differences for all Pγ parcels
prior to exploring the full posterior pdf.

5.2 Results on Synthetic fMRI Data

In the context of the joint detection-estimation of brain
activity, we compare the supervised SMM (SSMM)
to its unsupervised extension (USMM). Our synthetic
fMRI time series have been generated at low signal-to-
noise ratio considering true activation maps that do not
derive from the Potts model. The underlying paradigm
consisted of two stimulus types (M = 2) whose activa-
tion patterns are shown in Fig. 6a–d, respectively.

Figure 6b–e illustrate that a wrong choice of β-
value (β = 0.2) in the supervised case (SSMM) induces
a misspecification between the activating and deactivat-
ing voxels for the first experimental condition (m = 1)
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Figure 6 Estimated labels in
the Maximum A Posteriori
sense. Top row: (q̂1)MAP.
Bottom row: (q̂2)MAP. (a)–(c):
Label maps obtained using
the supervised SMM (SSMM)
for m = 1 and m = 2,
respectively with
β(1) = β(2) = 0.2. (b)–(d):
Label maps obtained using
the unsupervised
SMM (USMM) approach.
Deactivating, non-activating
and activating voxels are
color coded in red, blue and
green, respectively.

and between deactivating and non-activating voxels as
the background is almost classified into deactivating
and the non-activating class is almost empty. For m = 2,
the situation is better but still noisy under SSMM. The
situation is properly regularized by resorting to USMM:

Figure 6c–f yield estimated labels exactly matching the
true ones for m = 1, 2.

These results are a consequence of the estimates
of the prior mixture components shown in Fig. 7 for
the two conditions. In the SSMM case, we observed

Figure 7 Estimated
components of the three-class
Gaussian prior mixture. Top
row: first experimental
condition (m = 1). Bottom
row: second experimental
condition (m = 2). (a)–(c):
Mixture components yielded
by the SSMM approach for
m = 1 and m = 2, with
β(1) = β(2) = 0.2; (b)–(d):
Mixture components given by
the USMM approach.
Deactivating, non-activating
and activating voxels are
color coded in red (short
dash), blue (continuous) and
green (long dash),
respectively.
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Figure 8 Rate of right classification of (q̂1)MAP and (q̂2)MAP in
the supervised case for different fixed β-values. Activating, non-
activating and deacctivating classes are color coded in red (short
dash), blue (continuous) and green (long dash), respectively.

a degeneracy regarding the activating class for m =
1 (Fig. 7a), since the three Gaussian densities are su-
perimposed. For m = 2, the mixture parameters of the
SSMM are also problematic while less degenerated.
Since we obtained μ̂2

−1 ≈ 0 = μ2
0, this directly impacts

the posterior classification in regard to the presence of
false negatives. On the other hand, Fig. 7b–d illustrate
a better distinction between the three components in
the prior mixtures whatever the condition at hand (m =
1, 2). For m = 1, 2, we noticed that the distributions
do not overlap (see Fig. 7b) with the USMM setting.
Hence, we found an exact posterior classification.

Figure 8 illustrates the behavior of the SSMM when
varying the fixed β value. A wrong tuning yields a
significant decrease of the right classification rate of

non-activating (blue) and deactivating labels (red) for
β � 0.8 and β � 1.2 whereas an optimal tuning of β

lies in the range [0.8 − 1.5]. The unsupervised version
provides an estimate β̂ = 0.92 (see �) that belongs
to this optimal range and yields optimal classification
rates.

5.3 Results on Real fMRI Data

We applied the JDE procedure to real fMRI data
recorded during an experiment designed to map au-
ditory, visual and motor brain functions, which con-
sisted of a single session of N = 125 scans lasting TR =
2.4 s each, yielding 3-D volumes composed of 64 ×
64 × 32 voxels. The paradigm was a fast event-related
design comprising sixty auditory, visual and motor stim-
uli, declined in 10 experimental conditions (auditory
phrase, visual phrase, left auditory or visual clic ...).

We compare three versions of the JDE procedure:
Independent Mixture Models (IMM), Supervised SMM
(SSMM, β = 0.8) and unsupervised SMM (USMM),
in order to assess the impact of the adaptive spatial
correlation model. We also assess the behavior of a
3-color compared to a 2-color Potts prior on labels.
Figure 9 shows normalized contrast maps (âLAC−
âRAC) of auditory induced left versus right clic (LAC
vs. RAC). As expected, the activations lie in the con-
tralateral right motor cortex. Here, only USMM is more
sensitive, which illustrates the superiority of an adaptive
spatial correlation model. The same contrast maps are
observed whether we resort to a 2-color or 3-color prior
Potts field. Indeed, we do not expect any deactivation
arising from these data. The purpose is only illustrative

Figure 9 Comparison of the
IMM, SSMM and USMM
models wrt the estimated
normalized constrat maps:
left auditory clic (LAC)
versus right auditory
clic (RAC): âLAC − âRAC. β̂

parcel-dependent maps
computed for the LAC and
RAC conditions and for
2-color (L = 2) and 3-color
L = 3 Potts fields.
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so as to show that our spatially adaptive approach may
generalize from a 2-color to a 3-color Potts prior.

For the 2-color prior, β̂PM estimates for the left
auditory clic was 0.56, so the supervised setting of
SSMM with β = 0.8, L = 2 leads to too much cor-
relation and less sensitive results. Interestingly, still
for the 2-color prior, Fig. 9 also depicts the parcel-
dependent maps of the PM β̂ estimates for the RAC
and LAC experimental conditions. The gain in sensi-
tivity in the USMM contrast map (âLAC−âRAC) may
be explained by a difference in the amount of spatial
regularization introduced between the two conditions
involved in the contrast. A lower regularization level
is estimated (β̂LAC ≈ 0.5 vs. β̂RAC ≈ 0.75) in parcels
located in the right motor cortex since the BOLD signal
is stronger for the LAC than for the RAC condition
in these regions. For the 3-color Potts prior the in-
terpretation of β̂PM estimates is more delicate as the
regularization impacts 3 states. Still we can notice that
USMM-L = 3 is able to spatially adapt the amount of
spatial regularization.

On these real fMRI data, our extrapolation scheme
provides log-PFs estimates for a brain parcellation
(Pγ )γ=1:300 and (Gp)p=1:50 reference grids. In terms of
computational complexity, these log-PF estimates were
computed in about ten seconds, a very appealing ap-
proach in comparison to path-sampling, which requires
about one hour for estimating all log-PF estimates for
a negligible gain in accuracy (less than 3%). Finally, we
did not observe any significant difference between the
USSM effect maps derived using path-sampling and our
extrapolation scheme (results not shown).

6 Conclusion

In this work, we extended a joint detection-estimation
of brain activity framework which enables the process-
ing of unsmoothed fMRI data, described in [1, 2]. The
latter approach considers two possible states at each
voxel: activating or non-activating. Here, we generalize
the model to consider a third state: de-activation, in
order to take into account putative negative BOLD
effects. The spatial regularization that was performed
by using 2-colors Potts fields requires therefore 3-colors
Potts fields. In order to make spatially adaptive regu-
larization feasible, the joint detection-estimation tech-
nique requires a reliable and fast estimation of 3D Potts
field partition function. The problem of joint detection-
estimation is indeed solved independently in a large
number of pre-defined brain regions of different shape,
each region requiring the estimation of a partition func-
tion. Therefore, we extended the extrapolation algo-

rithm dedicated to the approximation of partition func-
tions of 2-colors Potts fields to 3-colors Potts fields. This
extension is the heart of the paper. The extrapolation
algorithm exploits a set of reference log-PF estimates
on reference grids, robustly pre-computed using path-
sampling. Interestingly, the maximum approximation
error of every test log-PF is controlled using the ex-
trapolation technique so that a robust estimation can
be performed whenever no suitable reference candidate
is found in the set of reference log-PFs. Obviously,
efficiency is conditionned by the number of reference
grids, and more importantly by their similarity to the
topologies encountered in the conducted analysis. The
technique was shown accurate on 2D and 3D grids
as well as regular or non-regular grids. It was also
compared with a PF estimation technique based on the
mean field theory [9]. In general, for the estimation
of the log-PFs on grids of a similar type (2D, 3D,
regular, irregular, small, large,...), about ten problem-
specific reference grids are enough to provide good
log-PF estimates. In the end, using our fast extrap-
olation technique, the computational burden remains
acceptable since a whole brain data analysis at the
subject level takes about 1 h 30. The application to real
fMRI data showed a gain in statistical sensitivity for the
unsupervised version whether we resort to 3-color or 2-
color Potts priors. In order to test their reproducibility,
the promising subject-level results have to be confirmed
in group studies. The technique will also be performed
on epileptic fMRI datasets, for which we expect de-
activations. This will emphasize and assess the useful-
ness of the 3-color Potts prior model compared to the
2-color prior.

Appendix

A Properties of our Log-PF Estimate

The first property deals with the asymptotic behav-
ior (β → ∞) of the log-PF of a symmetric L-color Potts
field:

lim
β→∞ (log Z (β) − βc) = log L (15)

It is quite straightforward to demonstrate that when
β → ∞ only homogeneous configurations of q have a
significant weight in the evaluation of Z (β). In Potts
MRFs, such configurations arise whenever all sites are
equal to a given label leading first to

∑
k∼ j I(q jk =

q j) = c and finally to Eq. 15. Applying Eq. 15 to the
extrapolation context allows one to derive the following
proposition.
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Proposition 1 limβ→∞AT (β,Gp) = 0, so log Z̃T (β,Gp)

def ined in Eq. 8 provides an asymptotically unbiased
estimate of log ZT (β), ∀Gp.

Proof First, applying Eq. 15 to Gp and using Eq. 8, we
get:

lim
β→∞

cT
cGp

[
log ZGp(β) − βcGp

] = cT
cGp

log L

⇔ lim
β→∞

[ cT
cGp

(
log ZGp(β) − log L

) − βcT
] = 0

⇔ lim
β→∞

[
log Z̃T (β,Gp) − βcT

] = log L.

��

Applying Eq. 15 to log ZT (β), we obtain
limβ→∞

[
log ZT (β) − log Z̃Gp(β,Gp)

] = 0 ∀Gp.
The second property gives us the expression of the

first-order derivative of the log-PF at β = 0. On the one
hand, following [13], it can be shown that (log Z (β))′ =
E

[
U(q) | β]

.
On the other hand, for β = 0, all sites are in-

dependent and follow a uniform Bernoulli distribu-
tion. Hence, for each clique j ∼ k the L-homogeneous
configurations (q j, qk) = (l, l) for l ∈ {1, . . . , L} con-
tribute to U with the same weight of 1/(2L). We
therefore obtain E

[
U(q) | β = 0

] = ∑
k∼ j 1/L. Finally,

by equating the two expressions, we get:

(log Z (0))′ �= d log Z (β)/dβ
∣
∣
β=0 = c/L . (16)

From Eq. 8, we get
(
log Z̃T (β,Gp)

)′ =
cT
cGp

(
log ZGp(β)

)′, hence Eq. 16 allows us to derive

that ∀Gp, (log Z̃T (0,Gp))
′ provides an unbiased esti-

mate of (log ZT (0))′.

B Maximal Approximation Error

We give here a sufficient condition involving that the
approximation errors AT (β,Gp) of 2-class Potts fields
defined over T and Gp achieve their largest value at
β = 0.

Proposition 2 ∀Gp, if (sT − 1)/cT �= (sGp − 1)/

cGp (Hyp. 1) and ET
[
U(q) | β]

/cT �= EGp

[
U(q) | β]

/

cGp , ∀β > 0 (Hyp. 2) then AT (0,Gp) =
maxβ∈�+ AT (β,Gp), which expression is given by
Eq. 10.

Proof Let errT (β,Gp) be the unnormalized approxima-
tion error: ET (β,Gp) = (log ZT (β) − log Z̃T (β,Gp))

2.
We prove that ET (0,Gp) = maxβ∈R+ errT (β,Gp) by

showing that ET (β,Gp) is a strictly decreasing function
on �+:

dET (β,Gp)

dβ

= L
(
log ZT (β) − cT

cGp

(log ZGp(β) − log L) − log L
)

︸ ︷︷ ︸
f1(β)

× (
ET

[
U | β] − cT

cGp

EGp

[
U | β])

︸ ︷︷ ︸
f2(β)

,

��

where ET (β,Gp) is strictly monotonous on �+ if
f1,2(β) �= 0, ∀β > 0. According to Hyp. 2, we directly
obtain f2(β) �= 0. Moreover, it is easy to notice that
f1(β) = ±√

ET (β,Gp). Hence, f1(0) �= 0 according to
Hyp. 1 and limβ→∞ f1(β) = 0 by definition of ET (β,Gp).
Furthermore, according to the value of (log Z (β))′ and
Hyp. 2, we get: f ′

1(β) = f2(β) �= 0, ∀β > 0 . Function
f1 being continue, its sign is then contant over �+ and
then f1(β) �= 0, ∀β > 0. As a consequence, ET (β,Gp) is
then stricly monotonous for β > 0. Again, according to
Hyp. 1, we obtain ET (0,Gp) > 0.

Since by definition limβ→∞ ET (β,Gp) = 0, function
ET (β,Gp) is therefore strictly decreasing on �+ and
finally ET (0,Gp) = maxβ∈�+ ET (β,Gp). Since log Z (β)

is a strictly increasing function of β, its inverse is strictly
decreasing on �+, so AT (0,Gp) = maxβ∈�+ AT (β,Gp).
Note finally that Hyp. 2 is empirically observed on
numerous graphs of different size and shape. The only
exceptions were found when the topological similarity
measure LT (Gp) was large.

C Mean Field-based Partition Function Estimates

Following [9], from the mean-field theory we recall
here how to derive the zeroth and first order approxi-
mations for the partition function with a special concern
to the L-color symmetric Potts model.

The negative energy U MF(w) actually reads
U MF(w) = ∑n

i=1 wt
i

∑
j∈Ni

w̄ j where w̄ j = EMF
[
W j

]

so that the zeroth order PF approximation based on
the the mean field approximation is given by:

Z MF(β) =
∑

w

exp(βU MF(w)) (17)

=
n∏

i=1

∑

wi

exp(βwt
i

∑

j∈Ni

w̄ j) (18)
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The first order approximation is based upon the
Gibbs-Bogoliubov-Feynman [21] inequality that states:

Z (β) � Z MF(β) exp
(
EMF[U(W) − U MF(W)

])
. (19)

The mean field model (4) is optimal among models with
factorization property in the sense that it maximizes
the lower bound in inequality (19) for such models.
When considering the Taylor expansion around zero
of exp(−EMF

[
U(W) − U MF(W)

]
), the right hand side of

inequality (19) denoted by Z GBF(β) in what follows:

Z GBF(β) = Z MF(β) exp
(
EMF[U(W) − U MF(W)

])

can be seen as a first order approximation of Z and
so much closer than the zeroth order approximation
Z MF(β). From Eq. 17, the first order approximation of
Z can be deduced:

Z GBF(β) = Z MF(β) exp

(

− β

2

n∑

i=1

w̄i

∑

j∈Ni

w̄ j

)

. (20)
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