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Within-subject analysis in fMRI essentially addresses two problems,
i.e., the detection of activated brain regions in response to an
experimental task and the estimation of the underlying dynamics, also
known as the characterisation of Hemodynamic response function
(HRF). So far, both issues have been treated sequentially while it is
known that the HRF model has a dramatic impact on the localisation of
activations and that the HRF shape may vary from one region to
another. In this paper, we conciliate both issues in a region-based joint
detection-estimation framework that we develop in the Bayesian
formalism. Instead of considering function basis to account for spatial
variability, spatially adaptive General Linear Models are built upon
region-based non-parametric estimation of brain dynamics. Regions are
first identified as functionally homogeneous parcels in the mask of the
grey matter using a specific procedure [Thirion, B., Flandin, G., Pinel,
P., Roche, A., Ciuciu, P., Poline, J.-B., August 2006. Dealing with the
shortcomings of spatial normalization: Multi-subject parcellation of
fMRI datasets. Hum. Brain Mapp. 27 (8), 678–693.]. Then, in each
parcel, prior information is embedded to constrain this estimation.
Detection is achieved by modelling activating, deactivating and non-
activating voxels through mixture models within each parcel. From the
posterior distribution, we infer upon the model parameters using
Markov Chain Monte Carlo (MCMC) techniques. Bayesian model
comparison allows us to emphasize on artificial datasets first that
inhomogeneous gamma-Gaussianmixturemodels outperformGaussian
mixtures in terms of sensitivity/specificity trade-off and second that it is
worthwhile modelling serial correlation through an AR(1) noise process
at low signal-to-noise (SNR) ratio. Our approach is then validated on an
fMRI experiment that studies habituation to auditory sentence
repetition. This phenomenon is clearly recovered as well as the

hierarchical temporal organisation of the superior temporal sulcus,
which is directly derived from the parcel-based HRF estimates.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Since the first report of the BOLD effect in human (Ogawa
et al., 1990), functional magnetic resonance imaging (fMRI) has
represented a powerful tool to non-invasively study the relation
between cognitive stimulus and the hemodynamic (BOLD)
response. Within-subject analysis in fMRI is usually addressed
using a hypothesis-driven approach that actually postulates a
model for the HRF and enable voxelwise inference in the General
Linear Model (GLM) framework. In this formulation, the
modelling of the BOLD response i.e., the definition of the design
matrix is crucial. In its simplest form, this matrix relies on a
spatially invariant temporal model of the BOLD signal across the
brain meaning that the expected response to each stimulus is
modelled by a single regressor. Assuming the neurovascular
system as linear and time-invariant (LTI), this regressor is built as
the convolution of a sparse spike train representing the stimulation
signal and the canonical HRF, i.e., a composition of two gamma
functions which reflects the BOLD signal best in the visual and
motor cortices (Glover, 1999).

Intra-individual differences in the characteristics of the HRF
have been exhibited between cortical areas in (Aguirre et al., 1998;
Miezin et al., 2000; Neumann and Lohmann, 2003; Handwerker
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et al., 2004). Although smaller than inter-individual fluctuations,
this regional variability is large enough to be regarded with care.
To account for these spatial fluctuations at the voxel level, one
usually resorts to hemodynamic function basis. For instance, the
canonical HRF can be supplemented with its first and second
derivatives to model differences in time (Friston, 1998; Henson
et al., 2002). To make the basis spatially adaptive, Woolrich et al.
(2004a) have proposed a half-cosine parameterisation in combina-
tion to the selection of the best basis set. Although powerful and
elegant, the price to be paid for such a flexible modelling lies in a
loss of sensitivity of detection: the larger the number of regressors
in the basis, the smaller the number of effective degrees of freedom
in any subsequent statistical test. Crucially, in a GLM involving
several regressors per condition, the Student-t statistic can no
longer be used to infer on differences between experimental con-
ditions. Rather, an unsigned Fisher statistic has to be computed,
making direct interpretation of activation maps more difficult.
Indeed, the null hypothesis is actually rejected whenever any of the
contrast components deviates from zero and not specifically when
the difference of the response magnitudes is far from zero.

In this paper, to facilitate cognitive interpretations, we argue in
favour of a spatially adaptive GLM in which a local estimation of
the HRF is performed. This allows us to factorise the expected
BOLD response with a single regressor attached to each experi-
mental condition and to enforce direct statistical comparisons
based on response magnitudes. However, to conduct the analysis in
an efficient and reliable manner, local estimation is performed at
the scale of several voxels.

As mentioned earlier, the localisation of brain activation strongly
depends on the modelling of the brain response and thus of its
estimation. Of course, the converse also holds: HRF estimation is
only relevant in voxels that elicit signal fluctuations correlated with
the paradigm. Hence, detection and estimation are intrinsically
linked to each other. The key point is therefore to tackle the two
problems in a common setting, i.e., to set up a formulation in which
detection and estimation enter naturally and simultaneously. This
setting cannot be the classical hypothesis testing framework. Indeed,
the sequential procedure which first consists in estimating the HRF
on a given dataset and then building a specific GLM upon this
estimate for detecting activations in the same dataset, entails
statistical problems in terms of sensitivity and specificity: the control
of the false positive rate actually becomes hazardous due to the use
of an erroneous number of degrees of freedom. We rather propose a
Bayesian approach that provides an appropriate framework to
address both detection and estimation issues in the same formalism.

The literature on Bayesian fMRI methods offers several
approaches to adequately choose priors for detection. As introduced
in (Everitt and Bullmore, 1999; Vaever Hartvig and Jensen, 2000;
Penny and Friston, 2003) and further developed in (Smith et al.,
2003; Woolrich et al., 2005; Ou and Golland, 2005; Woolrich and
Behrens, 2006; Flandin and Penny, 2007), prior mixture models
define an appropriate way to perform the classification or the
segmentation of statistical parametric maps into activating, non-
activating or deactivating brain regions. The pioneering contribu-
tions related to mixture modelling in fMRI (Everitt and Bullmore,
1999; Vaever Hartvig and Jensen, 2000) have proposed a voxel
by voxel classification to decide whether the estimated effect is
analogous to signal or noise in each voxel. Yet, the use of mixture
modelling in a joint detection-estimation problem introduces spe-
cific concerns in comparison to the usual “hypothesis testing
framework”. Indeed, our data are not the voxelwise z-statistics but

rather the raw fMRI time courses, which are required for the
estimation step.

As regards HRF estimation, various priors may be thought of
depending on the underlying HRF model. Basically, three classes of
models coexist. Parametric models appeared first in the literature
(Friston, 1994; Lange, 1997; Cohen, 1997; Rajapakse et al., 1998;
Kruggel and Von Crammon, 1999). In this setting, the estimation
problem consists in minimising some criterion with respect to (w.r.t.)
some parameters of a precise function (e.g., Gaussian, gamma ,…).
However, parametric models tend to introduce some bias in the HRF
estimate, since it is unlikely that they capture the true shape
variations of the brain dynamics.Moreover, the objective function to
be minimized is often non-convex making the parameter estimates
unreliable and dependent of the initialisation. Hence, more flexible
semi-parametric approaches have been proposed later to capture
these variations (Genovese, 2000; Gossl et al., 2001;Woolrich et al.,
2004a). In a semi-parametric framework, the HRF time course is
decomposed into different periods (initial dip, attack, rise, decay,
fall,…), each of them being described by specific parameters. At the
same time, non-parametric approaches or Finite Impulse Response
(FIR) models have emerged in the fMRI literature as a powerful tool
to infer on the HRF shape (Nielsen et al., 1997; Goutte et al., 2000;
Marrelec et al., 2003, 2004; Ciuciu et al., 2003).Most of these works
take place in the Bayesian setting and constrain the HRF to be
temporally smooth, which warrants a stable estimation in case of ill-
posed identification.

Whatever the model in use, most methods are massively
univariate and therefore neglect the spatial structure of the BOLD
signal. Early investigations have shown that estimating the HRF
using regularised FIR models over a functionally homogeneous
region of interest provides more reliable results (Gössl et al., 2001;
Ciuciu et al., 2004). In the following, a region-based non-parametric
model of the HRF is therefore adopted. Then, the critical issue
arising consists in exhibiting a functionally homogeneous clustering
of the fMRI datasets over the whole brain. To that end, the grey
matter's mask is segregated into a few hundreds of connected
Regions of Interest (ROIs), called parcels. The parcels are derived
using the parcellation procedure proposed by Thirion et al. (2006),
according to a compound criterion balancing spatial and functional
homogeneity. The second step of our analysis solves for the
detection-estimation problem over each parcel.

The rest of this paper is organised as follows. Section 2 details
how anatomical information is handled and how parcels are built up.
Then, the forward parcel-based model of the BOLD signal is derived
and priors over the unknown parameters are specified. In Section 3,
we explain the key steps of our inferential procedure based on
MCMC methods, posterior mean (PM) HRF estimation and
marginal Maximum A Posteriori (MAP) classification for detection.
On artificial datasets, Section 4 reports the performance of our
approach in terms of sensitivity-specificity trade-off depending on
the mixture prior and the noise modelling. In Section 5, our joint
detection-estimation approach is tested on real fMRI data acquired
during an habituation study to auditory sentence repetition. On
the same datasets, we also performed a classical GLM analysis
employing the widely used Statistical parametric mapping (SPM)
software1. The two approaches are then compared and the main
differences are exhibited. The pros and cons of the proposed method
are discussed in Section 6 and some future extensions are envisaged.

1 http://www.fil.ion.ucl.ac.uk/spm/.
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Methodology

Definition of functionnally homogeneous brain regions

Anatomical representation
The segmentation of the grey-white matter interface is performed

on an anatomical T1-weighted MRI image using the BrainVisa
software2 (Mangin et al., 1995). It provides us with the anatomical
representation of the cortex. To accommodate the coarser spatial
resolution of fMRI data (typically, 3.5 mm along each direction), the
grey matter maskMa is dilated using a sphere as structural element,
with a radius equal to the resolution of functional images.

Concurrently, a functional mask Mf was computed from the
motion-corrected3 BOLD EPI volumes. Also, an average EPI
volume was created. Then, we carried out a histogram analysis of
this volume: a Gaussian density N (µ, σ2) was fitted on the main
mode of the EPI signal of interest. A threshold defined as µ−3σwas
used to obtain the functional mask. Finally, the mask of interest
where activation most likely occurs was built as Ms ¼ Ma \Mf .

Parcellation of the grey-matter
The volume in mask Ms was then divided in K functionally

homogeneous parcels or ROIs using the parcellation technique
proposed in (Thirion et al., 2006). The goal of this procedure is to
segregate the brain into connected and functionally homogeneous
components. For doing so, the parcellation algorithm relies on the
minimisation of a compound criterion reflecting both the spatial
and functional structures and hence the topology of the dataset.
The spatial similarity measure favours the closeness in the
Talairach coordinates system. The functional part of this criterion
is computed on parameters that characterise the functional
properties of the voxels. These parameters can be chosen either
as the fMRI time series themselves or as the β-parameters
estimated during a first-level SPM analysis. The latter choice is
nothing but a projection onto a subspace of reduced dimension,
i.e., the feature space. Typically, the feature space is defined from a
F-contrast in a SPM analysis.

The number of parcels K needs to be set by hand. The larger the
number of parcels, the higher the degree of within-parcel homo-
geneity. Of course, there exists a trade-off between the within-
parcel homogeneity and the signal-to-noise ratio (SNR). If the
number of voxels is too small in a given parcel, the HRF estimation
may become inaccurate, specifically in regions where no voxel
elicits a specific response to any experimental condition. To
objectively choose an adequate number of parcels, Thyreau et al.
(2006) have used the Bayesian information criterion (BIC) and
cross validation techniques on an fMRI study of ten subjects. They
have shown converging evidence for K≈500 for a whole brain
analysis and recommend K=200 as a fair setting for a restricted
analysis to the grey matter's mask leading to typical parcel sizes
around a few hundreds voxels.

Parcel-based modelling of the BOLD signal

Vectors and matrices are displayed in lower and upper cases,
respectively, both in bold font (e.g., y and P). Unless stated
otherwise, subscripts i, j, m and n are respectively indexes over
mixture components, voxels, stimulus types and time points. We

refer the reader to Appendix A for the definitions of the non-
standard probability density functions (pdf). Also, the pdf families
are denoted using calligraphic letters (e.g., N and G for the
Gaussian and gamma densities).

The regional forward model of the BOLD signal introduced in
(Makni et al., 2005) is used to account for voxel-dependent and
task-related fluctuations of the magnitudes of the BOLD response.
Hereafter, the latter magnitudes are called Neural Response Levels
(NRLs). In short, this time-invariant model characterises each and
every parcel by a single HRF shape and a NRL for each voxel and
stimulus type. As shown in Fig. 1, this means that although the
HRF shape is assumed constant within a parcel, the magnitude of
the activation can vary in space and across experimental con-
ditions. Let P ¼ ðVjÞj¼1:J be the current parcel and Vj a voxel in P.
Then, the generative BOLD model reads:

yj ¼
XM
m¼1

amj X
mhþ Pℓj þ bj; ð1Þ

where

• yj=( yj,tn)n= 1:N denotes the BOLD fMRI time course measured
in voxel Vj at times (tn)n= 1:N (N is the number of scans) with
tn=nTR and TR is the time of repetition,

• Xm ¼ xmtn�dDt

� �
n¼1:N ;d¼0:D

is a N � Dþ 1ð Þ binarymatrix correspond-
ing to the arrival times for the mth condition. Δt is the sampling

period of the HRF, usually smaller than TR. The onsets of the
stimuli are put on the Δt-sampled grid by moving them to the
nearest time points on this grid. Note that Xm can be adapted to
paradigms having trial varying stimulus magnitudes or durations.

• Vector h=(hdΔt)d= 0:D represents the unknown HRF shape in
parcel P (D+1 is the number of HRF coefficients). It actually
seems reasonable to assume a single HRF shape in homo-
geneous parcels.

• aj
m stands for the NRL in voxel Vj for condition m (M is the
number of experimental conditions in the paradigm). Hence, the
activation profile associated to the mth stimulus type in voxel Vj

is computed as the product h×aj
m.

• P=[ p1, … , pQ] is the low frequency orthogonal matrix of
size N×Q. It consists of an orthonormal basis of functions pq=
( pq(tn))n= 1:N. To each voxel is attached an unknown weighting
vector ℓj that has to be regressed in order to estimate the trend in
Vj. We denote l=(ℓj)j = 1: J the set of low frequency drifts
involved in P.

• bj ∈ RN is the noise vector in voxel Vj . In (Woolrich et al.,
2001; Worsley et al., 2002) an autoregressive (AR) noise model
has been introduced to account for the serial correlation of the
fMRI time series in the detection analysis. Importantly, when
this temporal correlation is correctly estimated, the number of
false positives decreases, yielding more conservative detection
results. Similarly, in a joint detection-estimation framework,
Makni et al. (2006b) have shown that the introduction of a
spatially-varying first-order AR noise in model (1) provides
a lower false positive rate. Hence, bj is defined by bj;tn ¼
qjbj;tn�1 þ ej;tn ; 8j; t; with ej eNð0N ; r2ejIN Þ;, where 0N is a null
vector of length N, and IN is the identity matrix of size N.

Although the noise structure is correlated in space (Woolrich
et al., 2004b) and non-stationary across tissues (Worsley et al.,
2002), we do not essentially account for this correlation for two

2 http://www.brainvisa.info.
3 We applied the SPM2 motion-correction algorithm.
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reasons. First, it is likely that a large part of the noise may be due to
misspecification of the HRF. Second, we actually assume that the
spatial correlation of the signal of interest is more important.
Hence, the fMRI time series y ¼ ðyjÞj¼1:J are supposed to be
statistically conditionally independent. The likelihood then factors
over voxels:

p yjh; a; l;θ0

� � ¼ j
J

j¼1
p yjjh; aj; lj; θ0;j
� �

~j
J

j¼1
jLjj1=2r�N

ej exp �
XJ
j¼1

fy t
jKj

fyj
2r2ej

 ! ð2Þ

where θ0,j=(ρj , σεj
2 ), θ0= (θ0,j )j= 1:J and y~j=yj − Σm aj

m Xmh−Pℓj.
Note that σεj

−2Λj defines the inverse of the autocorrelation matrix of
bj. According to Kay (1988, Chap VI, p. 177), Λj is tridiagonal,
with (Λj)1,1= (Λj)N,N=1, (Λj)n,n=1+ρj

2 and (Λj )n+1,n=(Λj)n,n+1=
−ρj ∀n=2 : N−1. Its determinant is given by |Λj| =1−ρj2. In what
follows, we do not approximate Eq. (2) by dropping the term |Λj|1/2,
as done in previous works (Roberts and Penny, 2002; Penny et al.,
2003; Woolrich et al., 2004b). Indeed, when the AR parameter ρ
significantly departs from zero (e.g., ρ≥0.4), this approximation is
biased and potentially far from the exact likelihood.

On the sole basis of the likelihood function (2), it seems
impractical to identify the pair (h, a). Indeed, Maximum likelihood
(ML) estimation of (h, a) is a bilinear inverse problem since (1) is
linear w.r.t. h when a is fixed and vice-versa. Therefore, the ML
solution (h⁎, a⁎) is not unique. For instance, every couple (h⁎/s,
a⁎× s) defines another pair of solutions in the ML sense whatever
the scale parameter sN0. To get rid of identifiability problems and
reach a more reliable estimation, in the Bayesian formalism we
introduce suitable prior distributions attached to the unknown
quantities (h, a).

Priors

The Hemodynamic response function
Akin to (Buxton and Frank, 1997; Goutte et al., 2000; Marrelec

et al., 2003), the HRF is characterised as follows: (i) its variations
are smooth; (ii) it is causal and returns to a baseline after a given

time interval T (ht=0, ∀ tb0 and tNT ); T is fixed by the user
according to the experimental paradigm (usually 25 seconds).

Condition (i) may be fulfilled using an approximation of the
second-order derivative ||∂2h||2:

A
2h

� �
dsc h dþ1ð Þs � 2hds þ h d�1ð Þs

� �
=s2; 8d ¼ 1 : D� 1:

In matrix form, we get ∂2h=D2h.
Condition (ii) is ensured with a HRF hwhose magnitude vanishes

at first and last time points (h0=hD=0). Hence, D2 is the truncated
second-order finite difference matrix of size (D −1)×(D − 1) and
||∂2h||2=htR−1h with R=(D2

t D2)
−1 a symmetric positive definite

matrix. The prior on h thus reads heNð0; r2hRÞ. To overcome the
scale ambiguity problem mentioned earlier, we constrain the HRF to
be of unitary norm (||h||=1). Alternative constraints such as setting the
value of the peak could be considered.

The “neural” response levels
Mixture models are often used as a second stage to segment

the SPMs (i.e., the statistical maps) resulting from a first-level
temporal analysis of fMRI time series (Vaever Hartvig and Jensen,
2000; Everitt and Bullmore, 1999; Woolrich et al., 2005). This
means that the data to be classified correspond to some normalised
effect ctβ̂ / std (ctβ̂ ), where vector c defines a contrast of interest
(typically a comparison between two experimental conditions) and
β̂ is the vector of parameter estimates after fitting a GLM against
the fMRI data.

In the present paper, as well as in (Makni et al., 2005), prior
mixture models are used in a different way, closer to that proposed
by Svensen et al. (2000). In the same spirit, a mixture model is
introduced on the NRLs for every experimental condition m and not
specifically on the linear combination ctβ̂. In (Makni et al., 2006a),
it was stressed that a two-class Gaussianmixture model (GMM)may
be inadequate for segregating noise from true activations. In
particular, it can be shown that this kind of independent mixture
may degenerate in the sense that the two probability density func-
tions (pdf) overlap almost entirely if there are not enough activating
voxels in the current parcel (see (Makni et al., 2005, §VII.)). For this
reason, we have rather adopted an inhomogeneous prior mixture

Fig. 1. Summary of the proposed regional BOLD model. The size of each parcel P varies typically between by a few tens and a few hundreds: 80⩽J⩽350. The
numberM of experimental conditions involved in the model usually varies from 1 to 5. In our example,M=2, the NRLs (aj

1, aj
2) corresponding to the first and the

second conditions are surrounded by circles and squares, respectively. Note that our model accounts for asynchronous paradigms in which the onsets do not
necessarily match acquisition time points. As illustrated, the NRLs take different values from one voxel to another. The HRF h can be sampled at a period of 1 s
and estimated on a range of 20 to 25 s (e.g., D=25). Most often, the LFD coefficients ℓjare estimated on a few components (Q=4).
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model. Among several possibilities (Gaussian-lognormal MM,
Gaussian-truncated Gaussian MM,…), a gamma-Gaussian mixture
model (GaGMM) has been retained for technical reasons that will
become clearer in what follows. The non-activating voxels are still
modelled using a zero-mean Gaussian pdf while a gamma
distribution is used to enforce positivity of activating voxels. Akin
to (Vaever Hartvig and Jensen, 2000; Woolrich et al., 2005), a three-
class mixture prior model is actually considered to account for
deactivating voxels. Since we assume that deactivation corresponds
to a negative BOLD response, we use a flipped gamma density
defined on the left part of the real line leading to define the
GaGGaMM extension (see Table 1).

In our model, different stimulus types are supposed to induce
statistically independent hemodynamic magnitudes or NRLs i.e.,
p ajθað Þ ¼ jmp amjθmð Þ with a ¼ amð Þm¼1:M ; a

m ¼ amj

� �
j¼1:J

and
θa ¼ θ1; N ;θm� �

. Vector θm denotes the set of unknown hyper-
parameters related to the mth stimulus type. Because our mixture
model is voxelwise, the prior pdf factors over voxels: p(am | θm)=Πj

p(aj
m | θm). Importantly, the hyper-parameters are kept constant for

all voxels in a given parcel because of the within-parcel homo-
geneity. These parameters may actually vary from one parcel to
another. Let qj

m be the allocation variable (the label) that indicates
whether voxel Vj is activating (qj

m=1), deactivating (qj
m=−1) or non-

activating (qj
m=0) in condition m. The marginal density p(aj

m | θm)
thus reads:

p amj jθm
� �

¼
X1
i¼�1

Pr qmj ¼ ijlm

� �
f amj jqmj ¼ i;θm
� �

¼
X1
i¼�1

Ei;mfi amj jθm
� �

; ð3Þ

with λm= (λ- 1,m, λ0,m, λ1,m) and f0 amj jθm
� �

¼ N 0; υ0;m

� �
;

fF1 amj jθm
� �

¼ G aF1; m; bF1;m

� �
. The λi,m parameters define the

prior probabilities of the three-classmixture on theNRLs (Σiλi,m=1).
For instance, λ1,m gives us the prior probability of being activated in
response to condition m. Since the mixture is independent in space,
we have λ1,m=Pr(qj

m=1 | λm), ∀j. Note that qj
m | λm follows a

multinomial distribution over the 3-dimensional probability simplex,
i.e., qmj eMN 3 1;lmð Þ (see Appendix A). Hence, seven hyper-
parameters are necessary to describe the prior mixture for each
experimental condition m:

θm ¼ kF1;m; aF1;m; bF1;m;υ0;m

� �
:

Compared to (Woolrich et al., 2005), we set the mean of the
non-activating class to zero (µ0,m=0, ∀ m), while we do not need
to place restrictions on the mode of the activation and deactivation
gamma classes.

The nuisance variables
We assume that l is a random process independent of h such

that p l; r2ℓ
� � ¼ jjp ℓj; r2ℓ

� �
and ℓjeN 0; r2ℓIQ

� �
.

The hyper-parameters
All the hyper-parameters are concatenated into the overall param-

eter vector Q ¼ θ0; r2h; r
2
ℓ;θa

� �
. Without informative prior knowl-

edge, the following priors are retained for (σh
2, σℓ

2 , θ0):

p r2h;r
2
ℓ

� � ¼ rhrℓð Þ�1; p θ0ð Þ ¼ j
J

j¼1
p qjr

2
ej

� �
¼ j

J

j¼1
r�1
ej u ½�1; 1�ð Þ qj

� �
;

ð4Þ

to ensure stability of the AR(1) noise process (Kay, 1988).

Mixture parameters. As regards variances υ0,m, an improper
Jeffreys' prior p(υ0,m)=υ0,m

- 1/2 is considered because we do expect
non-activating voxels in a given parcel. Hence, class 0 should
never be empty a priori. However, to avoid emptiness and sub-
sequent degeneracy problems making the sampling of the posterior
distribution of υ0,m unfeasible, a conjugate prior could also be
chosen, that is, an inverse gamma density IG υ0;m; aυ0 ; bυ0

� �
, where

(bυ0, cυ0) are fixed values chosen in an appropriate way to make the
prior flat enough.

The non-negativity of parameters αi,m is guaranteed through the
use of an exponential density E ai;m; si

� �
uG ai;m; 1; si
� �

as prior
distribution (see Appendix A). For parameters βi,m we resort to the
conjugate prior, given by a gamma density G bi;m; bi; ci

� �
for i=±1.

Mixture probabilities. As regardsmixture probabilitiesλm∈ [0, 1]3,
a Dirichlet prior distribution is used as it is conjugate to the
multinomial distribution used for labels, i.e., MN 3 qmj jlm

� �
. More

exactly, a symmetric Dirichlet density D3 lmjdð Þ is selected with
δ=δ13 and δN0 (see Appendix A).

The full prior density p(θm) thus reads:

p θmð Þ ¼ υ�1=2
0;m

C 3dð Þ
3C dð Þ j

i¼F1
Ed�1
i;m si

cbii
C bið Þb

bi�1
i;m exp �siai;m � cibi;m

� �
:

ð5Þ
Values of (a±1, b±1, c±1, s±1, δ) are fixed empirically but do not

really influence the results in most cases4. These parameters make
the sampling steps of (α±1,m, β±1,m) always possible even when one
of the two classes ±1 is empty, because the hyper-prior densities
have been chosen proper.

The full posterior distribution

Combining data-driven information in each parcel with prior
knowledge using Bayes' rule, we get the full posterior distribution,
which is the keystone both for localising activations and

Table 1
Model definition and notations

GaGMM GMM GaGGaMM

AR(1) noise M1 M3

white noise M2 M4 M5

Here, AR(1) stands for a first-order autoregressive noise in time whose
parameters vary in space. In this respect, it is referenced as a spatially-
varying AR(1) noise. The second noise model under study is a spatially-
varying white noise. The columns describe the different NRLs priors: GMM
stands for a two-class Gaussian mixture model (a zero-mean Gaussian
density (G) for non-activating voxels and a Gaussian density (G) for
activating voxels). GaGMM stands for a two-class gamma-Gaussian
mixture model (a centred Gaussian density (G) for non-activating voxels
and a gamma density (Ga) for activating voxels). GaGGaMM stands for a
three-class mixture model composed of a zero-mean Gaussian density and
two gamma densities (a gamma density (Ga) for activating voxels and a
flipped gamma density (Ga) for deactivating voxels).

4 Except potentially when the corresponding class is empty: Ji,m=0 for
i=±1.
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deactivations as well as for estimating the corresponding parcel-
based HRF:

p h; a; l;Qjy� �
~p yjh; a; l;θ0

� �
p ajθað Þp hjr2h

� �
p ljr2ℓ
� �

p Hð Þ

~r�D
h r�JQ

ℓ j
J

j¼1

1� q2j

� �1=2
rNþ1
ej

l �1;1ð Þ qj
� �0B@

1CA� N

� exp � htR�1h
2r2h

�
XJ
j¼1

1
2r2ej

fy t
jLj

fy j þ
1

2r2ℓ
jjℓjjj2

 ! !

� j
M

m¼1
p θmð Þj

J

j¼1
p a j

mjθm� �� 	
ð6Þ

where p(aj
m | θm) and p(θm) are defined by (3) and (5), respectively.

Note that the parcel-based HRF h can be identified if at least
one voxel elicits activation in response to one or several
experimental conditions involved in model(1). In addition, other
identifiability problems may occur on hyper-parameters such as the
mean and variance parameters. It is necessary that at least two
voxels belong to each class in order to properly estimate the
variances attached to the mixture components. In practice, there is
no numerical problem because of the choice of proper priors for the
hyper-parameters; see Subsection 3.1.2 for practical details.

Inference scheme

Our objective is to obtain an estimate of the joint posterior
distribution of all unknown parameters, given the observed data.
Exact and analytical approaches are not feasible with non-Gaussian
models such as (6). Several competing inferential schemes are
possible. For instance, approximations to the full posterior dis-
tribution can be derived in the Variational Bayes (VB) framework
or using Taylor series expansion. In our context, given the bilinear
structure of the generative BOLD model (6), the VB formulation
would be feasible only at the expense of separability assumptions
between a and h in the approximation of the posterior distribution.
Further work is required to decide whether or not this hypothesis is
tenable. Instead, we resort to a more computationally demanding
but exact approach to simulate realisations of the full posterior
distribution.

Gibbs sampling algorithm

To draw realisations of the full posterior distribution, a Gibbs
sampler is implemented. This consists in building a Markov chain,
whose stationary distribution is the joint posterior pdf (6), by
sequentially generating random samples from the full conditional
pdfs of all the unknown parameters and hyper-parameters; see
(Liu, 2001; Robert, 2001) for a general introduction to MCMC.

As shown in Appendix B, direct sampling according to the full
conditional distributions is only feasible for the HRF h, the labels
q, the nuisance variables l, the noise variances σε, the mixture
probabilitiesλm, and part of the hyper-parameters (scales σh and σℓ,
class 0 variances υ0 and shape parameters βi for i=±1). In contrast,
direct simulation is not tractable for the other parameters, i.e., the
NRLs a corresponding to classes ±1, the AR parameters ρ and the
scale parameters αi of the gamma densities for i=±1. Therefore,
single-component Metropolis-Hastings jumps (Hastings, 1970) are
specifically designed. More precisely, separate jumps are proposed

for each of the parameters in turn. To this end, suitable instrumental
distributions regarding the parameters of interest are designed (see
Appendix B for details).

Initialisation
Parameters are uniformly initialised. This means that we set up

all voxels with the same noise statistical parameters (θ0,j=θ0, ∀j) and
that we use the same starting values of mixture hyper-parameters
(θm=θ⁎, ∀m). In the first parcel, the HRF is initialised to the
canonical shape (Glover, 1999). In the next ones, the HRF is set up
using themean of the estimates computed over the already processed
neighbouring parcels. We resort to the same strategies for the labels
and the corresponding NRLs when the parcel sizes match
approximately. We have checked that this strategy provides shorter
burn-in periods5 and thus reduces the computation load.

Identifiability issues
To cope with these identifiability problems, we have carried out

the following three steps procedure over the first iterations of our
MCMC algorithm:

• initialise each parcel-specific HRF with a fixed shape in order to
obtain a first estimate of labels q̂;

• check that the class of activating voxels is effectively not
empty for at least one experimental condition in the
current parcel P:

−− If a m a N4
M ¼ 1; N ; Mf g such that a jaPjqmj ¼ 1 then

release the HRF constraint to estimate the complete model i.e.,
including the HRF shape;

−− otherwise, discard the current parcel: the HRF estimate is not
reliable in P. Since the corresponding NRLs are close to zero
in that case there is no evoked activation due to the experi-
mental paradigm.

Convergence diagnosis
We use a burn-in period of 500 iterations, followed by 1000

subsequent jumps and compute PM and MAP estimates every two
jumps. Observations of the chain with different initial conditions
confirmed that a burn-in of 500 jumps was sufficient. In addition,
convergence has been checked by monitoring on-line the behaviour
of the estimated values of some scalar parameters (e.g., noise
variances, AR parameters, …) from one iteration to another. These
observations confirmed also that 1000 iterations were sufficient.

Computational load and parallel implementation
Our current implementation (PyHRF package) is in Python,

while the most intensive computations (e.g., computation of the
inverse covariance matrix of h) have been coded in C-language and
interfaced with the Gnu Scientific Library (GSL)6. This allows us
to take advantage of a parallel computing system available through
the Seppo library (Simple Embarassingly Parallel Python7) and the
Pyro (Python Remote Object) server. Using such a system, all the
parameter estimates are obtained in about 2 mn for a parcel of
mean size (250 voxels) for two experimental conditions (M=2).

5 The burn-in period is the starting part of the Markov chain built by any
MCMC algorithm which is used to ensure that the subsequent samples
follow the equilibrium target distribution, i.e., the posterior law.
6 http://www.gnu.org/software/gsl.
7 see http://www.its.caltech.edu/∼astraw/seppo.html.
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Since about 200 parcels are necessary to cover the grey matter's
mask, a complete within-subject analysis takes about 2 hours when
running four processes on a dual core bi-processors Pentium IV
(2.7 GHz). PyHRFwill be available in the next release of BrainVisa8

in April 2008.

Derivation of parcel-based summaries

After convergence of the MCMC algorithm in each parcel P,
the samples of the quantities of interest are averaged over iterations
to compute approximations of marginal posterior expectations:

x̂PMP ¼
XL1
k¼L0

x kð Þ=L; L ¼ L1 � L0 þ 1; 8xa h; a; l;Hf g; ð7Þ

where L0 stands for the length of the burn-in period and L the
effective number of iterations. For classification purpose, we
proceed in two steps:

1. Compute the PM estimates ( p̄ j
m)i of Pr(q j

m= i |yj ) for i=−1, 0
using the following expression:

Pp m
j

� �
i
¼
XL1
k¼L0

I qmj

� � kð Þ
¼ i


 �
=L; ð8Þ

where I stands for the identity function. Then, deduce ( p̄ j
m)1

from the constraint of unitary probability mass: ( p̄ j
m)1=1 −

( p̄ j
m)−1− ( p̄ j

m)0.
2. Sort the probabilities ( p̄ j

m)i and select the MAP estimate:

q̂mj

� �MAP
¼ arg max

i
Pr qmj ¼ ijyj
� �

c arg max
i

Pp m
j

� �
i
: ð9Þ

whatever the number of components in the mixture. The MAP
estimator is easily obtained in the two-class mixture case: Vj is
non-activating ((q̂ j

m)MAP=0) for themth condition if ( p̄ j
m)1b0.5.

In combination with these PM estimates, one can attach un-
certainty measures to the NRLs. More precisely, the error bars are
derived as follows:

emj ¼
XL2
k¼L1

rmi;j

� � kð Þ
=L with i ¼ q̂mj

� �MAP
: ð10Þ

Interestingly, σ0, j
m is directly given by

ffiffiffiffiffiffiffiffi
υm
0; j

p
since the full con-

ditional posterior distribution of the zero class is Gaussian, i.e.,
N Am0; j;υ

m
0; j

� �
. In contrast, the standard deviations (SD) σ±1, j

m re-
quire further computation since these full conditional densities are
gamma-Gaussian (see Section A.5). As derived in Eq. (A.13), the
variance of a gamma-Gaussian density admits a closed form expres-
sion, which gives σ±1, j

m after taking the square root. These SD
estizmates are then plugged into (10) to get corresponding error bars
ej
m.
The stochastic algorithm is summarised in Table 2.

Statistical comparisons for cognitive interpretation

Akin to the contrast definition in any GLM-based approach,
statistical comparison between our task-related NRL estimates can be
addressed in the proposed formalism. One might be interested in
assessing unsigned or signed differences like using Fisher or Student-t
tests, respectively in the classical hypothesis testing framework.

Let m and m' be the indexes of the conditions we plan to contrast
across the brain. This contrast can be assessed by measuring
how close the voxelwise marginal distributions (pj

m, pj
m') of the

NRLs (aj
m, aj

m') are in every voxel Vj. Since these densities write as
posterior mixtures, say pj

m=Σiπi f i, j
m , we start with identifying the

MAP estimates (q̂ j
m, q̂ j

m') and then we compare the full conditional
posterior densities ( f mq̂mj ; j

; f m
0

q̂m
0

j ; j
) instead of computing a distance

between pj
m and pj

m'. Hence, three different (respectively, six)
situations may arise depending on the mixture prior in use (two or
three-class mixture, respectively). The different cases correspond to
all possible combinations of the pair (q̂j

m, q̂j
m'):

a. if q̂j
m= q̂j

m'=−1, voxel Vj generates deactivations for both
conditions. Comparing the NRLs (aj

m, aj
m') is achievable by

measuring how close (f−1,j
m , f−1,j

m') are. This comparison therefore
answers the question of deciding whether or not the deactivation
is stronger for one condition w.r.t. the other (signed comparison)
or if there is any difference between the two conditions
(unsigned comparison).

b. if q̂j
m= q̂j

m'=0, voxel Vj is non-activating for both conditions.
Comparing the NRLs (aj

m, aj
m') amounts to computing a criterion

between ( f 0, j
m , f 0, j

m' ). The interesting comparison consists in8 http://brainvisa.info.

Table 2
Gibbs sampling algorithm in a given parcel P
• Setting up: choose h0, a0, l0, θ0, θa

0.
• Iteration k: draw samples hk,ak,λk,(ε2)k,θa

k from the conditional posterior
pdfs:
−− HRF: hk~N (μh,Σh),
−− HRF variance: (σh

2)k~IG(D/2,htR–1h/2),
−− NRLs: for every condition m and every voxel j,

−− (uj
m)k~U[0, 1]; if (ujm)k⩽λ- 1,j

m , then (qj
m)k=–1 else if (uj

m)k ⩽
λ- 1,j

m +λ0,j
m then (qj

m)k=0, otherwise (qj
m)k=1.

−− (a j
m)k|(q j

m)k=0~N (μ0,j
m , υ0, j

m ).
(aj

m)k|(qj
m)k=±1~GN (aj

m|α±1,m,μ±1, j
m ), υ±1, j

m ).

−− drift coefficients: 8j; ℓj

� �kfN mℓj
;
P

ℓj

� �
−− Noise variances: 8j; r2ej

� �k
fIG N þ 1ð Þ=2; jjfy jjj2Kj

=2
� �

:

−− AR parameters: 8j; qj
� �kf ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2j
q

exp � Aj

2r2ej
qj � Bj

Aj

� �2� 	
l �1;1ð Þ qj

� �
:

−− Mixture parameters: for every condition m,
−− Weighting probabilities λm:

Emð ÞkeD d Vð Þ; with d Vi ¼ dþ
Card Ci;m ¼ ja1 : J jqmj ¼ i

n oh i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ Ji;m
;

8i ¼ �1 : 1:

−− Variance of NRLs for non-activating voxels: (υ0,m)
k~IG(η0,mk ,ν0,m

k ).
−− Shape parameters: aF1;m

� �k
fexp Ji;msi;mai;m

� �
=C ai;m
� �Ji;m IRþ ai;m

� �
:

−− Scale parameters: bFi;m

� �keG Ji;mai;m þ bi þ 1;
P

jaCi;m
amj þ ci

� �
:

•Iterate until convergence is achieved. PMEs of {h, a, l, θα} are computed
using (7).

•Classification is performed according to the MAP criterion using (8)-(9).

The parameters of the sampled distributions are derived in Appendix B.
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deciding whether or not there is some difference in the non-
activating profile.

c. if q̂j
m= q̂j

m'=1, both conditions elicit activations in Vj. By
measuring how close ( f 1, j

m , f 1, j
m' ) are, we hope to know if acti-

vation occurring for condition m or m' is stronger or if there is
any difference irrespective of its sign.

d. if q̂j
m=−1 and q̂j

m'=0, Vj is deactivating in response to the mth
stimulus type but is non-activating in response to the m'th
condition. To quantify this decision, one can measure a signed or
unsigned criterion between ( f–1, j

m , f 0, j
m' ). By symmetry this case

is equivalent to q̂j
m=0 and q̂j

m'=1.
e. if q̂j

m=−1 and q̂j
m'=1 or vice-versa, Vj is activating in condition

m' and deactivating in conditionm. To quantify this decision, one
can measure a signed or unsigned distance between ( f–1, j

m , f 1, j
m' ).

f. if q̂j
m=0 and q̂j

m'=1 or vice-versa, Vj is activating in condition m'
and non-activating in condition m. To quantify this decision, one
can measure a signed or unsigned criterion between ( f 0, j

m , f 1, j
m' ).

Due to the use of mixture models, these comparisons can allow
us to assess the null hypothesis (H0 : aj

m=aj
m') or the alternative

one (e.g., H1 : aj
m≠ajm' or H1 : aj

mbaj
m') depending on the com-

puted criterion. The question is now to define what kind of signed
or unsigned criteria we can implement to quantitatively discrimi-
nate the two underlying distributions ( fi, j

m, fi', j
m' ).

Unsigned task comparison

Unsigned comparison between fi, j
m and fi', j

m' can be computed
using the Kullback-Leibler (KL) divergence i.e.,

D f mi;j jj f m V
i;j

� �
¼
Z
R
f mi;j að Þlog f mij að Þ

f m V
ij að Þ da:

In the present case, its exact computation is only feasible when the
two distributions are Gaussian i.e.,when i= i'=0 (case b); see (A.3) in
Appendix A for details. Otherwise, an approximation of D(·||·) has to
be derived. For doing so, we proceed as follows. In cases (a, c, e), the
sampling step of the NRLs (aj

m, aj
m') relies on two Metropolis jumps,

one for each NRL. The corresponding instrumental laws are truncated
normal distributions (see (A.4) in Appendix B). Therefore, we
approximate fi,j

m and fi',j
m' by these positive Gaussian distributions

whichmean and variance parameters are given in (A.5)-(A.6).We end
up by applying the KL divergence formula (Eq. (A.3)) to these
truncated Gaussian approximations. In cases (d, f ), we proceed
similarly for the single activating or deactivating component.

Signed task comparison

To go one step further and recover a sign information regarding
the difference d j

m−m'=aj
m–aj

m', we need to estimate its posterior
probability distribution f j

m−m' from a histogram H j
B (.) with B time

bins (βb)b=1:B constructed over the last 500 iterations (i.e., the
generated values (dj

m−m')(k) = (aj
m)(k) − (aj

m')(k) in any voxel of the
maskMf . The posterior cumulative distribution function (cdf) F (·)
can then be easily estimated from Hj

B (.). Contrast-based pos-
terior probability maps (PPMs) are thus given by looking at dif-
ferences dj

m−m' above a given threshold α:

P dm�m V
j Na

� �
¼ 1� F dm�m V

j ⩽a
� �

¼ 1�
Z a

�l
f m�m V
j tð Þ dt ð11Þ

c1�
Xd
n¼1

HB
j

bn þ bnþ1

2

� 	
Db with dba⩽d þ 1; ð12Þ

where Δβ=βn+ 1 − βn. Setting α=0, we actually find the voxels
where (aj

m)N (aj
m'). Finally, we can threshold P (dj

m−m'Nα) at level η
to retain the voxels which make the comparison significant at this
level (e.g., η=0.95). Formally, the thresholded PPMs are given by
P (dj

m−m'Nα)Nη. Note that this only provides uncorrected PPMs for
multiple comparisons. The control of the familywise error is an open
issue in the Bayesian formalism and is beyond the scope of this
paper.

Results on synthetic data

Goal of the study

A comparison between two different prior mixture models has
been done in (Makni et al., 2006a). In short, it has been shown that
the gamma-Gaussian mixture model (GaGMM) introduced on the
NRLs is more efficient than a two-class Gaussian mixture model
(GMM) in terms of specificity: it provides a better control of the
false positive rate. Similar conclusions have been drawn in (Makni
et al., 2006b) when considering an AR(1) noise model instead of a
white Gaussian one in combination with a GMM prior. As the two
changes induce higher computation time, it is worth assessing
which modelling effort is preferable i.e. leads to the more
significant improvement: the introduction of an inhomogeneous
prior mixture or the consideration of serial correlation. For doing
so, the models described in Table 1 are tested on the same artificial
fMRI dataset.

Artificial fMRI dataset
These data were obtained by first generating two sets of trials,

each of them corresponding to a specific stimulus (M=2). These
binary time series were then multiplied by a stimulus-dependent
scale factor. Here, the functionally homogeneous region P con-
sisted of J=60 voxels. The number of activating voxels J1,m was
varied with the stimulus type m according to (J1,1, J1,2)=(22, 30).
Positive NRLs corresponding to activating voxels were simulated
according to gamma pdfs:

activating voxels : aj
1~G(α1=3, β1=1), aj2 ~G(α2=10, β2=2),

non-activating voxels : aj
1,2 ~N (0, υ0,m=0.1).

Remark that the chosen gamma parameter values yields a lower
SNR for condition 1 ((µ1, υ1)=(3, 3) vs. (µ2, υ2)=(5, 2.5)). For all
voxels, the binary stimulus sequence was convolved with the
canonical HRF hc, whose exact shape appears in Fig. 2(a) in ■-line.
An AR(1) noise bj was then added to the stimulus-induced signal
Σm aj

mXmh in every voxel Vj. All AR parameters were set to the same
value: (ρj )j=1:J=0.4, which is compatible with the serial correlation
observed on actual fMRI time series. Also, a low SNR (SNR=0.3)
was considered in our simulations, in conformity with the real situa-
tion. Space-varying low-frequency driftsPℓj (generated from a cosine
transform basis with coefficientsℓj drawn from a normal distribution)
were also added to the fMRI time courses according to (1).

General comments
As shown in Figs. 2–5(a), all HRF estimates obtained using the

four different models match the canonical time course hc pretty
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well. Figs. 2–5(b) show the corresponding NRL estimates that
we obtained from models M1 �M4, respectively in response to
condition 1 while Figs. 2–5(c) summarize the same results for
condition 2.

Since the artificial fMRI time courses were synthetised using a
GaGMM prior and some correlated noise, it is not surprising that

the estimation performed under model M1 provides the most
accurate NRL estimates. Let us remark that the NRL estimates
have a small but not negligible amount of bias, which is due to the
bias/variance trade-off arising in the Bayesian approach in the non-
asymptotic case. Nonetheless, we have checked that the bias tends
to zero when the SNR increases.

Fig. 2. Estimation results on the simulated data using modelM1. (a) HRF results: Symbols■ and∘ represent the true hc and its corresponding HRF estimate,
respectively. (b)-(c): NRL estimates for conditions 1 and 2, respectively. True values appear on the x-axis and estimated values on the y-axis. The error bars
follow Eq. (10). (d)-(e): PM estimates of activation probabilities p̄ j

m (∘ symbols) for the conditions 1 and 2, respectively. Symbols ⁎ depict the true class attached
to each voxel.
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Influence of the noise model
Figs. 2–3(b)-(c) illustrate the impact of the noise model: a more

accurate estimation of theNRLs,with smaller error bars and lowermean
square error, is observed in Figs. 2(b)-(c) compared to Figs. 3(b)-(c), that
is for modelM1 compared to modelM2. This is a direct consequence
of accounting for serial correlation inM1. The same conclusion holds
when looking at Figs. 4 and 5(b)-(c), so irrespective of the prior mixture
type. As regards the HRF estimate (compare Figs. 2 and 3(a)), the noise

model has only little influence on the recovered shape, as already
advocated in (Marrelec et al., 2003). As regards AR parameters, the
estimated first order coefficients (ρi)i are close to the true values in every
voxel for both modelsM1 �M3 (results not shown).

We also assessed the sensitivity and the specificity of the four
models. Figs. 2–5(d)-(e) show the posterior mean estimates (p̄j

m)1 of
deciding that voxel Vj lies in class 1, i.e., is activating for models
M1 �M4 and conditions 1 and 2, respectively. These results confirm

Fig. 3. Simulation results using model M2. The same legend as in Fig. 2 holds. Only one FN voxel is present, indicated with an upward arrow.
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our expectations: themodelling of the temporal correlation significantly
improves both the sensitivity and the specificity. A higher/lower value
of ( p̄ j

m)1 is obtained with M1 �M3 when Vj is truly activating/
non-activating (compare Figs. 2 and 3(d)-(e) for GaGMM priors or
Figs. 4 and 5(d)-(e) for GMM priors). This means that modelsM1 �
M3 provide lower false positive (FP) and false negative (FN) rates
than models M2 �M4, respectively. This effect is stronger in
condition 1. This is in agreement with the idea that the precision of the
noise model plays a more important role at a lower SNR.

Influence of the mixture prior
Not surprisingly, the estimated NRLs are recovered more

accurately using the true priormixture (M1 �M2): compare Figs. 2–
4(b)-(c) one to another for an AR(1) noise model and observe the
difference in Figs. 4 and 5(b)-(c) for a white noisemodel. This effect is
much more important at low SNR, i.e., for condition 1. However, we
have checked that when the true NRLs of the activating voxels follow
a Gaussian distribution, the estimated shape and scale parameters of
the gamma density in the GaGMM mixture provide close estimates

Fig. 4. Simulation results using model M3. The same legend as in Fig. 2 holds. FN voxels are indicated by upward arrows.
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of the mean and variance parameters of the uncentered Gaussian
distribution (results not shown).

We are now interested in assessing the differences between M2

andM3. The purpose of such a comparison is to decide whether or
not a good mixture type provides more accurate and sensitive
results than a precise noise modelling. Contrasting Figs. 3 and 4(b)
allows us to note that M2 outperforms M3 in terms of accuracy of
estimation for the first experimental condition. The NRLs attached
to the non-activating voxels are over-estimated, leading to a much

larger bias. In case of high SNR arising for the second condition,
the comparison of Figs. 3 and 4(b) is less clear. The small NRLs
are still over-estimated but the large ones are better estimated using
M2 in some cases (e.g., voxels 27, 58, 60). In terms of detection,
Fig. 3(d) shows that a single false negative (voxel 3) is retrieved by
model M2 for condition 1, while five FNs are found by model
M2, as shown in Fig. 4(d) (voxels 3, 6, 19, 26, 32). Hence, model
M2 achieves better results in terms of sensitivity and specificity.
Therefore, we conclude that introducing an inhomogeneous prior

Fig. 5. Simulation results using modelM4. The same legend as in Fig. 2 holds. FP and FN voxels are indicated by downward and upward arrows, respectively.
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mixture is more powerful than modelling the serial correlation as
regards both estimation and detection.

Receiver-operator-characteristic (ROC) curves have been also
computed to quantitatively evaluate the differences between models
M1 �M4. Fig. 6 illustrates and confirms that modelM1 provides
the most sensitive detection when specificity is fixed and a better
specificity at a given sensitivity. These ROC curves also validate that
model M4 is the less sensitive and the less specific out of the four
models. Finally, model M2 outperforms M3 and provides better
results in terms of sensitivity and specificity, irrespective of the
stimulus type. Figs. 6(a)-(b) allows us to claim again that the noise
model has a stronger impact in detection at low SNR since the
distance between continuous and dotted lines is larger in Fig. 6(a)
than in Fig. 6(b), except at very low specificity (0.1). This holds
whatever the mixture type.

Deactivation modelling

Our purpose was to compare an inhomogeneous two-class
mixture model with its three class extension. In the latter case, a
third class is used to account for putative deactivation phenomenon
arising for instance during sustained bursts of interictal epilepti-
form activity (Bagshaw et al., 2005; Bénar et al., 2006).

Suitable artificial fMRI datasets were simulated accordingly. We
considered a ROI consisting of J=60 voxels. Let J−1,m, J0,m J1,m

be respectively the number of deactivating, non-activating and
activating voxels in response to condition m. We set (J1,1, J−1,1)=
(28, 19) and (J1,2, J−1,2)= (32, 12), so that (J0,1, J0,2)= (13, 16). We
simulated the NRLs as follows:

activating voxels : aj
1~G(3, 1), aj2 ~G(5, 2)

non-activating voxels : aj
1,2 ~N (0, 0.1)

deactivating voxels : −aj1 ~G(5, 4), −aj2~G(5, 4)

The same procedure as before (see §4.1.1) was applied to
simulate artificial fMRI time series. The only difference concerns
the noise type, which is white, Gaussian and homogeneous in
space to save computation time (∀j, σj

2=0.3). Hence, model M2

and M5 (see Table 1) were tested and compared in terms of
estimation, detection performance and evidence.

The HRF estimates corresponding to modelsM2-M5 are shown
in Figs. 7 and 8(a), respectively. These estimated time courses appear
very close to the true HRF shape. Figs. 7 and 8(b)-(c) show the NRL
estimates related to conditions 1 and 2, computed for modelM2 and
M5, respectively. First, we observe that M2 provides under-
estimated NRLs for activating voxels but over-estimated parameters
for deactivating ones, irrespective of the stimulus type. The esti-
mated error bars also appear significantly larger when deriving from
M2. In contrast, model M5 provides more reliable NRL estimates
with smaller error bars, as illustrated in Figs. 8-(b)(c). Also, themean
square error is decreased for the NRLs corresponding to deactivating
and non-activating voxels.

Figs. 7(d)-(e) demonstrates that model M2 reports a few FN
voxels (see upward arrows). All these voxels have small NRL
coefficients, inducing their assignment to class 0. More impor-
tantly, we observe that the truly non-activating and deactivating
voxels are mixed in class 0, irrespective of the condition. Figs. 8
(d)-(e) reports the posterior mean estimates (p̄j

m)i (see (8)), which
are then combined to get the final classification according to the
MAP criterion (q̂ j

m)MAP (see (9)). As indicated on these graphs,
model M5 produces an accurate classification. Figs. 8(d)-(e) re-
spectively show the presence of three FN voxels for condition 1
and only two FNs for condition 2. These classification errors could
be explained by the low values taken by the true NRL coefficients
in these voxels, making likely the assignment to class 0.

Finally, note that modelling the third class induces a higher
computation time. In our simulations, inferring the parameters of
models M2 and M5 takes about 6 and 11 minutes, respectively. If
the ROI is large or if the experimental paradigm involves
numerous conditions, it seems reasonable to start with a careful
analysis of the paradigm to anticipate potential deactivations before
inferring upon parameters of M5 instead of M2.

Bayesian model comparison

More formally, from a statistical point of view we compare
models M1 �M5 by computing sample-based approximations to
the model evidence p yjMm

� �
. That allows us to derive Bayes

factors BFmn as ratios of model evidence (see Appendix C for
computational details). Bayes factor provides us with good statistical
summary for model comparison. As reported in Table 3, there is a
strong evidence in favour of Model M1. More interestingly, our
conclusion drawn from the parameter estimates are also confirmed
when comparingM2 withM3 using Bayes factor (line 2, Table 3).
This also holds for the comparison between the two-class and the
three-class mixtures, M2 and M5 respectively (line 5, Table 3).

Fig. 6. (a)-(b): ROC curves associated to the four different models for
condition 1 (a) and condition 2 (b), respectively. Continuous line, interrupted
line with ○, continuous line with (a)-(b): ROC curves associated to the four
different models for condition 1 (a) and condition 2 (b), respectively. Con-
tinuous line, interrupted line with ○, continuous line with ● and interrupted
line with ⁎ represent the ROC curves for modelsM1 �M4, respectively.
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Results on real fMRI data

fMRI experiment

MRI settings
The experiment was performed on a 3T whole-body system

(Bruker, Germany) equipped with a quadrature birdcage radio

frequency (RF) coil and a head-gradient coil insert designed for
echo planar imaging (EPI). Functional images were obtained with
a T2⁎-weighted GE-EPI sequence with an acquisition matrix at
the 64×64 in-plane spatial resolution and 32 slices. A high-
resolution (1×1×1.2 mm3) anatomical image was also acquired
for each subject using a 3-D gradient-echo inversion-recovery
sequence.

Fig. 7. Simulation results using model M2. FN voxels are indicated by upward arrows. The truly deactivating voxels that have been mixed in class 0 are
surrounded by rectangle.
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Experimental paradigm and contrast selection
The readermay refer to (Dehaene-Lambertz et al., 2006) for details

about this fMRI experiment. In short, the motivation of this study was
to measure the reduction in the neural activity subserving a cognitive
representation when this representation is accessed twice (the so-
called “repetition suppression” effect), resulting in a detectable
adaptation of the measurable signal in fMRI (Grill-Spector and
Malach, 2001; Naccache and Dehaene, 2001). The experiment
consisted of a single session ofN=216 scans lasting TR=2.4 seconds

each. Sixty sentences presented in a slow event-related design
(SOA=14.4 s) were recorded. Each sentence (S1) could be repeated
two (S2), three (S3) or four (S4) times in a row. The main goal of our
subsequent analysis was twofold. First, our primary interest was to
exhibit regions which activation to a given sentence either decrease
with repetition or keep a constant magnitude across the repetitions.
Second, we were interested in inferring the hierarchical temporal
organisation from the parcel-based HRF estimates along the superior
temporal sulcus (STS).

Fig. 8. Simulation results using model M5. The same legend as in Fig. 2 holds. FP and FN voxels are surrounded by rectangles (3 FNs in (d) and 2 FPs in (e)).
○, · and ⁎ symbols represent (p̄ j

m)1 , (p̄ j
m)–1 and (p̄ j

m)0, respectively.
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Since the most significant habituation effect occurs between the
first and second sentence repetitions, we modelled the four
conditions S1-S4 but we only studied the contrast S1 − S2.

Pre-processings

As explained in Subsection 2.1.1, the grey matter's mask was
first computed (see Fig. 9(a)) and then dilated using a 4 mm-radius
sphere to account for the width of the cortical ribbon. Fig. 9(b)
shows the result of this step. The resulting mask Ma contains
19719 voxels at the fMRI resolution.

We checked that for nine out of ten subjects the raw fMRI data
were motion-free approximately. All T1-weighted MRI images
were normalised onto the MNI template and functional images
were transformed accordingly. fMRI volumes were also spatially
smoothed using a Gaussian kernel with FWHM=6 mm along
each direction. A first level analysis was performed for each
subject using SPM2. The GLM modelled the four presentations of
a given sentence with two regressors (the canonical HRF and its
time derivative). Then, the parcellation was computed from the
parameter estimates of this analysis. We chose a relevant F-contrast
c=[1, 0, −1, 0, … ; 0, 1, 0, −1, … , …] to study the habituation
effect etween the first and second presentations of a given sentence
(S1 − S2). Fig. 9(c) depicts an axial view of this parcellation for the
same slice (z=−4 mm).

Our approach strongly relying on a functional homogeneity
assumption, we started by comparing the results using increasing
parcel numbers (fromK=100 toK=500 parcels inMs ¼Ma [Mf .

We checked that K=200 is large enough to guarantee a higher and
sufficient degree of homogeneity. Here, the smallest and the largest
parcels contained 44 and 190 voxels, respectively.Within each parcel,
the degree of functional homogeneity was measured by computing a
correlationmatrix over the parameter estimates of the GLM. Note that
this could also be done over the fMRI signals attached to each parcel.

Results

Our method was tested on the nine datasets. Here, we only
report results for Subject 1. Although the habituation effect and

Table 3
Values of the integrated log-likelihood log p(y | Mm) computed from a
stabilized version of the harmonic mean identity (Raftery et al., 2007) for
models Mm with m ∈ N4

5

Model m log p(y | Mm) Fig. # log BFmn, n=1 : 4

M1 −199 Fig. 1 NR 18 316 400
M2 −217 Fig. 2 −18 NR 298 378
M3 −515 Fig. 3 −316 −298 NR 378
M4 −595 Fig. 4 −400 −378 −80 NR
M2 −700 Fig. 6 Log BF 52=356
M5 −344 Fig. 7

Model comparison based on the computation of Bayes factors log BFmn=
log p(y | Mm) − log p(y | Mn) for every pair (m, n ). NR stands for Not
Relevant.

Fig. 9. (a): Slice of Subject 1's anatomical mask (z=−4 mm). (b): its dilated versionMa to match the functional resolution. (c): corresponding parcellation in the
same slice. Each colour codes for a different parcel.

Fig. 10. (a)-(b) NRL estimates in one slice of subject 1's brain (at z=−4mm) in
response to S1 (a) and S2 (b). Values correspond to the NRL coefficients only
for voxels belonging to Ms. Otherwise they are equal to 0. (c)-(d): detection
results in the same slice for S1 and S2, respectively. Voxels colour-coded in red
are detected as activating. In black are the parcel borders that are superimposed
to the different map results to show the parcellisation influence on the
estimation of such parameters.
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brain dynamics (i.e., the HRF shape) are subject to inter-individual
variability in terms of spatial localisation and activation delay, the
conclusions drawn for Subject 1 remain quite valid for the others.

In what follows, the proposed joint detection-estimation algorithm
was applied to each parcel of Subject 1's brain. Figs. 10(a)-(b) shows
the maps of the NRL estimates corresponding to conditions S1 and S2,
respectively, in a given slice of the brain. In the same slice, Figs. 10(c)-
(d) shows the activation probabilitymaps attached to S1 and S2 (see (9)
for details) our algorithm provides. Activating voxels appear in red
colour.

Probing for putative deactivation
This first analysis was devoted to looking at putative

deactivations, that is the presence of negative NRLs. We actually

performed tests on all parcels to assess differences between the
GaGMM prior and its 3-class extension. For illustrative purpose,
Fig. 11 depicts the results of such a comparison on two parcels P1

and P2, composed of 129 and 135 voxels, respectively. Interest-
ingly, the vast majority of voxels in P1 elicit a coherent activation
in response to the first presentation of a sentence (S1), while in P2,
most voxels are non-activating. As shown in Fig. 11(a)-(b), the
same S1-based classification map is obtained in P1 irrespective of
the mixture model. The same conclusion holds with respect to S2
(results not shown). In P2, Figs. 11(c)-(d) illustrates that a few
voxels move from the non-activating state to the deactivating one.

However, the corresponding NRL estimates are of small mag-
nitudes indicating that this new classification may arise by chance.
Bayesian model comparison statistically confirms our result since
numerical evaluation of Bayes factors gives us log BF52=−1.2 for

Fig. 11. Comparison of S1-based classification maps between the GaGMM prior (left column, (a)-(c)) and its 3-class extension (right column, (b)-(d)) in two
different parcels, P1 (top row, at y=−16 mm) and P2 (bottom row, at y=−52 mm). Square spots in white, orange and brown match with activating, non-
activating and deactivating voxels, respectively.

Fig. 12. Statistical maps are superimposed to a functional image and results are given in one slice of the brain (z Statistical maps are superimposed to a functional
image and results are given in one slice of the brain (z=−4 mm). (a): KL-distance for voxels inMs at z=−4 mm. (b): TheMSmost significant voxel KL-distance
values. (c): The MS most significant voxel F-values.
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P1 and log BF52=− .5 for P2. These results show that there is less
evidence in this dataset for supporting model M5. Therefore, the
introduction of the third class in the mixture is not necessary to

analyse these data, particularly in the brain regions involved in the
treatment of phonological stimuli (language comprehension). In
the rest of the paper, we restrict ourselves to the GaGMM prior.

Fig. 13. From left to right and from top to bottom, brain slices organised along increasing axial axis (the bottom of the brain appear first in the superior left
corner). Study of the contrast S1. Study of the contrast S1NS2. (a): thresholded PPM (see (11)) at η=0.999; (b): thresholded SPM t-map at T=3.09 (corrected for
multiple comparisons) obtained using SPM2.

Fig. 14. (a): Single-slice comparison (z=0 mm, slice 7 in Fig. 13) for the contrast S1NS2. left panels: thresholded PPM at η=0.999; right panels: thresholded
SPM t-map at T=3.09 (corrected for multiple comparisons) obtained from the SPM analysis. (b): same comparison in slice z=24 mm (slice 13 in Fig. 13). HRF
estimates (in blue) in these regions compared to the canonical hemodynamic response function used in SPM (in red).

958 S. Makni et al. / NeuroImage 41 (2008) 941–969



Author's personal copy

959S. Makni et al. / NeuroImage 41 (2008) 941–969



Author's personal copy

Unsigned comparison between conditions
The result of our KL-distance map is shown in Fig. 12(a) in one

slice of the brain (z=−4 mm). In Figs. 12(b)-(c), the KL-distance
map is then compared to the standard F-test map by extracting the
most significant, say MS, voxels from both volumes, according to
the corresponding criteria (the largest KL divergence and the
highest F value). This thresholding procedure shows common
features in the activation patterns but also discrepancies in the
temporal lobes that elicit different responses. On this slice, the KL-
based criterion provides less activations. This may be due either to
our approximation of the KL divergence or to the criterion itself.

Signed comparison between conditions
The mapping of the habituation phenomenon calls for signed

comparisons since we are looking for voxels where a significant
decrease of NRLs between S1 and S2 can be observed. Fig. 13
shows such a comparison over the whole brain between the PPM
derived using the proposed methodology and the thresholded
T-map obtained using SPM2. The activated regions (in blue) for
the contrast S1NS2 elicit therefore a higher response when a
sentence is presented only once.

Statistical differences appear between the proposed PPM and the
corresponding SPM. On the one hand, in the majority of slices we
observe more activations on the PPM shown in Fig. 13(a). To a
certain extent, these differences can be explained by the shape
variations of the HRF estimate and its deviation from the canonical
shape prescribed in SPM. Moreover, the correction for multiple
comparisons used for the t-map may dramatically reduce the number
of activating voxels. In contrast, no correction has been applied over
the PPM.

On the other hand, in the temporal lobes (top row, right slices of
Fig. 13(b)), sensitivity of detection seems better on the Student-t
map: the activated clusters appear larger. Note also the presence of
isolated activating voxels in Fig. 13(a). It is likely that this reflects
the presence of false positives. To circumvent this issue and decrease
the FP rate in the PPM, a spatial correlation model between
neighbouring voxels can be introduced; see (Vincent et al., 2007b,a)
and the discussion.

In Fig. 14, we represent the estimated HRFs in parcels cor-
responding to areas where we notice sensitivity differences. It
clearly appears that in some parcels our HRF estimates exhibit
unexpected timing properties. For instance, in central regions (x=0,

Fig. 15. (a)-(b) and (d)-(e): NRL estimates in the sagittal slices located (a)-(b) and (d)-(e): NRL estimates in the sagittal slices located at x=−48 mm and x=
−40 mm, respectively. (a)-(b) provide the magnitudes in response to S1 while (d)-(e) give us the NRLs in response to S2. (c)-(f): KL-distance maps between the
corresponding NRLs. Images are superimposed to functional data. The parcels containing the Heschl's gyrus (top row) and Broca's area (bottom row) are
surrounded in black and referenced as PHe and PBr in the text. (g)-(h): HRF estimates in PHe and PBr , respectively.
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yb0), we obtained initial dips that were difficult to predict in
advance. This requires further analysis (see Discussion). In regions
where the HRF estimate is very close to the canonical shape, the
PPM and SPM provide similar activation patterns. Finally, some
regions were also detected as activating (S1NS2) by both methods
while there is no evidence in the literature to suppose a priori that
they elicit responses to auditory stimuli (see for instance Fig. 14(b)
along the interhemispheric axis).

Habituation and temporal organisation
We focus on superior temporal regions ranging from the pri-

mary auditory cortex (Heschl's gyrus) to associative areas (middle
and posterior STS). Although it has been shown in (Dehaene-
Lambertz et al., 2006) that repetitions affect both amplitude and
delay of responses, we only model habituation effect on the NRLs
by considering the different sentence presentations as different
conditions. This procedure is not optimal but remains quite simple.

The first interesting region is Heschl's gyrus located in the primary
auditory cortex around voxel with coordinates (−48, −12, 0) mm in
the standard Talairach space. This area shows the same response
magnitude each time a sentence was presented. Figs. 15(a)-(b) shows
the NRL estimates in parcel PHe, which is circled in black for S1 and
S2, respectively. In every voxel ofPHe, thesemagnitude parameters are
very close to each other making the KL-distance between the marginal
posterior distributions of S1 and S2 close to zero (see Fig. 15(c)).
Hence, the measured difference between S1 and S2 is not statistically
significant. Summary statistics computed over the NRL estimates in
PHe are reported in Table 4 (left col.) and confirm our first analysis
quantitatively. The same study was done in PBr containing Broca's
area and centered around voxel (−40, 24, 0)mm in the Talairach space.
Figs. 15(d)-(e) clearly indicates a strong decrease in theNRLs between
S1 and S2. The higher value of the KL divergence reported in Fig. 15(f)
confirms the presence of a significant habituation effect in PBr . Our
quantitative analysis (see Table 4, right col.) also shows the same trend
as outlined by the strong discrepancies between themean and standard
deviations of S1 and S2.

In (Dehaene-Lambertz et al., 2006), a sine-wave GLM was
designed and fitted to study the speed of habituation. It allowed
one to exhibit a temporal organisation of the temporal lobe with
fastest responses located in Heschl's gyrus and slowest ones in
temporal poles. Here, given the proposed methodology, the
temporal organisation is studied more directly by measuring and
sorting the timing properties of the parcels PHe and PBr.

In these parcels, we also investigated the temporal aspects of the
STS organisation by measuring different features (time-to-peak Tpeak,
time-to-undershoot Tundershoot) on the estimated HRFs (see Figs. 15
(g)-(h)). We computed these quantities over each parcel (PHe andPBr

and their four closest neighbours) separately before averaging them to
get a mean estimate. We found that the responses in PHe (Tpeak=6 s.
and Tundershoot=13.3 s.) occur and return to the baseline earlier than

the responses in PBr (Tpeak=6.4 s. and Tundershoot=13.6 s.). After
averaging these quantities over the five parcels, we obtained
congruent results (Tpeak=6.1 s. and Tundershoot=13.2 s. around PHe

vs. Tpeak=6.5 s. and Tundershoot=13.5 s. around PBr) meaning that the
region embedding Hesch's gyrus elicits brain activations faster than
the region including Broca's area. This confirms more directly what
has been already derived in (Dehaene-Lambertz et al., 2006) although
no statistical test is provided to assess the significance of this result.
The next question concerns of course the putative reasons of these
earlier responses in Hesch's gyrus. There is a large evidence in these
datasets for supporting faster neurodynamics as the main origin of
these results instead of faster hemodynamics. This can be checked for
instance using complementary analysis like a phase analysis
conducted in (Dehaene-Lambertz et al., 2006).

Discussion

In this paper, we have proposed an original method to perform a
parcel-based joint detection-estimation of brain activity from fMRI
data. It has been shown on simulated datasets that a gamma-Gaussian
mixture as prior pdf on the NRLs outperforms a Gaussian mixture in
terms of sensitivity/specificity trade-off. It has also been reported that
the noise model has an influence over this compromise, particularly at
lower SNR: a first-order AR model provides lower false positive and
negative rates in comparison with a white noise model.

Our method extends previous works (Makni et al., 2005, 2006b,a)
to deal with anatomically informed whole brain analysis. As already
done in (Smith et al., 2003; Nieto-Castanon et al., 2003; Flandin et al.,
2002), analysis was constrained to the mask of the grey matter
obtained from a segmentation of the T1-weightedMRI. Our approach
also relies on functional homogeneity assumptions at a regional scale
that can be assessed either from the fMRI time series themselves or
from the GLM parameter estimates. To meet these conditions, we
resort to an automatic parcellation technique developed in (Thirion
et al., 2006) but alternative clustering strategies may be thought of.
Our approach therefore depends on this prior decomposition making
the global within-subject analysis a two-steps procedure. The quality
of the parcels will have an impact on the model fitting and a slight
modification of the parcellation may generate different results
especially in case of identifiability problems. By varying the number
of parcels, we have checked that our results remain quite stable for
different parcellations. The solution to this problem actually lies in the
coupling of the parcellation procedure with our detection-estimation
approach. This a very appealing direction of research but remains
beyond the scope of the present work. At the expense of an increased
computational complexity, the two steps could be merged in a
combined approach through a hierarchical Bayesianmodel: onemight
be interested in improving the parcellation from the results of the
detection-estimation stage using an iterative strategy: neighbouring
parcels would be grouped if their underlying hemodynamics share
similar features. The algorithm should take place in the context of
reversible jumps MCMC to properly handle fusion/segragation
moves between parcels Green (1995); Richardson and Green
(1997). Besides, the parcellation identification issue could also be
attacked using triplet Markov fields (Benboudjema and Pieczynski,
2007), which seem suitable for modelling nonstationarities in image
segmentation.

A strong feature of our approach is the possibility to derive
parcel-based HRF time courses throughout the brain. It allows us
to assess the spatial variability of the HRF shape and to check that
this shape greatly fluctuates across parcels. Since the parcellation

Table 4
Summary statistics in parcels containing Heschl's gyrus and Broca's area

Statistics PHe, Heschl's gyrus PBr, Broca's area

S1 (m=1) S2 (m=2) S1 (m=1) S2 (m=2)

maxj (â j
m)PM 39.45 31.29 46.57 22.33

minj (â j
m)PM 0.35 −0.88 −4.21 −0.32

Mean (â j
m)PM 7.96 3.76 19.81 9.91

Median (â j
m)PM 5.09 1.44 19.95 10.49

Std (â j
m)PM 7.62 6.72 8.95 4.92
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procedure is derived at the group level, one is able to compare
subject specific HRFs in a given parcel. Doing so, we have noticed
that the between-subject variability in the HRF shape seems to be
larger than the within-subject spatial variability, as already
suggested in (Handwerker et al., 2004).

Our results also suggest that the modelling of spatial HRF
fluctuations is important to segregate brain regions involved in the
experimental paradigm (Heschl's gyrus, Broca's area, …). The
adaptation effect was particularly evident between the first and
second sentences. The pattern of adaptation was different across
regions with a set of regions demonstrating the same response each
time a sentence was presented ( i.e., Heschl's gyrus) and regions
showing a more or less strong decrease between the first and
second presentation (eg, Broca's area, superior STS).

Nonetheless, there exist fMRI experiments for which the
proposed approach may fail because of the inhomogeneity of the
HRF shape both in space and across conditions at a regional scale.
This may occur when neurodynamic and hemodynamic fluctua-
tions intermix. Indeed, recent studies of the fine structure of the
fusiform face area (FFA) (Grill-Spector et al., 2006) have shown
that the FFA is actually highly heterogeneous. It appears that the
FFA is composed in reality of several small scale subregions that
respond strongly, not only to faces, but also to cars and sculptures.
The subregions discovered in (Grill-Spector et al., 2006) were
associated with very distinct HRFs. For such studies, the best way
to capture these HRF fluctuations is to perform a voxel-based non-
parametric analysis on the basis of which statistical comparisons
can be done across conditions, as demonstrated in (Ciuciu et al.,
2003; Marrelec et al., 2004).

We have also distinguished some differences between our
PPMs and the SPMs derived from a classical GLM-based analysis.
Our results confirm the interest of a simultaneous procedure for
detecting and estimating brain activity. The proposed procedure
actually improves the sensitivity of detection in some regions
where the temporal characteristics (time-to-peak, time-to-under-
shoot, …) of our HRF estimate deviate from those of the canonical
shape. Unfortunately, this effect is not systematic on the datasets
since in other regions a loss of sensitivity was observed. The
reasons underlying this unexpected decrease have to be identified.
To elucidate this issue, future work will be devoted to the
comparison of a degraded version of our joint detection-estimation
procedure with the actual one. The degraded version corresponds
to an inference scheme where the HRF is maintained fixed and is
not sampled at every iteration of the Gibbs sampler. We will
quantify statistically this sensitivity difference on simulated data
where we know exactly the “ground” truth. For doing so, we could
generate fMRI data over the whole brain using the fMRI simulator
developed by (Drobnjak et al., 2006).

In the present paper, we get rid of the scale ambiguity problem
due to the bilinearity of (1) w.r.t. the pair (h, a) by imposing a unitary
norm constraint over h. This could have a dramatic impact on the
convergence of our sampling scheme and then on the recoveredHRF
shape by distorting the target distribution of the MCMC scheme.
Alternative strategies may first consist in cancelling this normal-
isation step. However, the resulting sampling scheme is too slow to
converge in a reasonable amount of time (Veit and Idier, 2007). An
efficient alternative has been proposed in (Veit and Idier, 2007). It
has been applied to the joint detection-estimation of brain activity in
(Ciuciu et al., 2007). It consists in adding to the MCMC procedure a
sampling step of a positive scalar parameter s coding for the HRF
scale. It can be shown that its sampling is fast, follows a generalized

inverse Gaussian distribution in case of Gaussian mixtures and
guarantees the theoretical convergence of the generated Markov
chain to the posterior distribution. Deriving the target distribution of
this scale parameter for inhomogeneous mixtures is beyond the
scope of this paper.

To conclude about the real impact of our within-subject analysis,
inference should take place at the group level. In other words, we
should compare the results of two random effect analyses (RFX)
based on the same group statistics (e.g., mean effect) and statistical
test (Student t-test). The first RFX analysis would correspond to the
gold standard, in which the input data are given by the normalised
effects of a standard individual SPM analysis. The second analysis
would take the results of our algorithm for each subject as inputs. Of
course, this is only feasible in case of multi-subjects parcellation,
what is currently obtained using the procedure described in (Thirion
et al., 2006, 2007).

From a methodological point of view, we have shown that our
joint detection-estimation technique is able to identify deactiva-
tions in the brain. This is owing to the introduction of a third class
in the prior mixture model associated to the NRLs. Nonetheless,
we did not exhibit real deactivations on the analysed datasets. In
the future, we should therefore validate the 3-class extension on
specific datasets. A good candidate could be a dataset acquired
during an event-related auditory paradigm in which silence events
are presented randomly to compare activations to a baseline
derived from such events. As already shown in (Ciuciu et al.,
2003), silence events may generate deactivations in the temporal
lobe if they are presented to the subject when the gradients of the
scanner are switched off. This will be the subject of further work.

Smoothing the data spatially provides a reliable manner for
recovering clusters of activation instead of isolated spots, at the
expense of a loss of resolution. To avoid this preprocessing, the
proposed method could be extended by introducing spatial
correlation in the prior model. This could be done either on the
NRLs (a) or on the underlying states (labels q). We argue in favour
of the second solution for simplicity reasons. As already derived
for Gaussian mixtures in (Vincent et al., 2007b,a), it is quite simple
to sample from an Ising (2-class model) or Potts (3-class model)
Markov random field (MRF) that enforce neighbouring voxels to
be classified in the same state (e.g., activating). This approach
actually seems more reasonable in terms of computational load
than considering edge-preserving MRF based on non-quadratic
potentials (Green, 1990; Geman and McClure, 1987). Also, for
computational reasons this extension has been developed in a
supervised framework meaning that the hyper-parameter encoding
spatial regularity of the hidden MRF is set by hand. Future work
will be focused on an spatially adaptive extension in which this
parameter is estimated as well, as already done in (Woolrich et al.,
2005; Woolrich and Behrens, 2006).

Another extension that could be introduced at little expense
concerns the analysis on the cortical surface, as proposed in
(Andrade et al., 2001). This will probably improve the sensitivity
of detection by constraining the analysis to the cortical surface.
Such study needs first a segmentation of the anatomical MRI, then
an extraction of the grey-white matter interface (e.g., as a mesh),
and finally requires an interpolation of the fMRI signal on the
nodes of the mesh (see for instance (Grova et al., 2006) for a
suitable approach).

Finally, the model presented here assumes that the NRLs are
constant in time. Hence, to account for putative habituation effects,
it requires to model repetitions of the same stimulus as different
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experimental conditions, what may be not optimal in terms of
sensitivity of detection. To account for trial-varying NRLs due to
adaptation or learning effects arising either as a direct consequence
of the paradigm or as a alteration of subject's arousal, the proposed
model can be generalised in a way that makes the number of
unknown parameters not too large. As proposed in (Ciuciu et al.,
2006), habituation can be modelled at the voxel level by a pair of
parameters: the NRL to the first trial of the stimulus and a mean
habituation speed across the consecutive trials that follows a hyper-
bolic parametric model depending on the inter-stimulus intervals.

Hopefully, all these additional points will induce improvements
in the detection-estimation results and will help to a better com-
prehension of brain functions.
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Appendix A. Densities

We give the definitions of the densities used throughout this
paper. We also provide numerical recipes for efficient simulations
according to complex distributions when necessary.

A.1. Multivariate normal density

The multivariate Normal density for d-dimensional variable x
with mean vector µ and covariance matrix Σ is given by

N xjm;Sð Þ ¼ j2pSj�1
2 exp � 1

2
x� mð ÞTS�1 x� mð Þ

� 	
: ðA:1Þ

The general formula of Kullback-Leibler (KL) divergence
between a test density, say q(x) and a reference density p(x) is

KL qjjpð Þ ¼
Z

q xð Þ log q xð Þ
p xð Þ dx: ðA:2Þ

For multivariate normal densities q xð Þ ¼ N xjmq;Sq

� �
and

p xð Þ ¼ N xjmq;Sp

� �
, Eq. (A.2) takes the following form:

KL qjjpð Þ ¼ 1
2
log

jSpj
jSqj þ

1
2
tr S�1

p Sq

� �
þ 1
2

mq � mp

� �t
S�1

p mq � mp

� �
� d

2
:

For univariate normal densities q xð Þ ¼ N xjAq; rq
� �

and
p xð Þ ¼ N xjAp; r2p

� �
, the KL (A.2) distance becomes:

KL qjjpð Þ ¼¼
r2p � r2q

� �2
þ Ap � Aq
� �2

r2p þ r2q

� �
4r2pr

2
p

: ðA:3Þ

A.2. Positive normal density

The truncated normal distribution for a scalar variable x ∈ R+

with parameters (m, υ) expresses as follows:

Nþ xjm;υð Þ ¼ C�1exp � x� mð Þ2=2υ
� �

IRþ xð Þ;
C ¼ ffiffiffiffiffiffi

pυ
p

1þ erf m=
ffiffiffiffiffiffi
2υ

p� �� �
=
ffiffiffiffi
2;

p
(

ðA:4Þ

where erf is the error function (Abramowitz and Stegun, 1970,
p. 297): erf zð Þ ¼ 2=

ffiffiffi
p

p R z
0 e

�t2dt. Parameter m defines the mode of
the density if mN0. Note that the knowledge of C is not required
for simulating a realisation of the density. Indeed, its mean µ and
variance σ2 are given by

A ¼ mþ
ffiffiffiffiffi
2v
p

r
exp �m2=2vð Þ

1þ erf m=
ffiffiffiffiffiffiffi
2vÞp

;
� ðA:5Þ

r2 ¼ υþ m2

4
� A� m

2

h i2
: ðA:6Þ

Hence, the standard inversion technique of the cumulative
distribution function (Devroye, 1986; Gelfand et al., 1992) may be
used. First, it consists in simualting an uniform variate ueU 0; 1½ �ð Þ
and then in calculating:

x ¼ mþ
ffiffiffiffiffi
2υ

p
erf�1 uþ erf m=

ffiffiffiffiffi
2υ

p� �
u� 1ð Þ

� �
;

The erf function is approximated numerically in practice. In
cases where the approximation error becomes important (i.e., when
|m| is too large), this simulation method is inefficient. Instead, we
use efficient alternatives which are based on accept-reject
algorithms (Robert, 1995), the most powerful relies on multiple
instrumental distributions (Mazet et al., 2005)9.

A.3. Gamma density

The gamma density for variable xaRþ with shape parameter
αN0 and scale parameter βN0, is defined by

G xja; bð Þ ¼ ba

C að Þ x
a�1exp �bxð ÞIRþ xð Þ ðA:7Þ

where Γ(x) is the gamma function defined as

C xð Þ ¼ x� 1ð ÞC x� 1ð Þ ¼
Z l

0
tx�1e�tdt: ðA:8Þ

The mean and variance are respectively given by E [x]=α/β and
var [x]=α/β2, while the mode of the distribution is given by M0=
(α−1)/β. Particular cases of the gamma distribution are the Erlang
distribution G xja; 1ð Þ, the exponential distribution E xjbð Þ ¼
G xj1; bð Þ and the chi-squared distribution G xjv=2; 1=2ð Þ denoted
by χv

2. The Erlang distribution may be used in pratice as a pre-
liminary step for simulating a gamma variate xeG a; bð Þ since we
get a right sample if x=u/β and ueG a; 1ð Þ.

Note also that the inverse gamma distribution, denoted by
IG a; bð Þ throughout the paper is the distribution of x−1 when
xeG a; bð Þ.

A.4. Beta density

The Beta density for variable x ∈ [0, 1] with shape parameter
αN0 and scale parameter βN0, is defined by

Be xja; bð Þ ¼ xa�1 1� xð Þb�1

B a; bð Þ I 0;1½ � xð Þ ðA:9Þ

9 This code available on-line at http://www.iris.cran.uhp-nancy.fr/francais/
si/Personnes/Perso Mazet/rpnorm-fr.htm.
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where B (α, β) is the Beta function:

B xð Þ ¼
Z 1

0
ta�1 1� tð Þb�1dt ¼ C að ÞC bð Þ

C aþ bð Þ :

The mean and variance are respectively given by

E x½ � ¼ a
aþ b

; and var x½ � ¼ ab

aþ bð Þ2 aþ bþ 1ð Þ :

The mode of the Beta distribution evolves w.r.t. the domains of
(α, β):

M0 ¼

a� 1
aþ b� 2

if aN1 andbN1

0 and 1 if ab1 andbb1

0 if
ab1 andbz1
a ¼ 1 andbN1

�
1 if

a[1 andbb1
a N1 andb ¼ 1

�
does not exist if a ¼ b ¼ 1

8>>>>>>>>>><>>>>>>>>>>:
Importantly, for simulating Beta-distributed random variate

xeBe �ja; bð Þ, we proceeds as follows. First, generate two expo-
nential variables e1eE �jað Þ and e2eE �jbð Þ. Second, compute x as
e1/(e1+e2).

A.5. gamma-Gaussian density

The non-standard gamma-Gaussian density for variable xaRþ
with shape αN0, mean µN0 and variance parameters υN0, is
defined by

GN xja; A; υð Þ ¼ K�1
a xa�1 exp � x� Að Þ2=2υ

� �
IRþ xð Þ ðA:10Þ

where Kα is the normalising constant:

Ka ¼
Z þl

0
xa�1 exp � x� Að Þ2=2υ

� �
dx

¼ exp �A2=4υ
� �

υ
a
2C að ÞDa �A=

ffiffiffi
υ

p� � ðA:11Þ

The last equation follows from (Gradshteyn and Ryzhik, 1994,
p. 337, Eq 3.462-1) that relies upon the gamma function (see (A.8))
and the Parabolic Cylinder functions Dν (Gradshteyn and Ryzhik,
1994, p. 885, Eq 7.711-1 and p. 1065)10. Importantly, the first
two centered moments of a gamma-Gaussian random variable
xeGN xja; A; υð Þ can be computed analytically:

E xja; A; υ½ �¼ 1
Ka

Z þl

0
xa exp � x� Að Þ2=2υ

� �
dx ¼ Kaþ1

Ka

ðA:12Þ

var xja; A; υ½ �¼ E x2ja; A; υ� �� E xja; A; υ½ �2 ¼ Kaþ2

Ka
� K2

aþ1

K2
a

:

ðA:13Þ
Simulating gamma-Gaussian random variables xeGN �ja; A; υð Þ

is not straightforward and thus more effortful as compared to

sampling from standard laws. Following (Moussaoui et al., 2006), to
solve for this problem, we resort to a Metropolis-Hastings algorithm
which needs the specification of an instrumental distribution q
(Hastings, 1970; Robert, 2001). To avoid high rejection rate, this
instrumental pdf has to be chosen to fit the target distribution f ¼
GN �ja; A; υð Þ at best. In this regard, expression (A.10) is useful to
characterisef in terms of mode, mean or variance from which the
instrumental distribution q may be adjusted. Calculating the first-
order derivative of (A.10) w.r.t. x and equating to zero, the mode of f
is obtained as the solution of the following second order equation:

x2 � Ax� υ a� 1ð Þ ¼ 0; subject to x⩾0:

Let us denote Δ=µ2+4υ (α − 1). The mode of f, which is non-
negative by definition, expresses as follows:

m ¼ 0 if Db0
max Aþ ffiffiffiffi

D
p� �

=2; 0
� �

otherwise:

�
ðA:14Þ

Hence, the instrumental density q is taken as a truncated normal
distribution Nþ xjm; υð Þ, which is easier to sample from as detailed
in Appendix A.2.

A.6. Multinomial density

The density of a multinomial discrete distribution for variable
x={x1, … , xN} with parameters π={π1, … , πN } is defined by

MNM xjpð Þ ¼ M !

ΠN
i¼1xi!

Π
N

i¼1
pxii IP

i
xi¼M

where xi≥0, πiN0 and Σi=1
N πi=1.

A.7. Dirichlet density

Let δ={δ1, … , δN} be some positive parameters. The
probabilistic density function of the N-state Dirichlet distribution
for variable π={π1,… , πN} satisfying πi⩾0 with parameters δ, is
defined by

DN pjdð Þ ¼
C
PN

i¼1 di
� �
jN

i¼1C dið Þ Π
N

i¼1
pdi�1
i IP

i
pi¼1;

where Γ(x) is, as before, the gamma function (A.8). Parameters δi
are prior observation counts for events governed by πi. The
Dirichlet distribution is the conjugate prior of the parameters of a
multinomial distribution. One special case is the symmetric
Dirichlet distribution where δi=δ0 ∀i. In this case, the density
becomes

DN pjd0ð Þ ¼ C Nd0ð Þ
C d0ð ÞN Π

N

i¼1
pd0�1
i :

The real vector (X1/S, … , XN /S) follows a Dirichlet distribution
denoted asDN (·| δ) if Xi~G(δi, β) are independent, and S=Σi Xi. This
holds true for any β, so in practice we choose β=1. This result is very
useful in practice for simulating realisations of a Dirichlet process.

Appendix B. Computational details for the MCMC procedure

In this section, we derive the full conditional distributions of the
quantities (h, (a, q), ℓ and Θ) to be sampled. When the sampling

10 See also http://mahieddine.ichir.free.fr for implementation of Parabolic
Cylinder functions.
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procedure w.r.t. a given parameter cannot be implemented as a
Gibbs sampling step, we provide the reader with the derivations of
some relevant instrumental distribution needed in the correspond-
ing Metropolis Hastings move.

B.1. The HRF h and its scale σh
2

Let us denote Sj=Σm aj
mX m. h is N (µh , Σh)-distributed with:

S�1
h ¼ r�2

h R�1 þ
XJ
j¼1

St
jKjSj and mh ¼ Sh

XJ
j¼1

r�2
ej S

t
jKj yj � Pℓj

� �
:

ðB:1Þ

Variance σh
2 is simulated according to p(σh

2|h) =IG(D/2,
htR− 1h/2).

B.2. The nuisance variables ℓ and their scale σℓ
2

Vectors ℓj being independent ( j=1 : J), they can be sampled in
parallel according to N mℓj

; Sℓj

� �
where

S�1
ℓj

¼ r�2
ℓ IQ þ r�2

ej P
tKjP and mℓj

¼ r�2
ej SℓjP

tKj yj � Sjh
� �

:

ðB:2Þ

Variance σℓ
2 is simulated according to IG((QJ+1)/2, Σj||ℓj||

2/2).

B.3. The voxelwise mixtures (q, a)

Although we do not introduce any spatial correlation between
the NRLs, the latter are sampled one-at-a time since the
distribution p(aj

m | rest)11 depends on aj
\m=[aj

1, , … , aj
m− 1, aj

m+1,
… , aj

M] due to the linearity of model (1) with respect to aj . The
sampling of the NRLs is therefore implemented through two nested
loops, the inner corresponding to the stimulus types (e.g., index m)
and the outer to voxels (e.g., index j). Since the full conditional
posterior p(aj

m | rest) is a mixture, its sampling can be achieved in
two steps. The first one consists in drawing a realisation of class qj

m

while the second one proceeds conditionally on class qj
m. To carry

out the first step, we need to identify the posterior mixture in voxel
j and for condition m:

p amj jrest
� �

~exp � 1
2r2ej

jjej;m � amj gmjj2Kj

 !X1
i¼�1

ki;mfi amj jθi;m

� �
ðB:3Þ

where gm=X
mh, and ej,m=yj − Pℓj − Σn≠m aj

ngn.
After straightforward calculations including the normalisation

of (B.3), we get the following expression:

p amj jrest
� �

¼
X1
i¼�1

Em
i;jfi amj jθmi;m
� �

; with : ðB:4Þ

f0 amj jθm
0;j

� �
¼ N amj jAm0;j; υm0;j

� �
ðB:5Þ

f1 amj jθm
1;j

� �
¼ GN amj ja1;m; Am1;j; υm1;j

� �
ðB:6Þ

f�1 amj jθm
�1;j

� �
¼ �GN �amj ja�1;m;�Am�1;j; υ

m
�1;j

� �
ðB:7Þ

The mixing probabilities are given by

kmi;j ¼ 1þ
X
i Vpi

f
k
m

i V;j=
f
k
m

i;j

 !�1

; 8i ¼ �1 : 1

f
k

m

0;j ¼ k0;m υm0;j=υ0;m
� �1=2

exp Am0;j
� �2

=2υm0;j

� 	
;

f
k

m

i;j ¼ ki;m
bai;mi;m

Cðai;mÞK
m
i;jexp Ami;j

� �2
=2υmi;j

� 	
; for i a �1; 1f g;

and depend on the normalising constants Ki,j
m, for i=±1, of the

corresponding gamma-Gaussian densities; see (A.11) for its
closed-form expression.

The parameters of the conditional posterior densities fi (aj
m | θi,j

m )
are given by:

υm
1;j ¼ υm

�1;j ¼ r2ej gtmKjgm
� ��1

; υm
0;m ¼ υ�1

0;m þ υm
1;j

� ��1
� 	�1

Ami;j ¼ υm
1;j r�2

ej g
t
mKjem;j � ibi;m

� �
; 8i ¼ �1 : 1:

8><>:
ðB:8Þ

Sampling the class qj
m first amounts to generating umj eU 0; 1½ �ð Þ

and then to applying the following rules:

qmj

�1 if umj ⩽km�1;j;
0 if km�1;jbu

m
j ⩽km�1;j þ km0;j;

1 otherwise:

8<:
Once qj

m is correctly set, it remains to sample from the
conditional distribution fi(· | θi,j

m) as suggested by (B.4). If qj
m=0,

this operation is straightforward because f0(· | µ0,j
m , υ0,j

m ) is Gaussian
(cf. (B.5)). However, if qj

m=±1, this operation is computationally
more expensive since are gamma-Gaussian; see Appendix A.5 for
details. Strictly speaking, the sampling of f−1(· | θ1,j

m ) consists first in
simulating a realisation of (−ajm) using a well-suited positive normal
density and then negating that realisation.

Interestingly, when αi,m=1, which corresponds to taking an
exponential prior for the NRL distribution, the conditional pos-
terior density fi(· | θi,j

m) is exactly a truncated normal distribution
with parameters equal to those of pi. In that case, the Metropolis-
Hastings is not necessary since all proposals are accepted
(the acceptation rate equals to 1). The sampling of the truncated
normal density can be achieved efficiently as detailed in
Appendix A.

B.4. Mixture probabilities

Since we have Pr(qj
m=i |λm)=λi,m, for i=−1 : 1 and because the

prior is conjugate, i.e., a symmetric Dirichlet distribution D(λm | δ)
with δN 0, the full conditional posterior distribution is also Dirichlet
and reads:

p lmjqmj ¼ i; d
� �

~Pr qmj ¼ ijlm

� �
p lmjdð ÞfD d Vð Þ; with d V

i

¼ dþ 1; and d Vl ¼ d; 8lpi:11 rest stands for the “remaining variables”.
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The spatial correlation being not modelled in (6), we may write
Pr(qm=κ | λm)=Πj Pr(qj

m=κj | λm), with κj=−1 : 1 and the joint
posterior distribution p(λm | κ, δ) is given by

p lmjj; dð Þ~Πj Pr qmj ¼ jjjlm

� �
p lmjdð ÞeD d Vð Þ

with d Vi ¼ dþ Card Ci;m ¼ ja1 : J jqmj ¼ i
n oh i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ Ji;m

: ðB:9Þ

B.5. Mixture hyper-parameters
Variance υ0,m is very easy to sample because p(υ0,m | zm) =

IG((J0,m −1)/2, v0,m/2), where ν0,m=Σj∈C0,m(aj
m)2.

For the two other classes, we proceed to the sampling of the
scale and shape gamma distribution parameters α±1,m and β±1,m,
respectively. Following (Moussaoui et al., 2006), we use a
Metropolis-Hastings step for α±1,m parameters with a gamma
instrumental density defined below. Simulating parameters β±1,m is
easier since they follow a gamma distribution.

The posterior density of each hyper-parameter αi,m takes the
form

p ai;mjrest
� �

~Π
jaCi;m

bai;mi;m

C ai;m
� � amj

� �ai;m�1
p ai;mjsi
� �

~g ai;m
� �Ji;mIRþ ai;m

� �
;

ðB:10Þ
where

g ai;m
� � ¼ exp si;mai;m

� �
=C ai;m
� �

;

si;m ¼ ln bi;m þ
X
jaCi;m

amj � si
� �

=Ji;m:

This posterior distribution does not belong to a known family,
so its simulation requires a MH jump. Akin to (Moussaoui et al.,
2006), to obtain a good instrumental law q(αi,m), we propose to
approximate function g(αi,m) using a gamma density G(ti,m, ui,m).
More precisely, parameters (ui,m, ti,m) of this density are determined
in order for its mode and inflexion points match those of function
g(αi,m). After some simple manipulations, we obtain:

ti;m ¼ 1þ a2mode= amode � ainf1ð Þ2; ui;m ¼ amode= amode � ainf1ð Þ2;
ðB:11Þ

where αmode and αinfl are the mode and the superior inflexion point
(αinflNαmode) of g(αi,m). Calculating the first and second derivatives
of g(αi,m) yields these two non-linear equations that implicitly
define αmode and αinfl:

w amodeð Þ ¼ si;m and w 1ð Þ ainf lð Þ ¼ w ainf lð Þ � si;m
� �2

; ðB:12Þ

where ψ is the digamma function defined by w xð Þ ¼ d
dx

log C xð Þ
and ψ(1) is its first derivative (trigamma function). Details about these
functions are provided in (Abramowitz andStegun, 1970, p. 253). The
resolution of the two Eq.s (B.12) is done using a root finding
numericalmethod (cf. (Press et al., 1992, Ch. 9)). Finally, the posterior
density (B.10) is simulated using a Metropolis-Hastings algorithm
with a instrumental density q(αi,m) chosen as a gamma distribution
G(ti,m' ,ui,m

' ) whose parameters are given by

t Vi;m ¼ Ji;m ti;m � 1
� �þ 1; u Vi;m ¼ Ji;mui;m: ðB:13Þ

The sampling of shape parameters βi,m is done according to the
full conditional posterior distribution

p bi;mjrest
� �

~b
Ji;mai;mþbið Þ

i;m exp −bi;m
X
jaCi;m

amj þ ci

0@ 1A0@ 1A
fG Ji;mai;m þ bi þ 1;

X
jaCi;m

amj þ ci

0@ 1A:

ðB:14Þ

B.6. Noise variances
Sampling the noise variances σε

2 can be performed in parallel.
Drawing a noise variance is straightforward because p r2ej jrest

� �
¼

IG N þ 1ð Þ=2; jjfyjjj2Kj
=2

� �
.

B.7. AR parameters
For each voxel Vj, we have:

pj pj
� � ¼ p pjjrest

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2j

q
exp �aj pj � mj

� �2� �
1 �1;1ð Þ pj

� �
;

ðB:15Þ
where aj ¼ Aj=2r2ej and mj=Bj / Aj , with Aj ¼

PN�1
n¼2

fy2j;n and
Bj ¼

PN�1
n¼1

fyj;n
fyj;nþ1.

The density pj is log-concave, unfortunately it does not seem to
belong to a referenced family of pdf, from which an efficient
sampling technique would be available. Here, we propose to resort
to a Metropolis-Hastings independence algorithm that uses a beta
pdf gj~Be(ζj, κj) defined over (−1, 1)12 as the instrumental
distribution:

gi qð Þ~ 1þ qð Þfj�1 1� qð Þjj�1 ; 8jqjb1: ðB:16Þ

The parameters ζj and κj have to be tuned in an appropriate
way, so that gj approximates pj as closely as possible. Here, ζj and
κj are chosen in such a way that log gj and log pj have the same
curvature around a common maximizer over (−1, 1). Let us first
remark that the maximizer rj of log pj is uniquely defined by

2aj rj � mj

� �
1� r2j

� �
þ rj ¼ 0; jrjjb1:

Moreover, rj takes an explicit expression, as the root of a
polynomial of degree three. Then, (ζj , κj) can be found by solving

log gj
� � V

rj
� � ¼ 0

log gj
� � VV

rj
� � ¼ log pj

� � VV
rj
� �(

which is a linear system. After some straightforward calculations,
the solution can be expressed as follows:

fj ¼ aj 1þ rj
� �2

1þ mj � 2rj
� �þ 3=2

jj ¼ aj 1� rj
� �2

1� mj þ 2rj
� �þ 3=2

It can be practically checked that gj(ρ) and pj(ρ) take very similar
values for all ρ∈ (−1, 1). Therefore, the proposal ρ'j (sampled from
gj ) has a high acceptation probability min {1, pj (ρ'j)gj (ρj)/pj(ρj)gj
(ρ'j )o. In practice, the worse acceptation ratio that we observed was
about 0.92.

12 If x ∈ (0, 1) and x~Be(ζ, κ) then ρ=2x − 1 is said Be(ζ, κ)-distributed
over (−1, 1).
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Appendix C. Bayesian model comparison

We have introduced Bayesian model comparison through the
computation of Bayes factors:

BFmnJ
p yjMm

� �
p yjMn

� � ¼ R p yjθm;Mm

� �
p θmjMmð ÞdθmR

p yjθn;Mn

� �
p θnjMnð Þdθn

;

with m; nð ÞaN4
4:

These quantities are thus computed as the ratios of integrated
likelihoods or model evidence of the different models. Of course,
they are approximated from the MCMC outputs using the
metholodogy proposed in (Kass and Raftery, 1995; Chib, 1995;
Chib and Jeliazkov, 2001) and further developed in (Raftery et al.,
2007). The latter relies on the harmonic mean identity:

1

p yjM4

� � ¼ E
1

p yjθ;M4

� � jy;M4

" #

This suggests that the model evidence can be approximated by
the harmonic mean of the likelihoods p(y | θ(l),M4) based on L
draws θ(1), … , θ(L) from the posterior distribution p(θ | y, M∗):

pbyjM4

� � ¼ 1
L

XL1
l¼L0

1

p yjθ lð Þ;M4

� �
24 35�1

ðC:1Þ

with L=L1 − L0+1. These sample might come out of a standard
MCMC implementation. Although pby jM4

� �
is consistent as the

sample size L increases, its precision is not guaranteed: it may have
an infinite variance. Therefore, we have implemented a stabilized
version of pby jM4

� �
which is presented in detail in (Raftery et al.,

2007). In short, it consists in replacing p(y | θ(l),M4) by p(y | f(θ(l)),
M4) in (C.1) such that f is a measurable function of θ and a
dimension reduction transformation. Since the voxels are assumed
independent in space, one may proceed separately for each voxel:
p(y | f(θ(l)), M4)=Πj p(yj| f(θj

(l)), M4). More precisely, this means
that f can be derived by integrating out analytically the NRLs aj and
the noise variance σεj

2 for each voxel Vj . This seems sufficient to
ensure that var [(p(y | f(θ), M4))

− 1 | y]b∞. Hence, in practice we
consider the following estimator:

p byjM4

� �
¼ 1

L

X
l¼Lo

L1 1

Cjp yjjf θðlÞ
j

� �
;M4

� �
24 35�1

:

Doing so, we have computed the log-evidence log p(y | Mm) of
models M1-M5 once they have been fitted against the first set of
artificial data. Then, the logarithms of Bayes factors have been derived:

log BFmn ¼ logp yjMm

� �� logp yjMn

� �
; 8 m; nð ÞaN4

4:

The same procedure has been applied to models M2 �M5

with artificial data eliciting deactivations.
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