
Signal Processing 82 (2002) 941–959
www.elsevier.com/locate/sigpro

A half-quadratic block-coordinate descent method for
spectral estimation

Philippe Ciuciua ; ∗, J*erôme Idierb
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Abstract

In short-time spectral estimation, Sacchi et al. (IEEE Trans. Signal Process. 46(1) (1998) 31) and Ciuciu et al. (IEEE Trans.
Signal Process. 49 (2001) 2202) derived new nonlinear spectral estimators de4ned as minimizers of penalized criteria. The
4rst contributors have introduced separable penalizations for line spectra (LS) recovering, whereas the latter have proposed
circular Gibbs–Markov functions for smooth spectra (SS) restoration, and combined both contributions for estimation of
“mixed” spectra (MS), i.e., frequency peaks superimposed on a homogeneous background (Ciuciu et al., 2001). Sacchi et
al. resorted to the iteratively reweighted least squares (IRLS) algorithm for the minimization stage. Here, we show that
IRLS is a block-coordinate descent (BCD) method performing the minimization of a half-quadratic (HQ) energy. The latter,
derived from the Geman and Reynolds construction, has the same minimizer as the initial criterion but depends on more
variables. After proving that such a construction is not available for Gibbs–Markov penalizations, we extend the pioneering
work of Geman and Yang (IEEE Trans. Image Process. 4(7) (1995) 932) that leads to a suitable HQ energy for any kind
of penalization encountered in Ciuciu et al. (2001). The BCD algorithm used for minimizing such HQ criteria is actually an
original residual steepest descent (RSD) procedure (IEEE Trans. Acoust. Speech Signal Process. ASSP-33(1) (1985) 174)
and thus converges in any convex case. A comparison between RSD, IRLS when available, and a pseudo-conjugate gradient
algorithm is addressed in any case. ? 2002 Elsevier Science B.V. All rights reserved.

Keywords: Spectral estimation; Half-quadratic regularization; Iteratively reweighted least squares; Residual steepest descent; Legendre
transform

1. Introduction

1.1. Penalized criteria

Nonparametric short-time spectral estimation con-
sists in retrieving an estimate of the power spectrum
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from a short set of observations using the discrete
Fourier transform (DFT) [9,21]. The goal is to esti-
mate a large number of Fourier coeKcients x∈CP

of a time series, partially observed through the data
y∈CN :

y= WNPx; (1)

where WNP = [Wnp
0 ] stands for the N × P inverse

Fourier matrix, withw0=exp(2j	=P); n∈NN ; p∈NP

and Nk = {0; 1; : : : ; k − 1}. Since N�P, system
(1) is underdetermined, and there exists an in4nite
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number of solutions for (1), i.e., of minimizers of
Q(x) = ‖y − WNPx‖2. To cope with the illposedness
of this problem, penalized approaches have been pro-
posed [6,9,13,21]. In particular, Ciuciu et al. [9] and
Sacchi et al. [21] have de4ned a nonlinear estimator
of the spectral amplitudes as

x̂= arg min
x∈CP

J(x); (2)

where

J(x) = Q(x) + �R(x): (3)

The hyperparameter �¿ 0 controls the trade-oN be-
tween the closeness to data, measured by Q, and the
con4dence in structural prior modeled by R. The
power spectrum estimator easily deduces as the vector
of the squared modulus of the components of x̂.

Ref. [21] adopts the classical Bayesian interpreta-
tion of x̂ as a maximum a posteriori estimate, derived
from an independent and circular Cauchy prior model.
The Cauchy density function is a heavy-tailed prob-
ability distribution. For this reason, it is well suited
for restoration of parcimonious frequency peaks. It is
also suggested to choose � ↘ 0 (at least in the ac-
curate data case), in which case x̂ is the constrained
minimizer of R subject to (1).

In [9], the methodology is generalized in order to
encompass the smooth and “mixed” spectra (resp. SS
and MS) problems. In any case, R is

circular:

R(x) = R(�) with �p = |xp| and �∈RP
+: (4a)

strictly convex; (4b)

continuously diNerentiable (C1); (4c)

“in4nite at in4nity”; i:e:; lim
‖x‖→∞

R(x) = ∞: (4d)

As a consequence, J is strictly convex as a sum of
convex and strictly convex terms. Then, the minimizer
x̂ is unique and continuous w.r.t. the data [4]; this guar-
antees the well posedness of the regularized problem
[22]. Constraints (4b)–(4d) make the computation of
x̂ feasible by many deterministic descent method (such
as gradient-based methods, IRLS, etc.).

The main contribution of this paper is to propose
a special class of block-coordinate descent (BCD)
methods and to show that it is competitive with a
pseudo-conjugate gradient (PCG) algorithm in SS and
MS cases, which is even more eKcient for LS recov-
ering.

1.2. Half-quadratic BCD methods

A BCD optimization algorithm is a multivariate ex-
tension of a coordinate descent method, i.e., it mini-
mizes a criterion w.r.t. blocks of variables [3]. BCD
methods have recently become popular [7,8,10,23,24]
in image restoration or reconstruction, in conjunction
with the half-quadratic (HQ) formulation of regular-
ized criteria [11,12].

On the one hand, to make the paper self-contained,
we 4rst recall the basic principles of HQ regulariza-
tion. Then, we provide useful details that refer to con-
vex duality [19] (see Section 2). Starting from a non-
quadratic criterion J=Q+�R with Q quadratic in x;
HQ regularization amounts to deriving a new objec-
tive function K, depending on additional variables b,
such that

K(x; b) = Q(x) + �S(x; b); (5a)

with

inf
b

S(x; b) = R(x): (5b)

Hereafter, half-quadratic means that S, and then K,
are quadratic in x when b is 4xed and not jointly
quadratic in (x; b). Since K is quadratic in x, its min-
imization w.r.t. x only requires to solve a linear sys-
tem. Moreover, explicit duality relations and separa-
bility of S in b [19] allow to straightforwardly per-
form the optimization step w.r.t. b. Technical condi-
tions have been proposed by Charbonnier et al. [8],
Aubert and Vese [1] and Idier [16] for proving that
K and J have the same global minimizer. Then, a
HQ BCD algorithm, i.e., a BCD method applied to
K, can be more attractive than a coordinate descent
algorithm working on J.

On the other hand, IRLS is a reweighted least
squares technique that has been recently applied
to LS recovering [21]. Following Idier [16], it is
shown in Section 2.1 that IRLS identi4es with the
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so-called ARTUR algorithm [8]. The latter is a HQ
BCD method derived from Geman and Reynolds’s
construction. This interpretation provides simple con-
vergence criteria of IRLS given the existing results for
ARTUR [8,16].

In Section 3, it is established that IRLS/ARTUR has
no natural extension to cope with SS and MS cases,
in the sense that mathematical conditions for deriving
SGR are not ful4lled.1 Consequently, the main con-
tribution of this paper is devoted to propose another
HQ development, adapted to these situations. More
precisely, our contribution is a multivariate extension
of Geman and Yang’s work. The resulting HQ BCD
method is nothing but a modi4ed RSD algorithm, al-
ready used in seismic deconvolution [25], and also re-
ferred to as LEGEND in computed imaging [7]. For
the LS case, the presentation of the HQ regularizing
term SGY is reported to Section 2.2. For SS and MS
restoration, the augmented cost functions SGY of the
penalizations R encountered in [9] are exhibited in
Sections 3 and 4, respectively. Then, the minimization
of the augmented criterion KGY is performed with an
original RSD algorithm. Following Idier [16], suK-
cient properties of KGY are derived to guaranty con-
vergence towards x̂ of the RSD procedure.

Finally, the last concern addressed in Section 5 is
to increase the speed of convergence of the proposed
RSD method according to an over-relaxation scheme
on x and b. Then, RSD is compared to ARTUR/IRLS
in the LS case, and to a PCG algorithm in all cases.
Concluding remarks are drawn in Section 6.

2. HQ solutions to LS restoration

2.1. HQ interpretation of IRLS

In [9,21], a shift-invariant circular separable pe-
nalization is considered for line spectra estimation:

RL(x) =
P−1∑
P=0

R0(�p); (6)

where R0 :R+ �→ R+, and the subscript “L” stands
for Line. DiNerent potential functions have been
investigated for choosing R0. Sacchi et al. [21] have

1 In the following, the superscripts “GR” and “GY” stand for
Geman and Reynolds and Geman and Yang, respectively.

selected a log-Cauchy function, R0(�)=ln(1+�2=2�2
0),

whereas Ciuciu et al. [9] have retained a component
of the following set:

D=
{
f :R+ �→ R convex; increasing; C1 ;

f′(0+) = 0; 0¡ lim
x→0+

f′(x)
x

¡∞;

lim
x→∞f′(x)¡∞

}
:

With R0 ∈D, the global criterion J clearly ful4lls
(4b). On the other hand, functions in S behave
quadratically around zero and linearly at in4nite:

0¡ lim
x→0+

f(x)=x2 ¡∞; 0¡ lim
x→∞f(x)=x¡∞:

This is a relevant behavior for erasing small varia-
tions, and also for preserving large peaks that would
be oversmoothed by quadratic penalization.

In [21], IRLS is implemented to minimize J(x).
Firstly, a reweighting diagonal matrix Q of size P×P
is introduced. Its diagonal entries are de4ned by

∀p∈NP; Qpp = 2�p=R′
0(�p): (7)

Such a de4nition is extended by continuity for the case
�p = 0. Taking derivatives of J and equating to zero
gives the implicit solution (see [21] for details):

x̂= (W †
NPWNP + �Q−1)−1W †

NPy;

=QW †
NP(�IN + WNPQW †

NP)−1y; (8)

where IN stands for the N × N identity matrix. Since
Q depends on x, (8) is a nonlinear system, which can
be solved iteratively using IRLS. The latter consists in
repeating threefold iterations until convergence, after
choosing x(0):
• IRLS1: Compute matrix Q(i) from x(i),
• IRLS2: Solve the N × N Toeplitz system:

(�IN + WNPQ(i)W †
NP)z(i) = y; (9)

• IRLS3: Compute the DFT x(i+1) =Q(i)W †
NPz

(i),
where IRLS2 can be implemented with a fast solver
like Levinson’s recursion. As it appears in [25], Byrd
and Payne showed that the IRLS algorithm is globally
convergent for convex functions R0 that satisfy fairly
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weak conditions, i.e., R′
0(�)=� must be nonincreasing

and bounded on R+. Since the log-Cauchy potential
involved in [21] is not convex, IRLS is not ensured to
converge to the global minimizer x̂.

The purpose of the following is to identify the IRLS
algorithm with a HQ BCD method. To this end, the HQ
extension SGR

L of the penalization RL is introduced.
Under the theoretical setting of [16], the stress is put

on functions R0 that satisfy the following hypotheses:

• R0 is even; C0on R andC1on R∗ = R \ {0};
• R0(

√·) is strictly concave on R+;

• lim
�→∞R0(�)=�2 = 0:

(10)

Remark that the log-Cauchy potential as well as the
functions in S ful4ll (10). Then, it can be shown from
convex duality that R0 reads

R0(�) = inf
b∈R+

(b�2 +  (b)); (11)

where

 (b) = sup
�∈R+

(R0(�) − b�2)

is convex and C1 on R∗
+. Such a derivation of HQ

energy was 4rst introduced by Geman and Reynolds,
without explicit reference to convex duality.

Let

SGR
L (x; b) =

P−1∑
p=0

(bp|xp|2 +  (bp)) (12)

be the augmented regularizing term of (6) with
b∈RP

+. Then, (11) implies (5b) for S = SGR
L , and

the new objective function KGR
L , de4ned by (5a) and

S = SGR
L , also reads

KGR
L (x; b) = x†�(b)x− 2R(x†W †

NPy) + �(b);
(13)

where R is the real part operator and

�(b) = W †
NPWNP + � diag[b];

�(b) =
P−1∑
p=0

 (bp):

The HQ BCD algorithm devoted to the minimization
of KGR

L is referenced to as BCD-GR in the follow-
ing. Each iteration is composed of two steps. On the
one hand, the auxiliary variables b are noninteracting,
allowing then a parallelized calculation of the mini-
mizer b̂(x) of KGR

L . According to (12), the updated
value for each component b̂p is given by

b̂(xp) = ( ′)−1(−�2
p) =

R′
0(�p)
2�p

= Q−1
pp : (14)

The last but one equality in (14) is obtained from
convex duality [19].

On the other hand, computing the minimizer x̂(b)
of KGR

L amounts to solving the P×P Toeplitz system

x̂(b) = �(b)−1W †
NPy;

which can be rewritten as (8) since Q = diag[b]−1

according to (14).
After setting x(0), BCD-GR repeats the following

iterative scheme until convergence:
• BCD-GR1: Minimization of KGR

L w.r.t. b:

b(i) = b̂(x(i−1))

= [ : : : ; b̂(x(i−1)
k ); : : : ]t ; k ∈NP (see (14)):

• BCD-GR2: Minimization of KGR
L w.r.t. x:

x(i) = x̂(b(i)) (see (8)):

Given the de4nition of Q; BCD-GR1 clearly corre-
sponds to IRLS1, whereas BCD-GR2 may be imple-
mented by IRLS2–IRLS3. Finally, both algorithms,
IRLS and BCD-GR (known as ARTUR in [8]), com-
pute the same solution (2).

This result yields simple convergence criteria for
IRLS using well-known results on convergence of
BCD methods [3,18]; indeed, provided that R0 is
strictly convex, Charbonnier et al. [8]; Idier [16] have
proved the convergence of ARTUR to the global min-
imizer x̂ of J. Such a result is slightly less restrictive
than convergence conditions of IRLS derived by Byrd
and Payne.

Hereafter, another HQ development is shown oN
for a major reason. Geman and Reynolds’s construc-
tion fails to provide an augmented HQ criterion SGR

S
coupled to a Gibbs–Markov energy RS for which (5b)
holds.
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2.2. Generalization of the Geman and Yang
construction

2.2.1. Principle
First, the scalar construction of HQ criteria in-

troduced by Geman and Yang is reviewed (see also
LEGEND in [7]). For the restoration of a real-valued
image x, observed through y = Hx + noise, the
following nonquadratic cost function is considered

J(x) = ‖y−Hx‖2 + �
∑
c∈C

"(d t
cx); x∈RK ;

where dc ∈RK are known vectors, such as 4nite dif-
ferences, and C is a 4nite set (|C| = M). Geman and
Yang resort to the scalar convex conjugate [19] of the
function x2=2 − "(x) in order to get

"(x) = inf
b∈R

((x − b)2=2 + %(b)); (15)

where

%(b) = sup
x∈R

(−(x − b)2=2 + "(x)):

From (15), it is straightforward to derive a new objec-
tive function KGY(x; b) with b = (bc)∈RM , de4ned
by

KGY(x; b)=‖y−Hx‖2+ �
∑
c∈C

( 1
2 (d

t
cx−bc)2+%(bc)):

KGY is HQ since the argument d t
cx of each contribu-

tion "(·) is a linear function of x. Then, Geman and
Yang proposed to minimize KGY rather than J, since
inf b∈RM KGY(:; b) = J(·).

In the spectral estimation framework, the penaliza-
tion function R nonlinearly depends on the sought
spectral amplitudes x since it is circular (see (4a)). In
the particular case of LS restoration, the penalization
RL is de4ned by "(x) = R0(�) (and dc canonical).
Then, (15) gives

R0(�) = inf
b∈R+

((�− b)2=2 + %(b)): (16)

Clearly, (16) shows that the quantity to be minimized
is quadratic in � = |x|; but not in x, and the resulting
criterion KGY

L is not HQ.
Since |x| = h(R(x); J(x)), it is suKcient to

couple the real and imaginary parts of each spectral

amplitude x with a real-valued auxiliary variable, in
order to get a satisfactory HQ extension of RL. This
amounts to linking x with a complex auxiliary vari-
able b, provided that a multivariate extension of (15)
is available. In the following, we turn to this multi-
variate Geman and Yang’s construction that will be
also necessary for deriving the HQ criteria in the SS
and MS cases.

2.2.2. Multivariate extension
For a complete overview on multivariate convex

duality, Rockafellar [19] is an essential reference.
Only the necessary tools are reported hereafter.

De�nition 1. Let f :CM �→ R be a convex function.
The multivariate convex conjugate of f is de4ned by

∀C∈CM ; f∗(C) = sup
u∈CM

(R(C†u) − f(u)); (17)

and it is a convex function on CM .

De�nition 2. Let (f; g) be a couple of positive
real-valued functions on CM . If
(a) f is strictly convex;
(b) f is continuous 2 and diNerentiable throughout

CM ,
(c) f and g are the multivariate convex conjugate to

each other, i.e., g = f∗ and f = g∗,
then (f; g) is said a Legendre pair.

From basic results on convex duality [19, Section
26], the following proposition can be derived.

Proposition 3. Let (f; g) be a Legendre pair on
CM ; then g is diDerentiable on CM and its gradient
mapping is given by ∇g = (∇f)−1; or equivalently:
∀u; C∈CM ; such that C= ∇g(u); then u = ∇f(C).

In the rest of the paper, the following function f) will
be considered for deriving HQ criteria:

∀u∈CM ; f)(u) = u†u=2 − ")(u); (18)

where ")(u) = )"(u); )¿ 0

2 Here, Rockafellar’s closed-proper assumption [19, pp. 52, 253–
254] is replaced by a stronger but simpler continuity condition
on CM .
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and

R(x) =
P−1∑
p=0

"(up): (19)

Here, up ∈CM is a subvector of x∈CP . In the fol-
lowing, " is assumed to be twice continuously diNer-
entiable (C2).

Let f∗
) be the multivariate convex conjugate of f)

and %)(C) = f∗
) (C) − C†C=2, then, (17) yields

%)(C) = sup
u∈CM

{
−‖u − C‖2

2
+ ")(u)

}
: (20)

Since R is circular, so are " and f), i.e., f)(u) =
f)(|u|), where |u| ∈RM

+ stands for the vector of the
magnitudes of u. Then, the following proposition
states that %) is also circular.

Proposition 4. Let " :CM �→ R be a circular func-
tion involved in (18). Then; function %); deFned by
(20); is circular.

Proof. See Appendix A.

Given Proposition 4, if " is circular and (f); f∗
) ) is

a Legendre pair, then ") reads (using De4nition 2(c))

")(|u|) = inf
C∈CM

(‖u − C‖2

2
+ %)(|C|)

)
; (21)

where |C| ∈RM
+ stands for the vector of moduli of C.

Without strict convexity of f), expression (21) does
not hold, i.e., ") is not the in4mum of an HQ local
energy.

Following De4nition 2, the circular function f)

has to ful4ll hypotheses (a) and (b). The latter holds
given that " is C2. For proving (a) i.e., strict convex-
ity of f), we resort to a result stated in [9] that char-
acterizes convex circular functions. For this purpose,
coordinatewise nondecreasing functions have to be
de4ned.

De�nition 5. A function f :RM
+ �→ R is said coordi-

natewise nondecreasing if and only if ∀i∈{1; : : : ; M}:

∀m∈RM
+ ; ∀t¿ 0; f(m)6f(m + t1i);

where 1i is the ith canonical vector of RM . The func-
tion f is said coordinatewise increasing if the latter
inequalities are strict.

Proposition 6. Let f :CM �→ R be a circular func-
tion. Then f is (resp. strictly) convex if and only if
its restriction on RM

+ is
(i) (resp. strictly) convex;
(ii) and coordinatewise (resp. increasing) non-

decreasing.

Proposition 6 is proved in [9, Appendix A]. Let us
apply it to f) de4ned by (18). The resulting convex-
ity conditions of f) are summarized in the following
corollary, where (22) and (23), respectively, corre-
spond to conditions (i) and (ii) of Proposition 6.

Corollary 7. Let f) be deFned by (18). Suppose that
" is circular; C2 and convex on CM . Then; f) is
strictly convex if and only if

∀m∈RM
+ ; ∀i∈NM ; )¡mi[@"=@mi(m)]−1;

(22)

∀m∈RM
+ ; IM − )H"(m)¿ 0; (23)

where H"(m) stands for the Hessian matrix of " at
point m.

Let b=[C0; : : : ; CP−1]t. If (22) and (23) are ensured,
the HQ extension of R follows from (19) and (21):

SGY(x; b) =
1
2)

P−1∑
p=0

(‖up − Cp‖2 + 2%)(|Cp|)):

(24)

To complete this part, there remains to formulate two
propositions pertaining to global convergence of the
proposed RSD method minimizing KGY=Q+�SGY.
They constitute straightforward multivariate exten-
sions of Idier [16, Theorem 1, Corollary 1].

Proposition 8. Let " :CM �→ R be C1 and convex.
Then; %) given by (20); is convex if conditions (22)
and (23) hold and

)6 lim
‖x‖→∞

‖x‖2=2"(x): (25)
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Strict convexity of %) requires that " is strictly convex
and that inequality (25) is strict.

Proposition 9. Assume that " meets the conditions
of Proposition 8. Then;

" strictly convex ⇒ SGY strictly convex;

f) strictly convex ⇒ SGYC1:

Proposition 9 shows that KGY possesses properties
(4b) and (4c) if strictly convex functions are consid-
ered for " and f). The resulting HQ BCD algorithm
converges towards the unique global minimizer (x̂; b̂)
[3,16].

2.2.3. Application to the separable case
Here, our aim is to show that a bivariate applica-

tion (M =1) of the proposed multivariate construction
provides a HQ extension of RL, the circular separable
penalization encountered for LS recovering. In such a
situation, " is de4ned on C (M = 1; up = xp) by

"(up) = R0(�p); (26)

so that (19) holds.
For R0 ∈D, the global criterion J satis4es con-

straints (4b) and (4c). Apply Proposition 6 with M=1,
then "=R0 is (resp. strictly) convex on C if and only
if it is (resp. increasing) nondecreasing on R+ and
(resp. strictly) convex on R. Since R0 ∈D, it is a non-
decreasing convex function so that " is convex on C.
Since " is de4ned on C, the present convex conjugacy
operation is bivariate and involves a single complex
auxiliary variable Cp = bp. In order that (21) holds,
f) has to be strictly convex that can be shown as fol-
lows. From (26), " and then f) are circular. Thus,
Corollary 7 is applicable and (22) and (23) take the
following form:

)¡




min
�¿0

[�=R′
0(�)];

1=max
�¿0

R′′
0 (�) = 1=R′′

0 (0);
(27)

where the last equality deduces from the de4nition
of D.

Example 10. For LS restoration; the hyperbolic

potential R0(�) =
√

�2
0 + �2 has been used in [9].

Then; from (27) we obtain that f) is strictly convex
if and only if )¡�0.

Since " is circular, so is %) according to Proposi-
tion 4. Then, given |Cp|= |bp|= 5p ∈R+; (21)–(24)
read

")(�p) = inf
bp∈C

(|xp − bp|2=2 + %)(5p)); (28)

SGY
L (x; b) =

1
2)


‖x− b‖2 + 2

P−1∑
p=0

%)(5p)


 (29)

with b= [b0; : : : ; bP−1]t ∈CP . Since a complex auxil-
iary variable bp is coupled to any spectral amplitude
xp;SGY

L depends on twice more real auxiliary vari-
ables than SGR

L .
When R0 ∈D and (27) are satis4ed, " is linear, at

in4nity, then (25) is automatically ensured. Therefore,
Propositions 8 and 9 apply and both energies SGY

L and
KGY

L =Q+ �′SGY
L , with �′ = �=), are strictly convex

and C1. In particular, for the hyperbolic potential of
Example 10, if )¡�0; KGY

L ful4lls (4b) and (4c).
By contrast, with the log-Cauchy potential used in
[21], no convexity result of KGY

L is available, even if
the function f) is circular, C2 and strictly convex for
)¡�2

0, according to (27).

2.2.4. The RSD algorithm for LS restoration
The diNerent steps of the RSD (or BCD-GY) algo-

rithm for computing line spectra are now detailed.
From (29), KGY

L admits the following expression:

KGY
L (x; b) = x†�Lx− 2R(x†6L(b)) + �L(b); (30)

where

�L = W †
NPWNP + �′=2IP;

6L(b) = W †
NPy+ �′b=2;

�L(b) = �′


‖b‖2=2 +

P−1∑
p=0

%)(5p)


 :

(31)

On the one hand, the auxiliary variables are updated
jointly, since they do not interact. Thanks to Propo-
sition 3, no closed form of %) is necessary to calcu-
late the minimizer b̂(x) of KGY

L . From the current
expression of f), each component b̂p, for p∈NP , is
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given by

b̂(xp) = f′
)(xp) = xp − )"′(xp)

= xp − )R′
0(�p)xp=�p: (32)

On the other hand, it is shown that the minimizer
x̂(b) of KGY

L can be computed in the Fourier domain
thanks to circularity of �L. To this end, remark that
�L is independent of b. Moreover, W †

NPWNP is circu-
lant as shown in [13,16], which allows to decompose
it in the Fourier basis W †

PP(WPPW
†
PP=W †

PPWPP=PIP).
More precisely, we have W †

NPWNP=W †
PP7WPP , where

the diagonal matrix 7 is only composed of two dif-
ferent eigenvalues, 1 and 0, of respective order N
and P − N . Therefore, �L is circulant, and we get
�L = W †

PP8LWPP=P, with

8L =
(

(P + �′=2)IN 0N;P−N

0P−N;N �′=2IP−N

)
: (33)

Hence, �L is invertible and �−1
L reads

�−1
L =

1
P
W †

PP8
−1
L WPP; (34)

so that x̂(b) is given by

x̂(b) = �−1
L 6L(b) =

1
P
W †

PP8
−1
L WPP6L(b)

=
1
P
W †

PP8
−1
L

(
PỹP +

�′

2
WPPb

)
; (35)

since W+
NPy corresponds to the canonical projection

from CN onto CP:

W+
NPy= W †

PP

[
IN

0P−N;N

]
y= W †

PP ỹP:

The computation of x̂(b) by IRLS (or BCD-GR) re-
quired to solve a N × N Toeplitz system, and the
associated normal matrix �(b(i)) was modi4ed during
the iterations. By contrast, in the present HQ construc-
tion, x̂(b) is obtained after solving a P × P circulant
system in the Fourier domain, whose normal matrix
is constant in the course of the run. Consequently, the
BCD-GY algorithm allow savings of numerical cost
at each iteration.

After setting an initial value x(0), the present itera-
tive RSD method works as follows.
• BCD-GY L

1 : Minimization of KGY
L w.r.t. b:

b(i) = b̂(x(i−1))

= [ : : : ; b̂(x(i−1)
k ); : : : ]t ; k ∈NP (see (32)):

• BCD-GY L
2 : Minimization of KGY

L w.r.t. x:

x(i) = x̂(b(i)) (see (35)): (36)

The main motivation of this part was to introduce
multivariate HQ regularization based on Geman and
Yang’s construction, from which we propose a HQ
BCD algorithm diNerent from IRLS. Indeed, for SS
restoration, IRLS cannot be implemented whereas this
multivariate process gives access to convex HQ crite-
ria, and thus to a BCD-GY convergent method.

3. HQ solution to SS restoration

3.1. Regularizing energy

Denote dp the pth 4rst-order diNerence vector: dp=
1p+1 − 1p for any p¿ 0 and dP−1 = 10 − 1P−1,
where 1p is the pth canonical vector. To retrieve
SS estimates, the following circular Gibbs–Markov
penalization has been proposed in [9]

RS(x) =
1
2

P−1∑
p=0

l(xp; xp+1); (37)

l(xp; xp+1) = qp + qp+1 + 2:R1(d t
pq); (38)

where the subscript “S” stands for smooth and param-
eter :¿ 0 tunes the amount of spectral smoothness.
Vector q = [q0; q1; : : : ; qP−1]t ∈RP

+ is a diNerentiable
approximation of �; qp=’<(xp), and ’< is the strictly
convex potential de4ned by

’< :C �→ R+; ’<(x) =
√

<2 + |x|2: (39)

As stated in [9, Corollary 2], l and then RS satisfy
(4b) and (4c) provided that{

R1 is even and convex;

:6 :sup = 1=2R′
1(∞):

(40)
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Example 11. In [9]; simulations for SS restoration
have been performed with the hyperbolic function
R1(�) =

√
�2
1 + �2; such that the amount of smooth-

ness must not exceed :sup = 1=2 for ensuring strict
convexity of RS.

In the following, R1 is even and meets the properties
of potentials belonging to D. Then, we 4rst show that
the Geman and Reynold’s construction is unable to
provide a HQ development of the penalization RS,
before exposing a solution based on a multivariate
extension of the Geman and Yang HQ regularization.

3.2. IRLS is inadequate for SS restoration

From the HQ viewpoint, inadequacy of IRLS can be
studied as follows. To obtain a HQ extension of RS,
the potential R1(d t

pq) involved in (38) should read as
the in4mum of an augmented HQ function. Unfortu-
nately, following the process exposed in Section 2.1,
we 4nd

R1(d t
pq) = inf

b∈R+

(b(d t
pq)

2 +  (b)); (41)

since R1 meets conditions (10). Clearly, the aug-
mented energy involved in (41) is quadratic in q, but
not in x. Actually, we have found no modi4ed ver-
sion of (41) to compute SS estimates with the IRLS
algorithm. On the contrary, proper adaptation of RSD
is possible as shown now.

3.3. Quadrivariate extension of the Geman and
Yang process

Following Section 2.2.3, function " has to be de-
4ned. As outlined by Proposition 9, strictly convex
functions " provide simple convergence criteria for
HQ BCD methods. Assuming that (40) holds, l de-
4ned by (38), is convex and hereafter, we set " = l
since the latter meets the conditions of Corollary 7.

Then, the present function f) is de4ned on C2,
which implies that the conjugacy operation at hand is
quadrivariate (M = 2). Hence, two complex auxiliary
variables C=[b+

p ; b
−
p+1]

t are coupled to u=[xp; xp+1]t.
This amounts to involving twice more real auxiliary
variables in KGY

S than in KGY
L .

The second step for deriving an HQ extension of
" is to guaranty strict convexity of f) (remember

that this key property allows ") to be expressed as in
(21)). According to Proposition 6, the restriction of
f) on R2

+ has to be strictly convex and coordinatewise
increasing. The latter result is shown in the following
proposition.

Proposition 12. Let us denote |up| = [�p; �p+1]t ;
mup = [qp; qp+1]t and introduce

’(|up|) =mup ; and

t)(mup) =
m†

up
mup

2
− )"(mup);

then; given (18) the restriction of f) on R2
+ reads

f)(up) = f)(|up|)

= t)(mup) +
|up|†|up| −m†

up
mup

2

= t) ◦ ’(|up|) − <2 (42)

and Fnally f) is strictly convex on C2 if

)¡




<
1 + 2:max�¿0 R′

1(�)
=

<
1 + 2: R′

1(∞)
;

1
4:max�¿0 R′′

1 (�)
=

1
4: R′′

1 (0)
:

(43)

Proof. See Appendix B.

Note 1. For the hyperbolic potential R1 of Exam-
ple 11; f) is strictly convex if )¡<=(1 + 2:) and
)¡�1=4:.

Since " is circular ("(up) = "(|up|)), so is
%) according to Proposition 4. Let us denote
|Cp| = [|b+

p |; |b−p+1|]t = [5+
p ; 5

−
p+1]

t, (21) and (24) are
given by

")(qp; qp+1)

= inf
(b+

p ;b−p+1)∈C2

(
|xp − b+

p |2 + |xp+1 − b−p+1|2
2

+%)(5+
p ; 5

−
p+1)

)
; (44)
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SGY
S (x; b) =

1
2)

(
‖x− b+‖2 + ‖x− b−‖2

+ 2
P−1∑
p=0

%)(5+
p ; 5

−
p+1)


 (45)

with b=[b−|b+] the P×2 complex matrix of auxiliary
variables, and b± = [b±0 ; b±1 ; : : : ; b±P−1]

t ∈CP (b−0 =
b+
P−1 because of the circularity constraint xP = x0).
In order to prove convergence of the RSD (or

BCD-GY) algorithm working on KGY
S =Q+ �′SGY

S ,
we resort to Proposition 9 with M = 2. Since " and
f) are strictly convex if (40) and (43) hold, respec-
tively, KGY

S is strictly convex and C1. Therefore,
we conclude that any BCD method minimizing KGY

S

converges to the global minimizer (x̂; b̂). The main
steps of the RSD algorithm devoted to SS restoration
are now highlighted.

3.4. The RSD algorithm for SS restoration

The criterion KGY
S is written in the form (30) for

the following set (�S; 6S; �S):

�S = W †
NPWNP + �′IP = W †

PP8SWPP=P;

6S(b) = W †
NPy+ �′(b+ + b−)=2;

�S(b)

=�′


‖b−‖2=2 + ‖b+‖2=2 +

P−1∑
p=0

%)(5+
p ; 5

−
p+1)


 ;

(46)

whereas KGR
L and KGY

L are separable functions of
auxiliary variables, b−p+1 and b+

p locally interact within
KGY

S . As a consequence, searching for the minimizer
b̂(x) of KGY

S requires to jointly update b−p+1 and b+
p in

the core algorithm, in order to preserve a fully parallel
scheme. From successively (18) and (42), and given
Proposition 3, b̂

−
p+1 and b̂

+
p read

b̂
−

(xp; xp+1) = xp+1 − )
@"

@xp+1

∣∣∣∣
(xp;xp+1)

= xp+1 − )’′
<(�p+1)

×(1 − 2:R′
1(qp − qp+1))=2xp+1;

b̂
+
(xp; xp+1) = xp − )

@"
@xp

∣∣∣∣
(xp;xp+1)

= xp − )’′
<(�p) (47)

×(1 + 2:R′
1(qp − qp+1))=2xp:

Matrix �S is circulant and its diagonal representation
8S in the Fourier basis identi4es with (33), where �′

is replaced by its double. Hence, �S is invertible, and
�−1

S is given by (34) where 8−1
S is deduced from 8S.

It follows that the minimizer x̂(b) of KGY
S is given by

x̂(b) =
1
P

W †
PP8

−1
S (PỹP + �′(b+ + b−)=2): (48)

After setting x(0), the iterative RSD algorithm works
as follows.
• BCD-GY S

1 : Minimization of KGY
S w.r.t. b:

b(i) = [b−(i) | b+(i)] with

b−(i) = [ : : : ; b̂
−

(x(i−1)
k[P] ; x(i−1)

(k+1)[P]); : : : ];

k = −1; : : : ; P − 2;

b+(i) = [ : : : ; b̂
+
(x(i−1)

k[P] ; x(i−1)
(k+1)[P]); : : : ]; k ∈NP;

where [ · ] stands for the modulo operator and
b̂
−

(·); b̂+
(·) are provided by (47).

• BCD-GY S
2 : x(i) is still computable in the Fourier

domain according to (48): x(i) = x̂(b(i−1)).

Note 2. For solving (48); only the sum b+ + b− is
needed. Consequently; the storage of b+ may be saved.

Given both HQ developments of separable and Gibbs–
Markov penalty functions, the purpose of the next part
is to show that extension to the MS case is straight-
forward.

4. HQ solution to MS restoration

4.1. The “mixed” model

To retrieve “mixed” spectral distributions, i.e., a
small set of frequency peaks embedded in a homo-
geneous background, Ciuciu et al. [9] introduces a
speci4c model relating data to unknowns, called the
“mixed” model. It supposes that the unknowns vector
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x= [xt
L; x

t
S]

t ∈C2P consists of a line portion xL and a
smooth portion xS. The resulting 4delity to data term
QM

3 reads

QM(x) = ‖y−WNP(xL + xS)‖2 = ‖y−WNPCx‖2;

where C =[IP | IP] is a P×2P circulant matrix. Then,
the global regularization function RM derived in [9]
penalizes xL as for LS estimation and xS as for SS
restoration:

RM(x) = �LRL(xL) + �SRS(xS); (�L; �S ¿ 0);
(49)

where RL is given by (6) and RS by (37). Choosing
�L��S nulli4es xS since RS is made up by a sepa-
rable penalty term, such as RL, and a Gibbs–Markov
one. Choosing �L � �S induces the reverse eNect. As
shown in [9], �L and �S vary on the same range.

As expected, RM is circular i.e., RM(x) = RM(�),
where � = [�t

L; �
t
S]

t ∈R2P
+ . In addition, RM ful4lls

(4b) and (4c) as a sum of two strictly convex and C1

penalty functions, RL and RS. The global criterion
JM, given by

JM(x) = QM(x) + RM(x);

also satis4es these properties, and its global minimizer
is de4ned by

x̂= [x̂t
L; x̂

t
S] = arg min

xL ;xS

JM(x):

Finally, the estimated power spectrum is taken as the
vector of the squared moduli of the components of
x̂L + x̂S. Hereafter, we examine the HQ extension
of RM.

4.2. HQ mixed criterion

As shown by (49), xL and xS do not interact within
the penalization RM, so that deriving its HQ extension
is a direct application of Sections 2.2.3 and 3.3. Pro-
vided that R0 ∈D and (40) holds, functions "L = R0

and "S = l are strictly convex. If in addition condi-
tions (27)–(43) are ful4lled by parameters )L and )S,

3 The subscript “M” stands for mixed.

then "L and "S reread as in4ma of HQ energies, given
by (28) and (44), respectively. As a consequence, ex-
pressions (29) and (45) of HQ criteria SGY

L and SGY
S

are available, so that SGY
M is de4ned by

SGY
M (x; b) =

1
)L

SGY
L (xL; bL) +

1
)S

SGY
S (xS; b±S ):

Let b=[bL | b+
S | b−S ] denote the P× 3 matrix of com-

plex auxiliary variables. The HQ objective function
KM reads

KGY
M (x; b)

=Q(x) + �′LS
GY
L (xL; bL) + �′SS

GY
S (xS; b±S );

(50)

where �′L = �L=)L and �′S = �S=)S. From results stated
on SGY

L and SGY
S in Sections 2.2.3 and 3.3, it is ob-

vious to conclude that SGY
M and then KGY

M are strictly
convex and C1. As a consequence, the proposed RSD
algorithm converges to the global minimizer (x̂; b̂).

4.3. The RSD algorithm for MS restoration

KGY
M rereads as (30) for the following set

(�M; 6M; �M):

�M =

(
�L W †

NPWNP

W †
NPWNP �S

)
;

6M(b) =

[
6L(bL)

6S(bS)

]
=

[
ỹP + �′LbL=2;

ỹP + �′S(b
+
S + b−S )=2

]
;

�M(b) = �′L‖bL‖2=2 + �′S=2
(‖b−S ‖2 + ‖b+

S ‖2)

+
P−1∑
p=0

(
�′L%)L(5L;p)+�′S%)S(5

+
S;p; 5

−
S;p+1)

)
:

(51)

Matrices �L and �S are given by (31) and (46), re-
spectively.

On the one hand, the variables b̂L(xL) and b̂
±
S (xS)

can be updated according to (32) and (47), respec-
tively, since they do not interact together.
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On the other hand, computing the minimizer x̂(b)
of KGY

M w.r.t. x is not as easier as in the previous
cases since �M is not circulant. Nonetheless, �M is
block symmetric and its diagonal blocks are circulant
matrices. As a consequence, �Mx̂ = 6M(b) can be
solved in a eKcient way, provided that �−1

M is well
de4ned. Following [15], �M is invertible if and only if
�S and

T = �L −W †
NPWNP�−1

S W †
NPWNP (52)

are both invertible. First, according to (34) and
(46), �L and �S are invertible and we get �−1

L =
W †

PP8
−1
L WPP and �−1

S = W †
PP8

−1
S WPP , respectively.

Second, given the circulant structure of �L, �−1
S and

W †
NP WNP = W †

PP 7WPP , T is circulant as a sum of
product of circulant matrices:

T =
1
P

W †
PPD

−1
1;1WPP; with

D−1
1;1 , 8L − 1

P
78−1

S 7:

Matrix T is of full rank equal to P, provided that
�′L �= 2((P+�′S)

−1−P). The latter condition is always
satis4ed since �′L ¿ 0 whereas (P + �′S)

−1 − P¡ 0.
Hence, T and �M are invertible. Then, a straight ap-
plication of the inversion lemma for block matrices
[15] provides BM , �−1

M , which is given by

B1;1 = T−1 =
1
P

W †
PPD1;1WPP;

B2;2 =
1
P

WPPD2;2WPP

with

D2;2 ,
(
8S − 1

P
78−1

L 7
)−1

;

B1;2 = B2;1 = − 1
P2 W †

PP8
−1
L 7D2;2WPP:

Finally, the structure of BM suggest that x̂=BM6M(b)
is still computable in the Fourier basis.

The next part starts with algorithmic adaptations de-
voted to accelerate convergence of BCD methods, and
continues with an experimental comparison between
IRLS, RSD and PCG.

5. Experimental comparisons

5.1. Over-relaxation of x and b

As previously seen, IRLS or RSD minimize HQ cri-
teria 4rstly w.r.t. b and secondly w.r.t. x. The second
step 4nds the solution of a linear system. Given the
special structure of the normal matrix, either Toeplitz
for LS estimation with IRLS, or circulant for LS and
SS restoration with RSD, the solution x̂(b) of this lin-
ear system is eKciently computed without resorting
to an iterative scheme such as Gauss–Seidel (GS) al-
gorithm. Normally, to accelerate the numerical con-
vergence of GS methods over-relaxation is proceeded.
Here, we propose to introduce the same process in the
following way. After computing x̂(b), over-relaxation
consists in de4ning the new estimate as

x(i) = ! x̂(b) + T!x(i−1);

where T! = 1 − ! and ! ∈ (1; 2). From our practical
experience, ! ≈ 1:9 is a relevant choice for reduc-
ing the iterations number required for convergence.
Practically, we have checked that eKciency of RSD
is improved if over-relaxation is performed, not only
on x, but also on b. By contrast, we have observed
that overrelaxation on b does not speed up the IRLS
algorithm.

In case of LS estimation, over-relaxation on b
consists in appending to the updating equation (36)
the following calculation in the core RSD algorithm,
summarized in Appendix C:

b(i)
p = !(i)

p b̂(x(i−1)
p ) + T!(i)

p b(i−1)
p ; (53)

where b̂(·) is de4ned by (32).
For the SS counterpart, the above construction is

generalized to


b−(i)
p = !(i)

p b̂
−

(x(i−1)
p−1 ; x(i−1)

p ) + T!(i)
p b−(i−1)

p ;

b+(i)
p = !(i)

p b̂
+
(x(i−1)

p ; x(i−1)
p+1 ) + T!(i)

p b+(i−1)
p ;

(54)

where b̂
−

(·) and b̂
+
(·) are given by (47). The original

part of MATLAB code for computing SS is also avail-
able for consultation in Appendix C. It is obtained by
replacing Eqs. (32)–(35) by (47)–(48).

Implementation of over-relaxation in the MS case
mixes (53) and (54).
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On the other hand, devising a theoretically con-
verging over-relaxed scheme is not obvious in the
nonquadratic case. In particular, !(i)

p ∈ (1; 2) does not
ensure that iterate (53)–(54) decrease KL and KS,
respectively. At stage i, it is possible to 4nd a bound
!̂(i)

p for each !(i)
p , p∈NP such that KL and KS are

decreased. This can be done analytically if %) is not
too complicated (as when the Huber potential is cho-
sen for R0 [16] for LS recovering), or numerically
otherwise. In practice, the resulting schemes provide
signi4cantly less iterations to converge, compared to
the basic scheme (!(i)

p = 1). Unfortunately, the gain
in CPU time is only marginal, because computing !̂(i)

p
for each pair (p; i) is too demanding. Finally, main-
taining all !(i)

p at the same value empirically chosen
in (1,2) reveals much more eKcient. From a practical
ground, an even more eKcient scheme is as follows:

∀p∈NP; !(i)
p = !0 + !1(1 − log(2)=log(1 + i)):

At the beginning, the relaxation parameter !(i)
p is close

to !0, and it progressively converges to !1. On the
one hand, we recommend to choose !0 ≈ 1 in order to
avoid slow convergence. Indeed, if the new estimate,
for instance b(i)

p , is too far from b̂(·), the global HQ
criterion KL may increase rather than decrease. On
the other hand, !1 can be chosen close to 2.

The numerical descents reported in the following
for IRLS and RSD correspond to over-relaxed versions
since they are the most eKcient.

5.2. Simulations results

We present the numerical performances of our
RSD algorithms by processing the well-known [17]
example. These 64-points data sequence constitute an
important benchmark for evaluating most spectral
estimators. The spectral estimates, computed in [9]
with P = 512 are not reported here.

As regards numerical implementation of PCG, the
following conjunction has been selected as stopping
criterion:

|J(x(i)) −J(x(i−1))|=J(xi)¡)1;

‖x(i) − x(i−1)‖∗=‖x(i)‖∗ ¡)2;

‖∇x(i)‖∗ ¡)3;

where x(i) denotes the solution at the ith iteration of
the minimization stage, and ∗ is 1 or 2. Following [23],
we have rather chosen the l1 norm, and the thresholds
have been set to ()1; )2; )3) = (10−7; 10−6; 10−6).

The same stopping criteria have been adopted for
RSD, except that the third condition has not been
tested. In all cases, x(0) has been de4ned by the DFT
of the zero-padded data sequence ỹP .

5.3. Convergence speed of RSD, IRLS and PCG
for LS restoration

Following Ciuciu et al. [9], the hyperbolic potential

R0(�)=
√

�2
0 + �2 has been used to de4ne the circular

penalty function RL (see (6)). From practical expe-
rience, setting ) to the upper bound of convexity of
f), i.e., ) = �0 (see Example 10), allows to speed up
numerical convergence of RSD.

Convergence of IRLS, RSD and PCG is illustrated
through two diNerent situations. The 4rst one corre-
sponds to (�; �0) = (0:06; 0:2) and provides an inter-
mediate spectrum estimate, between the usual perido-
gram shown in Fig. 1(a) and the LS estimate depicted
in Fig. 1(b). In such a case, the potential R0 has two
clearly separated areas, a quadratic one between zero
and �0 and a linear one beyond �0. Fig. 2(a) illustrates
the eKciency of RSD since it takes about 4 s to com-
pute x̂ on a Pentium III 450 MHz. The IRLS and PCG
algorithms provide the solution after 7 s and so RSD
is slightly faster on this example. Other simulations,
not reported here, have con4rmed this standpoint pro-
vided that �0 is not too small.

The second situation corresponds to the LS estimate
depicted in Fig. 1(b). In this case, hyperparameters
(�; �0) are 4xed to (0:06; 0:002), so that R0 is close
to | · |, which is nondiNerentiable at zero. Clearly,
as shown in Fig. 2(b), a quasi-nondiNerentiability
does not prevent IRLS to converge very quickly,
in 11 s about. Such a result is not surprising given
the well-known ability of IRLS for minimization of
mixed L1 (or Lp) and L2 norms [20,25], and can also
be analyzed through properties of the HQ criteria:
even for R0 = | · | the HQ objective function KGR

(see (10)) is diNerentiable. Then, ARTUR/IRLS is
not penalized for minimizing KGR.

By contrast, for minimizing the same energy, RSD
and PCG require more than 200 s. On the one hand, it
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Fig. 1. Spectra reconstructed with separable regularization. (a): zero-padded periodogram, (b) line spectra reconstructed with the hyperbolic
potential, (�; �0) = (0:06; 0:002).

Fig. 2. Performance of the IRLS, RSD and PCG algorithms for computing “separable” spectra. In (a), � = 0:2 whereas in (b) � = 0:002.
Solid lines are for RSD, dash–dotted lines encode minimization with IRLS and dashed lines indicate that minimization is performed with
PCG. Circles (◦), squares ( ) and stars (∗) depict the stopping points of IRLS, RSD and PCG.

is well-known that gradient-based algorithms require
that J is C1 to be convergent. On the other hand,
as stated in Section 2, handling HQ criteria KGY re-
quires that R is C1. In practice, the latter condition
is almost unsatis4ed, so that RSD and PCG converge
to x̂ very slowly. To speed up RSD and PCG, we
have eventually resorted to the so-called “regulariza-
tion method” [2,14], also referenced to as GND (for

graduated nondiDerentiability) in [9]. The basic prin-
ciple of GND is to successively minimize a discrete
sequence of convex diNerentiable approximations that
converge toward the original nonsmooth criterion (see
[14, pp. 21–22]). In the present context, the origi-
nal criterion is only nearly nonsmooth, and GND is
a twofold iterative process. First, it consists in choos-
ing an initial value of �0

0 not too small (e.g., �0
0 =0:2).
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Fig. 3. Performance of RSD and PCG algorithms for computing SS estimate on (a) and MS estimate on (b). The vertical axis represents
the criterion values. Solid and dash–dotted lines are for minimization with RSD and PCG, respectively. The stopping points are depicted
by a square ( ) for RSD and by a star (∗) for PCG.

Second, J�0
0
is minimized and the computed solution

x̂�0
0

serves as initialization for the next minimization
of a closer approximation J�1

0=0:02. This scheme is re-
peated until J�0=0:002 is attained.

Simulations on GND are not reported since they do
not allow to supplant IRLS. However, they show that
coupled schemes GND-RSD and GND-PCG converge
faster (60 s) than single runs of RSD and PCG (200 s).

5.4. Convergence speed of RSD and PCG for SS
and MS restoration

The hyperbolic potential R1(�)=
√

�2
1 + �2 has also

been chosen to de4ne the smooth part of the penaliza-
tion RS. Once again, setting ) to the upper bound of
convexity of f), i.e., ) = min(<=(1 + 2:); �1=4:) (see
Note 1), reveals much more eKcient for accelerating
numerical convergence.

Fig. 3 illustrates the numerical descent of RSD and
PCG for minimizing criteria JS =Q+ �RS and JM,
versus the CPU time. The optimized criterion JS in
Fig. 3(a) corresponds to the spectrum illustrated by
Fig. 4(a) for which the hyperparameters have been
set to (�; �1; :; <)=(0:05; 0:001; :sup =0:5; 0:9), where
:sup indicates the upper bound of convexity of RS

(see (40)). Keeping unchanged (�0; �1; <; :) and set-
ting (�L; �S)= (0:005; 0:004) leads to the mixed crite-

rion JM plotted in Fig. 3(b), whose global minimizer
yields the mixed spectrum shown in Fig. 5(a). From a
computational point of view, it appears in both cases
that RSD is competitive with the PCG algorithm, and
thus more eKcient than a standard steepest descent al-
gorithm where the descent direction is only de4ned by
the gradient. This is not surprising since, as pointed
out in [24], RSD (as well as IRLS) can be formulated
as a (constant step-size) quasi-Newton descent algo-
rithm.

Let us remark in Fig. 3 that the computation of
the MS estimate is more time demanding (70 s) than
that of the SS estimate (20 s), since there are more
unknown spectral amplitudes and also more auxiliary
variables to update for MS restoration. Furthermore,
each normal equation requires more multiplications
and additions, as shown in Section 4.3.

Finally, the better SS and MS estimates, depicted in
Figs. 4(b) and 5(b) have been obtained for :=10:sup

and the other parameters unchanged. For such a value
of :, convexity ofJS andJM is not ensured. Then, the
computed spectra does not necessarily correspond to a
global minimizer. Nonetheless, in terms of numerical
cost, the same conclusion as before can be drawn i.e.,
RSD is an appealing alternative to the well-known
PCG algorithm, even if nonconvexity implies slower
numerical convergence.
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Fig. 4. Smooth spectra reconstructed with a circular Gibbs–Markov penalty function, (�; �1)=(0:05; 0:001; 0:9): (a) convex case :=:sup=0:5,
(b) nonconvex case : = 5.

Fig. 5. Mixed spectra reconstructed. (a): convex case : = 0:5; (b) nonconvex extension : = 5.

6. Conclusion

In the context of LS recovering, we showed that
IRLS is in turn a BCD method minimizing a HQ crite-
ria, derived from Geman and Reynold’s construction.
Then, we proved that IRLS is the method of choice,
i.e., it converges faster than gradient-based methods.
As a BCD method, simpler convergence results of
IRLS than existing ones [5] have been stated. Unfortu-

nately, we outlined that IRLS cannot be implemented
in SS and MS cases.

Since IRLS failed in such situations, we developed
another algorithm to 4ll this gap. The proposed nu-
merical tool is actually an original RSD method [25],
even if it seems to be closer to LEGEND [7], since
it is a BCD method minimizing a HQ criteria de-
rived from Geman and Yang’s construction. Whatever
the form of the penalty function, provided that it is
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convex, convergence of RSD was proved. Then, the
performances of RSD were compared to IRLS and
PCG. In case of separable regularization, two diNer-
ent conclusions were drawn regarding diNerentiability
of the penalization function. If the latter was smooth
enough, RSD behaves as IRLS, whereas in the op-
posite case, RSD behaves as PCG. For SS and MS
estimation, we demonstrated that RSD is competitive
with PCG. We also highlighted that the computational
burden is heavier for MS restoration since there are
more variables than in case of SS estimation.

The last concern of our study was devoted to pro-
pose over-relaxed schemes of BCD methods, since
over-relaxation is normally able to accelerate numer-
ical convergence. Such a procedure was successfully
implemented on IRLS and RSD. From our practical
experience, it gave the expected eNect but IRLS was
not sensible to over-relaxation of auxiliary variables,
contrary to RSD.

Appendix A. Proof of Proposition 4

Let u∈CM with ui = |ui | ej@i and (|ui|; @i)∈
R+ × [0; 2	), for i∈NM . Let us also de4ne the vector
of phases � = [@0; @1; : : : ; @M−1]t ∈ [0; 2	)M . Given
that " is circular, we have ∀ C ∈CM :

%)(C) = sup
(|u|;�)∈RM

+ ×[0;2	)M

×
(
")(|u|) −

M−1∑
i=0

‖ui| ej@i − vi|2
2

)

= sup
|u|∈RM

+

(
")(|u|) −

M−1∑
i=0

inf
@i∈[0;2	)

‖ ui|ej@i − vi|2
2

)

= sup
|u|∈RM

+

(
")(|u|) −

M−1∑
i=0

(| ui| − |vi|)2

2

)

=%)(|C|); (A.1)

where the in4ma in (A.1) are reached for @i =arg(vi).

Appendix B. Proof of Proposition 12

First, apply a basic theorem regarding the compo-
sition of convex functions [9, Theorem 1] in order to
state strict convexity of f)(mup): since ’ is de4ned

from ’<, each of its components is strictly convex. On
the other hand, following Corollary 7, t) is a strictly
convex and coordinatewise increasing function, if con-
ditions (43) are ful4lled. It follows that t) ◦’ and then
f)(|up|) are strictly convex on R2

+.
Second, since ’< is increasing onR2

+, so is f)(|up|).
Finally, from Proposition 6 f) is strictly convex on
C2 when conditions (43) hold.

Appendix C. Optimization algorithm under its
Matlab code form

The following MATLAB-code summarizes both algo-
rithms for computing line and smooth spectra. The re-
spective hyperparameters, (�; �0) and (�; �1; :; <), are
supposed to be set to the values given in Sections 5.3
and 5.4. The latter parameter ) has been chosen close
to the value given by (27) (see also Example 10) and
by (43) (see also Note 1) according to the addressed
case.

0. DeFne stopping rules
NBITER= 5e2; alpha1= 1e-7; alpha2= 1e-6;
% Thresholds on J and x

1. Initialization: e.g., zero padded periodogram:
Ypad= [y;zeros(P-N,1)];xO= fft(Ypad)/N;
ombl= l;omb2= 1.95;omx= 1.9;

2. Choose what kind of spectrum you wish to
estimate
opt= ’ls’ ; % Line Spectra
%opt= ’ss’; % Smooth Spectra

3. Save in memory:
coef1= 2*N/P;ybis= coef1*y;x= x0;
if strcmp (opt, ’ ls ’ )
Hpar= [lambda,tau0];alpha= .99*tau0;
lb= lambda/alpha;coef2= lb;

elseif strcmp (opt , ’ss’)
Hpar= [lambda,tau1,mu,epsilon];
alpha= .99*min(epsilon/(1+2*mu), : : :
tau1/(4*mu));

lb= lambda/alpha;coef2= 2*lb;
else
error (’Unrecognized string opt!’);

end
coef3= sqrt(N);i= 0;DF= 1;Dx= 1;

4. Compute J with subroutine fun.
JO= feval (’fun’,y,x0,Hpar,opt);
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5. Core algorithm
while (i< NBITER)& ((DF> alpha1) |
(Dx> alpha2))
a. Parallelized update of b(i) or of

(b(i)+ + b(i)−):
g= feval (’grad’,x,Hpar,opt);
b1= coef2/lb*x-alpha*g;
%over-relaxation of b
omb= omb1+omb2*(1-log(2)/log(i+1));
b= omb*b1+(1-omb)*b; %1< = omb< = 2
b. Compute 6(b(i)) :
xi= 1b*b;Fxi= ifft(xi,P)*coef3;
Fxi(1:N)= Fxi(1:N)+ybis;
DMFxi= [coef1*Fxi(1:N),coef2*Fxi : : :
(N+1:P)];

c. Global update of x(i):
x1= fft(DMFxi,P)/coef3;
%Over relaxation of x(i) :
x= omx*x1+(1-omx)*x; %1< = omx< = 2
d. Compute stopping criteria:
J1= feval(’fun’,y,x,Hpar,opt);
DF= (J0-J1)/J0;
Dx= sum(abs(x-x0))/sum(abs(x));
e. Updates:
J0= J1;x0= x;i= i+1;

end

Subroutine fun:computing the global criterion J
function J= fun(y,x,Hpar,opt)
if nargin ˜= 4

error(’Bad number of arguments !’);
end
N= length(y);
%Jfd:Fidelity to data term
xt= ifft(x)*sqrt(N); % xt:time series
xt0= xt(l:N); % W {NP} x
Jfd= sum(abs(y-xtO).ˆ2);
%Jreg:Regularization term
z= abs(x);
if strcmp(opt,’ls’)

Jreg= Hpar(1)*sum(sqrt(z.ˆ2+ : : :
Hpar(2)ˆ2)-Hpar(2));

elseif strcmp(opt,’ss’)
q= sqrt(z.ˆ2+Hpar(4)ˆ2);
%symdif.m:[x1;...;xn]--> [x1-x2;
...;xn-1-xn;xn-x1]

Jreg= sqrt(symdif(q).ˆ2+Hpar(2)ˆ2)-
Hpar(2));

Jreg= Hpar(1)*sum(q+Hpar(3)*Jreg);
end
J= Jfd+Jreg;

Subroutine grad:computing the gradient of the
penalization function R
function g= grad(x,Hpar,opt)
if nargin˜ = 3

error(’Bad number of arguments !’);
end
z= abs(x);
if strcmp(opt,’Is’)
g= x./sqrt(z.ˆ2+Hpar(2)ˆ2);
elseif strcmp(opt,’ss’)

q= sqrt(z.ˆ2+Hpar(4)ˆ2);
grs= x./q;% gradient of the
separable term in (38)

syz= symdif(z);
sign1= sign(syz);
grm1= sign1.*abs(syz);
grm1= grm1./sqrt(abs(syz).ˆ2
+Hpar(2)ˆ2);

%symdif2.m:[x1;...;xn]-->
[xn-x1;x1-x2;...;xn-1-xn]

syz2= symdif2(z);
sign2= sign(syz2);
grm2= sign2.*abs(syz2);
grm2= grm2./sqrt(abs(syz2).ˆ 2 : : :
+Hpar(2)ˆ2);

g= grs.*(1+Hpar(3).*(grml-grm2));
end
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