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Abstract Conjugate gradient methods are efficient methods for minimizing differen-
tiable objective functions in large dimension spaces. However, converging line search
strategies are usually not easy to choose, nor to implement. Sun and colleagues (Ann.
Oper. Res. 103:161–173, 2001; J. Comput. Appl. Math. 146:37–45, 2002) introduced
a simple stepsize formula. However, the associated convergence domain happens to
be overrestrictive, since it precludes the optimal stepsize in the convex quadratic case.
Here, we identify this stepsize formula with one iteration of the Weiszfeld algorithm
in the scalar case. More generally, we propose to make use of a finite number of
iterates of such an algorithm to compute the stepsize. In this framework, we estab-
lish a new convergence domain, that incorporates the optimal stepsize in the convex
quadratic case.

Keywords Conjugate gradient methods · Convergence · Stepsize formulas ·
Weiszfeld method

1 Introduction

Let us consider the following unconstrained minimization problem: minx∈Rn J (x),
where J is a differentiable objective function. In the implementation of a conjugate
gradient (CG) method, the stepsize strategy often incorporates a stopping criterion
such as to satisfy the Wolfe conditions [3]. For instance, the Armijo condition is used
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as stopping criterion in [4]. Most recently, a simple stepsize formula was proposed
by Sun and Zhang [1] and by Chen and Sun [2] for several CG methods. Its dis-
tinctive feature it to yield convergence results without any stopping condition. Here,
we pursue the same direction, by proposing a generalized stepsize formula. We also
reexamine the convergence conditions, which leads us to a broadened convergence
domain for several types of conjugacy.

In this paper, we restrict ourselves to the following family of CG algorithms:

xk+1 = xk + αkdk, (1)

ck = −gk + βkdk−1, (2)

dk = −ck sign(gt
kck), (3)

where the superscript t stands for transpose, k ∈ N, gk = ∇J (xk) and with the con-
jugacy formulas

β0 = 0, βk = β
μk,ωk

k = gt
kyk−1/Dk, ∀k > 0, (4)

Dk = (1 − μk − ωk)‖gk−1‖2 + μkd
t
k−1yk−1 − ωkd

t
k−1gk−1, (5)

where ‖ · ‖ is the Euclidean norm, yk−1 = gk − gk−1, μk ∈ [0,1], and ωk ∈
[0,1 − μk]. Let us remark that the search direction dk is defined such that gt

kdk ≤ 0.
Expression (4) is taken from [2]. It induces a subset of a larger family of nonlinear

CG methods, as defined by Dai and Yuan in [5]. The following versions are covered:

β
1,0
k = βHS

k = gt
kyk−1/d

t
k−1yk−1, Hestenes-Stiefel [6],

β
0,0
k = βPRP

k = gt
kyk−1/‖gk−1‖2, Polak-Ribière-Polyak [7, 8],

β
0,1
k = βLS

k = −gt
kyk−1/d

t
k−1gk−1, Liu-Storey [9].

Other important cases fall outside the present study, such as the Fletcher-Reeves
method [10].

On the other hand, we focus on the following stepsize strategy:

αk = α1
k = 0, if dk = 0; (6)

otherwise,

α0
k = 0, (7a)

αi+1
k = αi

k − θd t
k∇J (xk + αi

kdk)/d
t
kQ

i
kdk, i ∈ {0, . . . , I − 1}, (7b)

αk = αI
k , (7c)

where I ∈ N − {0}, θ ∈ R is a parameter, (Qi
k) ∈ R

n×n is a series of symmetric
positive-definite (SPD) matrices with a uniformly bounded spectrum and a strictly
positive lower bound, i.e., there exist ν1, ν2 ∈ R with ν2 ≥ ν1 > 0 such that

ν1‖v‖2 ≤ vtQi
kv ≤ ν2‖v‖2, ∀k ∈ N,∀i ∈ {0, . . . , I − 1},∀v ∈ R

n. (8)
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The fixed number of iterations of (7b) yields a family of CG methods with a closed-
form stepsize formula (CFSF). In the case I = 1, (7b) boils down to

αk = α1
k = −θgt

kdk/d
t
kQ

0
kdk, (9)

which is exactly the formula introduced in [1, 2]. According to (3), note that the latter
expression for αk is nonnegative provided that θ ≥ 0.

To ensure convergence, the condition θ ∈ (0, ν1/μ) is introduced in [1, 2], where μ

is a Lipschitz constant. In Sect. 5, this condition is shown to be overrestrictive, so
that (9) yields too small steps. This is obvious in the convex quadratic case, since the
optimal stepsize θ = 1 does not belong to the interval (0, ν1/μ) ⊂ (0,1).

In this paper, we propose relaxed convergence conditions. In particular, the op-
timal stepsize becomes admissible in the convex quadratic case. The key ingredient
we incorporate consists in approximating J by a convex quadratic function from
above, which is the basic principle of the Weiszfeld method [11, 12]. First of all, we
put forward that the stepsize formula proposed in [1, 2] identifies with one iteration
of Weiszfeld algorithm in the scalar case. More generally, our iterated version (7b)
corresponds to a fixed number of the same scalar algorithm. The majorizing convex
quadratic approximation framework provides altered convergence conditions com-
pared to the conditions found in [1, 2]: in particular, θ ∈ (0, ν1/μ) is replaced by
θ ∈ (0,2) for any finite value of I .

The paper is organized as follows. Some preliminary results on the family of CG
methods with the CFSF (6, 7) are given in Sect. 2. We also introduce the additional
assumption of a majorizing convex quadratic function that allows us to make the
connection between the CFSF and the scalar Weiszfeld method. Section 3 gathers
some properties concerning the stepsize series generated by (7) useful for the next
section. Section 4 includes the main convergence properties of the two-parameter
family of CG methods defined by (1–7). Finally, discussions on the convex quadratic
case, the general case and the case of edge preserving image restoration are given in
Sect. 5.

2 Preliminaries

Let N be a neighborhood of the level set L = {x ∈ R
n|J (x) ≤ J (x0)}, which is

assumed bounded in the sequel. The following assumption is also adopted.

Assumption A1 J : R
n 	→ R is differentiable on N and ∇J is Lipschitz continuous

on N with the Lipschitz constant μ > 0,

‖∇J (x) − ∇J (x′)‖ ≤ μ‖x − x′‖, ∀x, x′ ∈ N.

In short, J is μ-LC1.

In the sequel, Assumption A1 will appear to be sufficient for the global convergence
of the CG method when μk = 0 and ωk ∈ [0,1], which encompasses the PRP and the
LS cases, but not the HS case. Let us consider the following stronger assumption to
deal with the more general case μk ∈ [0,1], ωk ∈ [0,1 − μk].
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Assumption A2 Assumption A1 holds and J is strongly convex on N : there exists
λ > 0 such that

[∇J (x) − ∇J (x′)]t(x − x′) ≥ λ‖x − x′‖2, ∀x, x′ ∈ N.

Note that Assumption A2 implies that L is bounded since a strongly convex function
has bounded level sets. Finally, let us introduce convex quadratic majorizing func-
tions through the following assumption.

Assumption A3 There exists a series of SPD matrices (Qi
k) such that

̂J i
k (x′, x) ≥ J (x′), ∀x, x′ ∈ N, (10)

for all k ∈ N, i ∈ {0, . . . , I − 1}, where

̂J i
k (x′, x) = J (x) + (x′ − x)t ∇J (x) + (x′ − x)t Qi

k (x′ − x)/2. (11)

For sake of notational simplicity, let f (α) = J (xk + αdk). Moreover, the current
iteration index k will remain implicit whenever unambiguous: typically, the stepsize
αi

k will be denoted by αi . Using such compact notations, the stepsize update (7) reads

α0 = 0, (12a)

αi+1 = αi − θḟ (αi)/ai, i ∈ {0, . . . , I − 1}, (12b)

αk = αI , (12c)

with ḟ (αi) = d t
k∇J

(

xk + αidk

)

and ai = d t
kQ

i
kdk . According to (8) we have

0 < ν1‖dk‖2 ≤ ai ≤ ν2‖dk‖2. (13)

Alternatively, let the stepsize be defined by a fixed number I of iterations of
Weiszfeld method. The (scalar) function to minimize is f and, according to Assump-
tion A3,

qi(α
′, α) = ̂J i

k (xk + α′dk, xk + αdk) = f (α) + (α′ − α) ḟ (α) + (α′ − α)2 ai/2
(14)

is an upper convex quadratic approximation of f (α′). Then, the successive iterations
of the Weiszfeld method read

αi+1 = arg min
α′

qi(α
′, αi) = αi − ḟ (αi)/ai .

Hence, (12) identifies with a relaxed version of Weiszfeld method to minimize f .
Note that the convergence results in Sect. 4 hold regardless of the value of I . In
comparison, the convergence of usual line search procedures requires appropriate
stopping conditions, e.g. the Wolfe conditions.
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As already mentioned, the stepsize formula (9) of [1, 2] corresponds to one itera-
tion of the relaxed Weiszfeld method. We are now led to a deeper result: the condition
θ ∈ (0, ν1/μ) stated in [1, 2] for the convergence of their CG method implies that our
Assumption A3 holds. First, let us give an equivalent formulation for (9).

Let Q̃0
k = Q0

k/θ , so that (9) also reads αk = −gt
kdk/d

t
kQ̃

0
kdk . From (8) and θ ∈

(0, ν1/μ), we deduce that

vtQ̃0
kv ≥ μ‖v‖2, ∀k ∈ N,∀v ∈ R

n, (15)

i.e., the spectrum of matrices Q̃0
k is bounded from below by μ. In other words, the

constraint θ ∈ (0, ν1/μ) stated in [1, 2] can be translated as a constraint on matri-
ces Qi

k . The following lemma shows that matrices Q̃0
k yield convex quadratic ma-

jorizing approximations in the sense of Assumption A3 (provided that N is a convex
set).

Lemma 2.1 Let Assumption A1 hold and let the lower bound ν1 be not smaller than
the Lipschitz constant μ. Let us restrict ourselves to the case where N is a convex set.
Then, Assumption A3 holds, i.e. the function ̂J i

k defined by (11) fulfills (10) over N .

Proof According to the descent lemma [13, Proposition A.24], we have

J (x′) −J (x) − (x′ − x)t∇J (x) ≤ μ‖x′ − x‖2/2, (16)

for any x, x′ ∈ R
n if J is μ-LC1on R

n. Actually, it is easy to check that (16) still
holds for any x, x′ ∈ N if J is μ-LC1on N , provided that N is convex.

Since the spectrum of (Qi
k) is bounded from below by ν1 ≥ μ, we have

μ‖x′ − x‖2 ≤ ν1‖x′ − x‖2 ≤ (x′ − x)tQi
k(x

′ − x).

Jointly with (16), the latter yields

J (x′) −J (x) + (x − x′)t∇J (x) ≤ (x′ − x)tQi
k(x

′ − x)/2,

i.e., ̂J i
k (x′, x) ≥ J (x′). �

Lemma 2.1 indicates that Assumption A3 is not a restrictive condition compared
to the hypotheses found in [1, 2]. On the contrary, it is a weaker assumption (let alone
the fact that Lemma 2.1 only applies when N is convex), so that a convergence proof
based on Assumption A3 would be of broader applicability. This is the goal reached
in Sect. 4, where J is not necessarily assumed ν1-LC1 (and N is not necessarily
convex).

3 Properties of the Stepsize Series

The present section gathers technical results concerning the stepsize series αi = αi
k

generated by (7), which will be useful to derive the global convergence properties of
the next section. Remark that Assumption A2 is never used in this section.
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Let us introduce the notation �(a, b) = [min(a, b),max(a, b)] to handle with in-
tervals with unordered endpoints.

Lemma 3.1 Let Assumptions A1 and A3 hold and let θ ∈ (0,2). Then,

J (xk + αdk) ≤ J (xi
k), ∀α ∈ �(αi

k, α
i+1
k ) (17)

for all k ≥ 0, i ∈ {0, . . . , I − 1}, where xi
k = xk + αi

kdk .

Proof Let us first assume x0
k ∈ N , and let us show that (17) holds, recursively on i.

ḟ (αi
k) = d t

k∇J (xk + αi
kdk) exists since J is differentiable on N . We have α0

k = 0
and ḟ (0) = d t

kgk ≤ 0, but the sign of ḟ (αi
k) is indeterminate for i > 0. Let us study

each case separately (the index k is omitted in the rest of the proof).

• Suppose ḟ (αi) = 0. According to (12), αi+1 = αi so (17) is true.
• Suppose ḟ (αi) < 0. According to (12) and ai > 0 we have αi+1 > αi . Let us prove

(17) by contradiction: suppose, on the contrary, that there exists α′ ∈ (αi, αi+1]
such that

f (α′) > f (αi). (18)

Let 	i = {α ∈ R|f (α) ≤ f (αi)}. Since f is continuous on 	i , according to (18) and
ḟ (αi) < 0, there exists α′′ ∈ (αi, α′) such that f (α′′) < f (αi). There also exists
α′′′ ∈ (α′′, α′) such that

f (α′′′) = f (αi); (19)

otherwise, since f is continuous on 	i , the inequality f (α) < f (αi) would hold for
all α ∈ (α′′, α′). In particular, we would get limα→(α′)− f (α) < f (αi), so (α′′, α′)
would be included into 	i , which is incompatible with (18) given the continuity of
f on 	i .

Now let q(α) = qi(α,αi), where qi is defined by (14). Since q̇(αi+1) = ḟ (αi)×
(1 − θ), q̇(αi) = ḟ (αi) < 0 and θ ∈ (0,2), we have q̇(αi+1) ∈ (q̇(αi),−q̇(αi)).
Because q is a convex parabola and α′′′ ∈ (α′′, α′) ⊂ (αi, αi+1), we can conclude
that q(α′′′) < q(αi) = f (αi). Hence, according to (19), we get q(α′′′) < f (α′′′),
which contradicts the majorizing character (10) of ̂J i

k w.r.t. J at xk + α′′′dk ∈ N .
• Suppose that ḟ (αi) > 0. According to (12) and ai > 0, we have αi+1 < αi . We are

led back to the previous case if we replace f (α) by f (−α).

As a first conclusion, (17) holds for all i ∈ {0, . . . , I − 1}. Hence, J (xi+1
k ) ≤

J (xi
k).

Since x0 ∈ N and x0
k+1 = xI

k = xk , we get by recursion

J (x0
k ) = J (xI

k−1) ≤ · · · ≤ J (x0
k−1) ≤ · · · ≤ J (x0

1) = J (x0), ∀k.

Hence, x0
k ∈ N , which proves that (17) holds for all k ≥ 0, i ∈ {0, . . . , I − 1}. �
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An immediate consequence of Lemma 3.1 is

xk + αdk ∈ N, ∀α ∈ [0, αi
k], (20)

for all k ≥ 0, i ∈ {0, . . . , I − 1} since x0 ∈ N . Thus, according to (10),

qi(α
j ,αi) ≥ f (αj ), ∀i, j ∈ {0, . . . , I − 1}. (21)

The following three lemmas are specific to the case when ḟ (0) = gt
kdk does not

vanish for the current iteration k, i.e., gt
kdk < 0. Then dk �= 0, and the series (αi

k) is
well defined according to (7b).

Lemma 3.2 Let Assumptions A1 and A3 hold. Let also ḟ (0) < 0 and θ ∈ (0,2).
Then, the whole series (αi) is positive,

αi > 0, ∀i ∈ {0, . . . , I − 1}. (22)

Proof According to (21), we have

qi(0, αi) = f (αi) − αiḟ (αi) + (αi)2ai/2 ≥ f (0).

Since (f (αi)) is a nonincreasing series according to Lemma 3.1, we deduce that

−αi ḟ (αi) + (αi)2 ai/2 ≥ 0

so that, according to (12) and ai > 0,

αi (αi+1 − 2δḟ (αi)/ai) ≥ 0, (23)

with

δ = 1 − θ/2 ∈ (0,1). (24)

Now, let us show (22) by recurrence on i. We have α1 > 0 according to (12) and
ḟ (0) < 0. Let us assume αi > 0 for some i. If ḟ (αi) ≤ 0, then αi+1 > 0 according
to (12). If ḟ (αi) > 0, then given αi > 0, inequality (23) yields αi+1 > 0. �

Lemma 3.3 Let Assumptions A1 and A3 hold. Let also ḟ (0) < 0 and θ ∈ (0,2).
Then,

f (αi) ≤ q0(α
1,0), (25)

cminα1 ≤ αi, (26)

for all i ∈ N − {0}, where

cmin = (
√

1 + 2μθδ/ν1 − 1)ν1/θμ ∈ (0,1). (27)
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Proof According to (21), we have q0(α
1,0) ≥ f (α1). Then (25) holds, because

(f (αi)) is a decreasing series according to Lemma 3.1.
The derivation of (26) is not so direct. Let g be the concave parabola defined by

g(α) = f (0) + αḟ (0) − μa0α
2/2ν1. (28)

Remark that g(0) = f (0) and that g is decreasing on R
+, since ġ(0) = ḟ (0) < 0.

Let us first show that

g(αi) ≤ f (αi). (29)

Let us consider α ∈ [0, αi]: xk + αdk ∈ N according to (20). Since f (α) =
J (xk + αdk) and Assumption A1 holds, we have

|ḟ (α) − ḟ (0)| = ∣

∣d t
k (∇J (xk + αdk) − ∇J (xk))

∣

∣ ≤ ‖dk‖2μ|α|
and according to (13), we get |ḟ (α) − ḟ (0)| ≤ a0μα/ν1. Given |ḟ (α)| ≤ |ḟ (α) −
ḟ (0)| + |ḟ (0)| and ḟ (0) < 0, we obtain

|ḟ (α)| ≤ a0μα/ν1 − ḟ (0). (30)

Thus, ḟ (0) − a0μα/ν1 ≤ ḟ (α), or equivalently

ġ(α) ≤ ḟ (α), ∀α ∈ [0, αi], (31)

according to (28). Since g(0) = f (0), integrating (31) between 0 and αi yields (29).
According to (9), (12), (14) and (24), we have

q0(α
1,0) = f (0) + α1ḟ (0) + (α1)2a0/2

= f (0) + δα1ḟ (0). (32)

Then let us show that q0(α
1,0) = g(αmin), where αmin = cminα1. From (27) we have

(cmin)2 = (2 + 2μθδ/ν1 − 2
√

1 + 2μθδ/ν1)ν
2
1/(θμ)2

= (δ − cmin)2ν1/θμ. (33)

According to (28), we have also

g(αmin) = f (0) + cminα1ḟ (0) − μa0(c
minα1)2/2ν1

= f (0) + α1ḟ (0)(cmin + (cmin)2θμ/2ν1) (34)

according to α1 = −θḟ (0)/a0. Jointly with (33), (34) yields g(αmin) = f (0) +
δα1ḟ (0), so that g(αmin) identifies with q0(α

1,0) according to (32).
On the other hand, (αi) is positive according to Lemma 3.2. We are now in position

to show (26) by contradiction: assume that there exists i > 0 such that 0 ≤ αi < αmin.
According to (29) and given that g is decreasing on R

+, we get f (αi) ≥ g(αi) >

g(αmin) = q0(α
1,0), which contradicts (25).
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Finally, it is obvious that 0 < cmin < δ < 1 from the alternative expression

cmin = 2δ/(
√

1 + 2μθδ/ν1 + 1). �

Lemma 3.4 Let Assumptions A1 and A3 hold. Let also ḟ (0) < 0 and θ ∈ (0,2).
Then,

αi ≤ cmax
i α1, ∀i ∈ N − {0}, (35)

with

cmax
i = (1 + ν2θμ/ν2

1)i−1 (1 + ν1/θμ) − ν1/θμ ≥ 1. (36)

Proof It is easy to check that cmax
i is not smaller than 1 for all i > 0. Let us show

the inequality (35) recursively on i. It is valid for i = 1, since cmax
1 = 1. Now let us

suppose that αi ≤ cmax
i α1, and let us prove that αi+1 ≤ cmax

i+1α1.
According to (12), we have αi+1 ≤ αi + |ḟ (αi)| θ/ai and according to (13), we

have also ai ≥ a0ν1/ν2. Thus,

αi+1 ≤ αi + |ḟ (αi)| θν2/ν1a0. (37)

On the other hand, (30) implies |ḟ (αi)| ≤ a0μαi/ν1 − ḟ (0). In combination with the
latter inequality and with α1 = −θḟ (0)/a0, (37) yields

αi+1 ≤ αi(1 + ν2θμ/ν2
1) + ν2α

1/ν1,

which corresponds to a recursive definition of the series (cmax
i ) according to

cmax
i+1 = cmax

i (1 + ν2θμ/ν2
1) + ν2/ν1.

Given cmax
1 = 1, it can be checked that (36) is the general term of the series. �

Definition 3.1 The stepsize series (αk) satisfies the Armijo condition for � ∈ (0,1) if

J (xk) −J (xk+1) + �αkg
t
kdk ≥ 0, ∀k. (38)

Lemma 3.5 Let Assumptions A1 and A3 hold. Let also θ ∈ (0,2). Then, the stepsize
series defined by (7) satisfies the Armijo condition for

� = �I = δ/cmax
I ∈ (0,1), (39)

where δ and cmax
I are defined by (24) and (36), respectively.

Proof We have ḟ (0) = gt
kdk ≤ 0. Let us first examine the particular case ḟ (0) = 0:

according to (7), αk vanishes, so that (38) holds trivially.
Suppose now that ḟ (0) < 0. According to (32), (25) also reads

f (0) − f (αI ) + δḟ (0)α1 ≥ 0. (40)
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Finally, since ḟ (0) < 0 and α1 ≥ αI /cmax
I > 0 according to (35), (40) implies that

f (0) − f (αI ) + δḟ (0)αI /cmax
I ≥ 0,

which identifies with (38) with � = �I . �

Remark 3.1 In Lemma 3.5, �I = δ/cmax
I does not depend on k, which is an essential

point for the fulfillment of the Armijo condition.

The following theorem sums up the main results that will be useful in the next
section.

Theorem 3.1 Let xk be defined by (1–7) with θ ∈ (0,2), and let Assumptions A1
and A3 hold. Then, the Armijo condition (38) is satisfied by the stepsize series (αk)

for � = �I = δ/cmax
I , where δ and cmax

I are defined by (24) and (36) respectively.
Moreover, we have

0 ≤ cminα1
k ≤ αk ≤ cmax

I α1
k , ∀k, (41)

where cmin is defined by (27).

Proof Lemma 3.5 corresponds to the fulfillment of the Armijo condition.
On the other hand, we have ḟ (0) ≤ 0. If ḟ (0) = 0, then αk = 0, so (41) trivially

holds. Otherwise, we have ḟ (0) < 0, so (41) is a joint consequence of Lemmas 3.3
and 3.4. �

4 Global Convergence

The following two lemmas establish results for the whole two-parameter family
of conjugacy coefficients βk = β

μk,ωk

k . Then, we draw conclusions for specific CG
methods.

Lemma 4.1 Under the conditions of Theorem 3.1, we have

∑

k, dk �=0

(gt
kdk)

2/‖dk‖2 < ∞. (42)

Proof According to Theorem 3.1, the Armijo condition (38) is satisfied for � = �I .
Given (41) and gt

kdk ≤ 0, we deduce that

J (xk) −J (xk+1) ≥ −�Ic
minα1

kg
t
kdk. (43)

If dk �= 0, we have

α1
k = −θgt

kdk/d
t
kQ

0
kdk ≥ −θgt

kdk/ν2‖dk‖2, (44)
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according to (9) and (8), so that

J (xk) −J (xk+1) ≥ c0(g
t
kdk)

2/‖dk‖2 ≥ 0, (45)

with c0 = �Ic
minθ/ν2 > 0. Given Assumption A1 and since L is assumed bounded,

(45) implies that limk→∞ J (xk) is finite. Finally, we obtain

∞ > (J (x0) − lim
k→∞J (xk))/c0 ≥

∑

k, dk �=0

(gt
kdk)

2/‖dk‖2.
�

Lemma 4.2 Let k ∈ N. Under the conditions of Theorem 3.1, we have

|gt
k+1dk| ≤ −gt

kdk(1 + cmax
I θμ/ν1). (46)

Moreover, if Assumption A2 holds, then

−gt
k+1dk ≤ −gt

kdk(1 − cminθλ/ν2). (47)

Proof Equations (46) and (47) are trivial assertions if dk = 0. Otherwise, following
[1, 2], let us define

φk =
{

yt
kdk/αk‖dk‖2, αk �= 0,

0, αk = 0.
(48)

Note that according to (20), xk ∈ N . If Assumption A1 holds, then |φk| ≤ μ according
to Cauchy-Schwartz inequality. If Assumption A2 holds, then φk ≥ λ > 0.

According to (9) and (48), we have

gt
k+1dk = gt

kdk + yt
kdk = gt

kdk + αkφk‖dk‖2. (49)

According to (41), (49), μ ≥ |φk|, and gt
kdk ≤ 0, we deduce that

|gt
k+1dk| ≤ −gt

kdk + μcmax
I α1

k‖dk‖2.

According to (9), we have also

|gt
k+1dk| ≤ −gt

kdk − gt
kdkμcmax

I θ‖dk‖2/d t
kQ

0
kdk.

Finally, since ν1 > 0 is a lower bound for the spectrum of Q0
k , and gt

kdk ≤ 0, we
obtain (46). Let us suppose now that Assumption A2 holds. Given (41) and φk ≥
λ > 0, (49) implies gt

k+1dk ≥ gt
kdk +λcminα1

k‖dk‖2 and, according to (44), we obtain
(47). �

Lemma 4.3 Let Assumption A2 hold, together with the conditions of Theorem 3.1.
Then,

Dk ≥ (1 − μk − ωk)‖gk−1‖2 − d t
k−1gk−1(ωk + μkc

minθλ/ν2) ≥ 0, ∀k ∈ N − {0}.
(50)
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Proof Since yk−1 = gk − gk−1, (47) also reads

d t
k−1yk−1 ≥ −d t

k−1gk−1c
minθλ/ν2, ∀k ∈ N − {0}.

Then, given the expression (5) of Dk and d t
k−1gk−1 ≤ 0, the conclusion is immedi-

ate. �

Remark 4.1 Let us examine the case where the denominator Dk of β
μk,ωk

k vanishes.
Here, we assume that the conditions of Theorem 3.1 hold.

Let us suppose first that Assumption A2 is valid. If Dk vanishes, then (50) implies

(1 − μk − ωk)‖gk−1‖2 − (ωk + μkc
minθλ/ν2)d

t
k−1gk−1 = 0.

Since the left-hand side is the sum of two nonnegative terms, we obtain

(1 − μk − ωk)‖gk−1‖2 = 0, (51a)

(ωk + μkc
minθλ/ν2)d

t
k−1gk−1 = 0. (51b)

• Case 1: If μk + ωk < 1, (51a) reduces to ‖gk−1‖2 = 0, which means that conver-
gence is reached at iteration k − 1. This case includes the PRP method.

• Case 2: If μk + ωk = 1, (51b) implies d t
k−1gk−1 = 0, so that αk−1 = 0. Thus,

xk = xk−1, yk−1 = 0, and the numerator of β
μk,ωk

k vanishes. In this case, we let
β

μk,ωk

k = 0, conventionally. This case includes the HS and the LS method.

In the situation where Assumption A2 is not necessarily valid, our study covers
only the case μk = 0: then Dk is the sum of two nonnegative terms, so Dk = 0 implies
that both vanish:

(1 − ωk)‖gk−1‖2 = 0 and ωkd
t
k−1gk−1 = 0.

• If ωk < 1, the conclusion is the same as in Case 1. This case includes the PRP
method.

• If ωk = 1, the conclusion is the same as in Case 2. This case includes the LS
method.

Lemma 4.4 Under the conditions of Theorem 3.1, we have

lim inf
k→∞ ‖gk‖ > 0 =⇒ lim

k→∞β
0,ωk

k = 0.

Moreover, if Assumption A2 is valid, then

lim inf
k→∞ ‖gk‖ > 0 =⇒ lim

k→∞β
μk,ωk

k = 0.

Proof According to (1) and (41), we have

‖xk+1 − xk‖2 = α2
k‖dk‖2 ≤ (cmax

I )2(α1
k )

2‖dk‖2.
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Given that (9) holds unless dk = 0, we deduce that
∑

k

‖xk+1 − xk‖2 ≤ (cmax
I θ)2

∑

k, dk �=0

(gt
kdk)

2‖dk‖2/(d t
kQ

0
kdk)

2,

≤ (cmax
I θ/ν1)

2
∑

k, dk �=0

(gt
kdk)

2/‖dk‖2,

according to (8). Given (42), we conclude that limk→∞ ‖xk+1 −xk‖2 = 0. Because J
is continuously differentiable and ‖gk‖ is bounded according to Assumption A1 and
the boundedness of L, we have also limk→∞ yk−1 = 0 and

lim
k→∞gt

kyk−1 = 0. (52)

If lim infk→∞ ‖gk‖ > 0, then there exists γ > 0 such that

‖gk‖ ≥ γ > 0, ∀k. (53)

According to (4), we have

|gt
kyk−1| = |βμk,ωk

k ||Dk|. (54)

On the one hand, suppose that Assumption A2 is valid.
First, let us consider the iteration indices k such that μk +ωk ∈ [0,1/2]. According

to (50) and d t
k−1gk−1 ≤ 0, (54) implies that

|gt
kyk−1| ≥ |βμk,ωk

k |(1 − μk − ωk)‖gk−1‖2.

Given (53), the latter inequality yields

|gt
kyk−1| ≥ |βμk,ωk

k |γ 2/2. (55)

Let us establish a similar result in the more complex case μk + ωk ∈ (1/2,1]. As
a preliminary step, let us show that

gt
kdk ≤ −γ 2/2 (56)

for all sufficiently large values of k.
According to Remark 4.1, in the case gt

k−1dk−1 = 0, we have β
μk,ωk

k = 0, so
dk = −gk and (56) is valid according to (53).

Now, let us consider the case where gt
k−1dk−1 < 0. Given (2) and (4), we have

gt
kck = gt

k(−gk + β
μk,ωk

k dk−1) = −‖gk‖2 + (gt
kyk−1)(g

t
kdk−1)/Dk.

Given μk + ωk ∈ (1/2,1], we have ωk + μkc
minθλ/ν2 ≥ m, where m =

min{1/2, cminθλ/ν2}. As a consequence, (50) implies that Dk ≥ −md t
k−1gk−1.

Jointly with (46) and (53), the latter inequality yields

gt
kck ≤ −γ 2 + |gt

kyk−1|(1 + cmax
I θμ/ν1)/m.
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Given (52), we deduce that gt
kck ≤ −γ 2/2 for all sufficiently large k. Because of (3),

we can conclude that (56) holds.
Given (50) and (56), (54) implies

|gt
kyk−1| ≥ |βμk,ωk

k |((1 − μk − ωk)γ
2 + (ωk + μkc

minθλ/ν2)γ
2/2)

= |βμk,ωk

k |(1 − ωk/2 − (1 − cminθλ/ν2)μk)γ
2,

for all sufficiently large values of k. Given μk + ωk ∈ (1/2,1], the latter inequality
implies

|gt
kyk−1| ≥ |βμk,ωk

k |mγ 2. (57)

Since m ≤ 1/2, (57) is implied by (55), so that (57) holds for all μk ∈ [0,1] , ωk ∈
[0,1 − μk]. Finally, (52) and (57) jointly imply limk→∞ |βμk,ωk

k | = 0.
On the other hand, consider the case where Assumption A2 is not necessarily

valid. If μk = 0, then we have |gt
kyk−1| ≥ |β0,ωk

k |γ 2/2. The proof is similar to that
of (57), where the two cases to examine are ωk ∈ [0,1/2] and ωk ∈ (1/2,1]. Finally,
according to (52), we have limk→∞ |β0,ωk

k | = 0. �

Remark 4.2 The proof of Lemma 4.4 is inspired from that of [2, Lemma 3.2], but we
deal with the more general case of the iterated formula (7). Moreover, μk and ωk are
possibly varying, while they are constant parameters in [2].

Theorem 4.1 Let xk be defined by (1–7) with θ ∈ (0,2), and let Assumptions A1
and A3 hold. Then, we have convergence in the sense lim infk→∞ gk = 0 for the PRP
and LS methods, and more generally for μk = 0 and ωk ∈ [0,1]. Moreover, if As-
sumption A2 holds, then we have also lim infk→∞ gk = 0 in all cases.

Proof Assume on the contrary that ‖gk‖ ≥ γ > 0 for all k. Since L is bounded, both
(xk) and (gk) are bounded.

Let us first suppose that Assumption A2 holds. Since lim infk→∞ ‖gk‖ > 0, by
Lemma 4.4 we have limk→∞ β

μk,ωk

k = 0.
Since ‖dk‖ = ‖ck‖ ≤ ‖gk‖ + |βμk,ωk

k | ‖dk−1‖, we conclude that (‖dk‖) is uni-
formly bounded for sufficiently large k. Thus, we have

|gt
kdk| = |gt

k(−gk + β
μk,ωk

k dk−1)| ≥ ‖gk‖2 − |βμk,ωk

k | ‖gk‖‖dk−1‖ ≥ ‖gk‖2/2

for sufficient large k. Then, there exists ε > 0 so that gt
kdk/‖dk‖‖gk‖ ≥ ‖gk‖/2‖dk‖ ≥

ε for sufficient large k. Finally, we conclude that
∑

k, dk �=0 ‖gk‖2(gt
kdk/‖dk‖‖gk‖)2 =

∞, which contradicts Lemma 4.1.
The same proof applies to the case μk = 0, whatever the validity of Assump-

tion A2. �

Remark 4.3 The proof of Theorem 4.1 is partly inspired from that of [2, Theo-
rem 3.3]. However, our result deals with variable parameters μk , ωk . Moreover, As-
sumption A2 is not necessary in the case μk = 0, which contains the PRP and LS
methods.
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5 Discussion

5.1 Convex Quadratic Case

Let us show that the convergence condition θ ∈ (0, ν1/μ) is too restrictive for the
stepsize formula proposed in [1, 2], in the case of a convex quadratic objective func-
tion. Let Q(x) = xtQx/2 − btx, where x ∈ R

n and Q is a SPD matrix. Let ν1 and
ν2 respectively denote the smallest and largest eigenvalue of Q, so that (8) holds.
Now, consider the stepsize formula (9) with Q0

k = Q. When θ = 1, it yields the opti-
mal stepsize αk = arg minα J (xk + αdk). In the convex quadratic case, Theorem 4.1
ensures the convergence for θ ∈ (0,2) and for any fixed I > 0. Remark that Assump-
tion A3 is easily checked, since

Q̂(x′, x) = Q(x) + (x′ − x)t ∇Q(x) + (x′ − x)t Q(x′ − x)/2 = Q(x′).

In the case of the optimal stepsize, i.e., θ = 1, the classical linear CG algorithm is cov-
ered. On the contrary, the convergence domain in [1, 2] is reduced to θ ∈ (0, ν1/ν2) ⊂
(0,1), since ∇Q is μ-LC1with μ ≤ ν2. Hence, the convergence of the linear CG al-
gorithm is not covered. Moreover, the condition θ < ν1/ν2 will produce excessively
small and inefficient stepsizes when Q is ill-conditioned.

5.2 General Case

In principle, the nontrivial computation of ν1 and μ is a prerequisite to check the
convergence condition θ ∈ (0, ν1/μ). In [2], it is rather proposed to ensure the con-
vergence empirically by choosing arbitrarily small values of θ . However, the result-
ing algorithm will be hardly competitive, compared to CG methods with a usual line
search procedure.

Our convergence results do not share the same drawback, provided that, as a pre-
liminary step, a convex quadratic function has been found to approximate the objec-
tive function from above. According to Lemma 2.1, finding such a convex quadratic
majorizing function is always possible when N is a convex set.

In practice, case-by-case considerations may provide tighter convex quadratic ap-
proximations, that will result in larger stepsizes. This issue is actually not new, since
finding a good convex quadratic majorizing function is already a crucial step in the
use of Weiszfeld method [12]. The latter reference provides examples in the field of
optimal location (which was Weiszfeld’s original concern), and in structural mechan-
ics. Robust regression is another area where Weiszfeld method is widely applied,
under the name of Iterative Reweighting [14]. More recently, it has also become a
standard approach for edge preserving image restoration, under the name of Half-
Quadratic Scheme [15, 16].

5.3 Edge-Preserving Image Restoration

Edge preserving image restoration is structurally close to robust regression [14], but
it is of much larger scale since digital images commonly gather billions of pixels.
In typical image restoration problems, a sought image x̂ ∈ R

n is estimated from a
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noisy, blurred version y ∈ R
p . Consider the linear observation model y = Ax + ε,

where A ∈ R
p×n is a Toeplitz-block-Toeplitz matrix that represents the observation

system, while ε gathers measurement uncertainty and any other source of errors in
the data. The sought image is customarily estimated as the minimizer of the following
penalized least square (PLS) function, incorporating an edge-preserving penalization
term [15–17]:

J (x) = 1

2
‖Ax − y‖2 + λ

C
∑

c=1

φ([V x]c), (58)

where λ > 0 is a regularization parameter and V is a first-order difference matrix.
φhyp(u) = √

δ2 + |u|2 is a typical example of a convex function that preserves edges
better than a quadratic. In the image restoration example considered here, matrix A

stands for a blurring operation involving a Gaussian point spread function. The choice
φ = φhyp ensures that J (58) is then coercive and strictly convex.

The minimization of PLS functions (58) is customarily addressed using the Geman
and Reynolds (GR) algorithm [15, 17], which is shown to fall within the class of
Weiszfeld algorithms [16]. The GR algorithm can be defined by

xk+1 = xk + dk
GR,

dk
GR = −(QGR(xk))−1gk, (59)

where the normal operator QGR(u) is defined by

QGR(u) = AtA + λV t Diag{b(u)}V,

b(u) = Vect[φ′([V u]c)/[V u]c].
The inversion of the linear system (59) is required to determine the descent direc-
tion. In the case of large-scale problems, as typically encountered in image restora-
tion, the resulting numerical cost is generally too high. In practice, it is rather pro-
posed to compute an inexact descent direction using a truncated linear CG (TLCG)
method [15, 17].

The main goal of this section is to experimentally compare the following three
schemes:

• CG+GR1D(I ) refers to the algorithm defined by (1–7) with βk = βPRP
k , θ = 1,

Qi
k = QGR(xk + αi

kd
k), (60)

and where I is the fixed number of iterations of (7b). Note that both Assump-
tions A1 and A3 hold on N = R

n according to [16].
• CG+SWOLFE(c1, c2) refers to the algorithm defined by (1–7) with βk = βPRP

k ,
θ = 1 and where the stepsize is computed according to Algorithms 3.2 and 3.3
of [18]. In particular, it satisfies the following strong Wolfe conditions

J (xk) −J (xk+1) + c1αkg
t
kdk ≥ 0,

(61)∇J (xk + αkdk)
tdk − c2g

t
kdk ≥ 0,
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Table 1 Comparison of the algorithms for the deblurring problem

Without preconditioning With CT preconditioning

Iterations Time (s) Iterations Time (s)

CG+GR1D(1) 89/1/1 129.16 28/1/1 53.66

CG+GR1D(2) 93/1/2 141.62 30/1/2 59.92

CG+GR1D(5) 93/1/5 161.81 31/1/5 68.74

CG+GR1D(10) 93/1/10 196.21 31/1/10 80.13

CG+SWOLFE(10−4,0.1) 95/2.52/2.52 287.45 32/1.94/1.94 89.71

CG+SWOLFE(10−4,0.5) 96/1.76/1.77 204.96 33/1.06/1.15 59.22

CG+SWOLFE(10−4,0.9) 298/1.44/1.44 518.45 35/1/1.14 60.74

GR+TLCG(10−6) 12/1/102.1 1936.46 12/1/32.3 822.05

with 0 < c1 < c2 < 1. Note that (61) identifies with the Armijo condition (38). The
line search is initialized with the unit stepsize. Following [18, Chap. 3] we select
c1 = 10−4, and several values of parameter c2 are tested.

• GR+TLCG(η) refers to an approximate form of the GR algorithm using a TLCG
method [17]. The TLCG is used with the stopping rule ‖ri‖/‖r0‖ < η, where ri is
the normal equation residual after i iterations. Here, we select η = 10−6.

We consider also preconditioning for the three algorithms using the 2D fast cosine
transform (CT) [19]. In all cases, the chosen stopping rule is ‖∇J (xk)‖/n < 10−6.

The experiments were undertaken under Matlab 7 on a PC P4 2.8 GHz RAM 1 Gb.
The image size is n = 5122. Table 1 displays iteration numbers before convergence,
under the form a/b/c, where a is the number of global iterations and b is the average
number of gradient evaluations per global iteration. The meaning of c is specific to
each algorithm:

• in the case of CG+GR1D(I ), c identifies with I ,
• in the case of CG+SWOLFE(c1, c2), c is the average number of criterion evalua-

tion per global iteration,
• in the case of GR+TLCG(η), c is the average number of TLCG iterations per

global iteration.

Table 1 also displays the minimization time for each algorithm. It clearly shows
that algorithm GR+TLCG(10−6) is outperformed by the two CG algorithms. Ac-
tually, GR+TLCG(10−6) needs fewer global iterations, but many more operations
per global iteration.

The CG+GR1D(I ) algorithm is shown to perform best when I is very small
(I = 1 or I = 2). Increasing I does not lead to a more favorable tradeoff since the
number of global iteration remains nearly constant.

The CG+SWOLFE(c1, c2) algorithm needs not more than three evaluations of
gradient and criterion per global iteration for all of the three tested couples (c1, c2).
The relation between (c1, c2) and the number of evaluations is not straightforward.
However, the latter decreases when c2 increases, because the strong Wolfe condition
becomes less restrictive. At the same time, the number of global iterations increases,
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sometimes dramatically. Finally, the best couple (c1, c2) correspond to a tradeoff that
is not easy to guess.

Basically similar conclusions have been reached on an image denoising problem.
In the previous comparisons, the CG+GR1D algorithm has been tested with θ = 1

only. One may wonder if overrelaxed schemes θ ∈ (1,2) converge faster. The answer
is negative, at least in the numerical experiments that we have conducted: we have
practically found that no other value of θ performs better than θ = 1 for the con-
sidered problems. For the sake of compactness, the corresponding results are not
reported here.

As a conclusion, the CG+GR1D(I ) algorithm presents several interesting features
compared to the other two tested schemes. In particular, its convergence speed is
at least as high as that of CG+SWOLFE(c1, c2), without the tuning of any crucial
parameter. It is also easier to implement, since it amounts to the application of a
CFSF. As a price to pay, a preliminary study must be conducted to approximate the
objective function by a convex quadratic function from above.
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