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Abstract
The localization and the sizing of 3D flaws within a homogeneous metallic
medium is a major task for non-destructive evaluation (NDE). This paper
addresses the problem of the reconstruction of such flaws using an efficient
binary algorithm. Basically, the method rests on the fact that a simple binary
constraint suffices for an accurate and robust reconstruction in the context
of NDE. A heuristic minimization, computationally attractive, is designed in
order to provide fast reconstructions. The proposed algorithm is compared
with standard binary (the iterated conditional mode algorithm) and non-binary
(penalized approach with convex potential Gibbs random fields) reconstruction
techniques.

1. Introduction

Reconstruction of binary volumes from noisy projections is an attractive tool for non-
destructive evaluation (NDE) of metal structures [2, 3]. It amounts to the simultaneous
detection and sizing of small defects in a homogeneous material. However, such a tomographic
reconstruction problem is challenging when only limited-angle projections are available, since
it is then very hard to recover the geometry of the defects along the average direction of the
rays. As far as in situ NDE is considered, this unfavourable observation context is often
a direct consequence of the operational constraints imposed on the NDE setup. In [1], for
instance, the radiographic inspection of in-service pipes in the nuclear industry is considered
with a total angular excursion of 30◦, see figure 1.

In limited-angle tomography, faithful reconstructions of the 3D attenuation map cannot
be expected without adequate prior constraints on the solution [4–6]. One possible approach
is to adopt a parametric model for the shape of the defect (for instance, that it is spherical),
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Figure 1. Left: 3D representation of the instrumental setup. Right: schematic representation
of the measurement context for the synthetic problem considered in this paper. Note that all the
dimensions are drawn from a real NDE setup in the nuclear industry, cf [1, figure 1].

and to estimate the few corresponding parameters, say, in the least-square sense [7]. However,
this approach relies on strong assumptions, which are not natural in the NDE context, where
the number and/or the shape of the hypothetical defects are not known. In [8], a genetic-
algorithm strategy is proposed to handle an unknown number of defects, but the constraint
of a parametrized shape remains. A potentially more flexible extension is obtained using a
description of objects in terms of contours. Again, parametric contour-based methods [9, 10]
hardly handle the case of an unknown number of contours, at completely unknown positions.
Fully non-parametric modelling of the contour via a level-set formulation [11] yields a more
suited approach. This leads to gradient-based iterations that aim to compute a local minimizer
of the 3D partitioning problem [12].

A large part of the literature rather assumes a voxel decomposition for the attenuation map.
Then, the tomographic reconstruction x̂ is usually defined as the minimizer of a penalized
least-square criterion, such as{

min
x

‖y − Hx‖2 + ψ(x; θ) (1a)

subject to x ∈ X ⊆ R
N, (1b)

where θ is a vector of hyperparameters. Within this framework, the solution x̂ is clearly
a trade-off: whereas the first term favours the solutions that fit the data y, the second one
discards the solutions that are not compatible with prior information.

A usual choice is to consider ψ as the energy of a Markov random field with positive
interactions, in order to favour clusters of voxels in the reconstruction [13]. More specifically,
the well-known Ising model is of special interest here, since the spatial information to encode
is binary: each voxel either belongs to an inclusion (of negligible attenuation), or to a sound
region of the inspected object (of known attenuation). Only a few works have been based on
the Ising model to tackle NDE issues. Among the notable exceptions let us mention [3], where
it clearly appears that a major numerical obstacle must then be faced, of combinatorial nature,
and that no simple, satisfying solution is available. Several authors have rather chosen to relax
the binary constraint and to cope with NDE in the framework of continuous-valued Markovian
reconstruction [2, 1]. The resulting problem is easier to deal with from the numerical
viewpoint, since gradient-based optimization algorithms are then available. Unfortunately, the
regularizing character of the binary constraint is lost, so that the reconstructed defects appear
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stretched along some directions [1]. Let us remark here that the resort to Markov models
strengthens such a tendency to produce oversized defects. This motivates our choice of an
independent, identically distributed (iid) binary model for the voxels: the binary constraint
is then the only regularizing ingredient, while the iid assumption corresponds to the simplest
possible spatial model. Although the resulting optimization problem is still intractable under
an exact form, it lends itself to a simple and satisfactory solution. Its main features are as
follows.

(i) Firstly, a region of interest (ROI) is determined through straightforward computations,
such that the maximum posterior mode of voxels outside the ROI is zero, i.e., Pr(Xn =
0 | y) > Pr(Xn = 1 | y). This results in a dramatic reduction in the dimensionality of
the problem.

(ii) Secondly, we rely on a modified version of the single most likely replacement algorithm
(SMLR) introduced in [14] to explore efficiently the binary configurations in the ROI.
Whereas the original algorithm considers a ‘single site’ update in the volume, the block
most likely replacement (BMLR) proposed here considers ‘blockwise’ updates within
cubes of 2 × 2 × 2 voxels. For limited-angle reconstructions, it is empirically observed
that such a strategy allows us to escape from local minima where the SMLR would be
trapped.

Based on a realistic synthetic NDE problem, our numerical procedure is shown to be very
efficient, both in terms of computational load and accuracy of a reconstructed attenuation map.
Moreover, the proposed method does not depend on any hyperparameter in contrast with many
high-resolution tomographic reconstruction methods.

The paper is organized as follows. In section 2, the modelling of the tomographic
measurement in NDE is introduced, and several Bayesian estimators are envisaged to solve
the reconstruction problem. This section ends with some remarks concerning the computation
of these estimators that motivate the design of a computationally efficient heuristic. Section 3
deals with the construction of the ROI that allows a reduction of the voxels involved in the
reconstruction process. In section 4, the problem of binary object reconstruction within a ROI
is stated. Standard binary reconstruction algorithms are introduced and the BMLR is derived.
In section 5, the performances of the BMLR are compared to the standard iterated conditional
mode algorithm (ICM) and to a penalized approach with convex potential Gibbs random fields.
Finally, a discussion of this work and some conclusions are presented in section 6.

2. Binary constraint for NDE

Let S = {1, . . . , N} be an arbitrary enumeration of the N voxels that constitute the
unknown three-dimensional attenuation map x. Under usual assumptions, the tomographic
measurement along the mth ray follows the Beer–Lambert relation [15, section 4.1.1]: for all
m = 1, . . . ,M ,

ym
def= −log

τm

τs

= ht
m�x + em, (2)

where hm� ∈ R
N
+ stands for the projection process along the mth ray (see for instance

[15, section 7.1]), τs and τm are the photon emission rate of the source and the counting
rate of detector m, respectively. em is a noise term that accounts for the statistical fluctuations

in the measurement. Stacking all the measurements into a vector y
def= (ym) yields the following

observation model:

y = Hx + e, (3)

where H is a matrix of size M × N , so that ht
m� is the mth line of H .
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In this paper, it will be assumed that both the geometry and composition of the inspected
object are known, up to the possible presence of defects, of course. In more precise terms,
we restrict ourselves to the case where the object would be perfectly known if it were free
of any defect. Let r ∈ R

N
+ denote the corresponding defect-free attenuation map, and let us

introduce a binary map x̃ ∈ {0, 1}N to encode the geometry of the defects: voxels that belong
to a defect are assigned the value ‘1’, whereas the others are assigned the value ‘0’. Given that
the defects are assumed to be composed of air, of negligible attenuation, the actual attenuation
map x is made of voxels such that

xm =
{

0 if x̃m = 1,

rm otherwise,

for all m = 1, . . . ,M . In compact notation, we have x = r − diag(r)x̃, so that a new linear
observation model can be deduced from (3):

ỹ = H̃x̃ + ẽ,

where ỹ = Hr − y, H̃ = Hdiag(r) and ẽ = −e. Thus, the reconstruction problem can be
reformulated as a linear inverse problem with binary unknowns. In the rest of the paper, the
tilde signs will be omitted for the sake of notational simplicity, so that the attenuation map
itself will be considered as binary.

In the following, e is assumed to be an outcome of a normal random vector E with zero
mean and iid components

E ∼ N (0, σ 2I), (4)

where I is the identity matrix and σ > 0 is the standard deviation of the noise. Provided that
the counting rates at each detector are high and of the same magnitude, the Gaussian additive
observation model is of sufficient accuracy. These assumptions are realistic in NDE and the
Gaussian model will be adopted in this paper. For a low signal-to-noise ratio (SNR), however,
a Poisson model is more appropriate to describe the random fluctuations in the measurements,
see [16] for details.

Under assumptions (3) and (4), the likelihood of the observation vector reads

fY |X(y | x) ∝ exp

{
− 1

2σ 2
‖y − Hx‖2

}
, (5)

where ‘∝’ stands for ‘proportional to’. Considering the Bayesian framework, a simple iid
model for the prior distribution is introduced:

Pr(X = x) =
N∏

n=1

Pr(Xn = xn) = pk
1p

N−k
0 ,

where ∀ n ∈ S, Pr(Xn = 1) = p1, Pr(Xn = 0) = p0 = 1 − p1 and k is the number of voxels
that are equal to ‘1’. Then the posterior probability reads

Pr(X = x | y) = fY |X(y | x)Pr(X = x)∑
x′∈S

fY |X(y | x′)Pr(X = x′)
, (6)

where S = {0, 1}N is the set of binary configurations. The maximum a posteriori (MAP)
solution

X̂
MAP def= arg max

x∈S

Pr(X = x | y) (7)

amounts to minimizing the following quadratic criterion:

J (x)
def= ‖y − Hx‖2 + 2σ 2µ1tx (8)

under the binary constraint x ∈ S, where 1 def= (1, . . . , 1)t ∈ R
N and µ

def= log(p0/p1).
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Beside the MAP solution, the Bayesian setting allows us to define alternate estimators.
In particular, the posterior mean of voxel n reads

E[Xn | Y ] =
∑

xn∈{0,1}
xnPr(Xn = xn | y) = Pn,

where

Pn
def= Pr(Xn = 1 | y).

Following [17], let us also define the marginal posterior mode (MPM) estimator according to

X̂MPM
n

def= arg max
xn∈{0,1}

Pr(Xn = xn | y), (9)

which is easy to deduce from Pn:

X̂MPM
n =

{
1 if Pn > 1/2
0 otherwise.

(10)

Unfortunately, none of the latter solutions are easily computable. In particular, (7) is a binary
quadratic programming problem. In the terms and notation of statistical physics, it amounts
to minimizing the following energy:

H(s) = −
∑

(m,n)∈E
Jmnsmsn +

∑
n∈S

Fnsn, (11)

where sn = 2xn − 1 ∈ {−1, +1} are Ising spins,

Jmn = −ht
�mh�n, E = {(m, n) ∈ S2,m < n,ht

�mh�n 	= 0}
is the set of interacting spins, and

Fn = −ht
�n

(
2y −

∑
m∈S

h�m

)
+ 2σ 2µ

plays the role of the nth component of an exterior magnetic field. In some particular cases, like
the one encountered in binary image denoising [18], solving such a problem can be done in an
acceptable number of operations, that is a polynomial function of N. In contrast, our case falls
within the class of NP-hard problems, for which it is very unlikely that a polynomial algorithm
exists [19]. The first reason for NP-hardness is the fact that Jmn takes negative values (i.e., the
interactions are antiferromagnetic) in a nonzero magnetic field. Moreover, the non-planarity
of the neighbourhood graph E is another source of NP-hardness [20].

On the other hand, computing X̂MPM
n requires the computation of partition functions

involving summations over S or large subsets of S. More specifically, the evaluation of the

key quantity Pn can be envisaged as follows. Let S
i
n

def= {x ∈ S : xn = i}, so that

Pn =
∑
x∈S

1
n

Pr(X = x | y) =
∑

x∈S
1
n

Pr(X = x|y)∑
x∈S

Pr(X = x|y)
= 1

1 + Rn(y)
,

where

Rn(y)
def=

∑
x∈S

0
n

Pr(X = x | y)∑
x∈S

1
n

Pr(X = x | y)
. (12)

Again, the computation of the sums entering the expression of R forms NP-hard
problems [19, 20].
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Despite the NP-hardness of the problem, some contributors resort to Markov chain–
Monte Carlo (MCMC) techniques to solve such combinatory problems. In [17], a Gibbs
sampler is used to compute the posterior mean estimator for binary denoising problems. In
[21], the authors resort to simulated annealing in order to minimize a least-square criterion
under binary constraint. By nature, such MCMC techniques converge in the asymptotic
limit. When strong spatial correlations exist in the posterior probability, efficient sampling is
difficult and the resulting algorithms may ask for unrealistic computation time before a useful
estimate is available. In practice, we found that this problem is a major obstacle in designing
MCMC-based techniques for binary reconstruction in limited-angle tomography. Hence, our
main concern in this paper is to develop an efficient heuristic that computes a local maximizer
of Pr(X = x | y) in a finite number of iterations. For this purpose, our strategy is twofold.
Firstly, we aim at reducing the dimensionality of the problem by an appropriate selection
of the voxels that should be discarded in the reconstruction process, see section 3. Then, a
local maximizer of Pr(X = x | y) is computed via a deterministic iterative procedure, see
section 4.

3. Region-of-interest (ROI) selection

As far as large 3D problems are considered, a first step towards a computationally attractive
algorithm is to reduce the number of voxels involved in the reconstruction. As shown in the
following section, it can be established that X̂MPM

n = 0 for a large amount of voxels, from
costless preprocessing operations involving the data.

3.1. MPM based ROI in the Gaussian data case

Although Pn is not straightforward to calculate, it admits an easily computable upper bound
P n that will be fruitful to manipulate.

Let 0 denote the null vector of length N and en the nth canonical vector of R
N . Indeed,

the following proposition holds in the case of centred white Gaussian observation noise.

Proposition 1. The posterior probability Pn admits the following upper bound:

Pn � P n
def= 1

1 + Rn(y)
(13)

where

Rn(y)
def= Pr(X = 0 | y)

Pr(X = en | y)
(14)

= exp(−�n), (15)

with

�n
def= 1

2σ 2

(
2ht

�ny − ‖h�n‖2
) − µ. (16)

Proof. See appendix A. �

Interestingly, it is clear from (10) that

P n � 1/2 
⇒ X̂MPM
n = 0. (17)
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The computation of P n plays a pivotal role in our method since it allows a significant reduction
of the effective dimension of the reconstruction problem. Let us introduce the set I of voxels
for which implication (17) is inactive, i.e.,

I = {n ∈ S : P n > 1/2}.
The latter set defines a ROI in the sense that the reconstruction algorithm will be restricted
to I, while the other voxels will be assumed to match their MPM estimation, i.e.,
X̂MPM

n = 0,∀ n ∈ S\I.
Let us remark that

P n � 1/2 ⇐⇒ �n � 0

⇐⇒ ht
�ny � 1

2‖h�n‖2 + σ 2µ, (18)

so that a threshold test on the backprojection H ty of the data allows us to determine I, where
the threshold value is generally not spatially invariant. Moreover, the test does not depend on
the noise variance provided that the binary states are considered equally probable, i.e., µ = 0.

A direct extension of proposition 1 can be established in the general Gaussian case of
a noise with mean m and covariance R. A less trivial but richer extension is provided in
subsection 3.3 to encompass some cases of log-concave likelihoods.

Finally, let us note that proposition 1 admits a formal counterpart, which yields a sufficient
condition to ensure X̂MPM

n = 1. The latter condition is hardly met in our situation, because
too few voxels are equal to 1, but it would be interesting to implement condition (18) in
more balanced situations. The proof is omitted, since it is almost a paraphrase of that of
proposition 1.

Proposition 2. The posterior probability Pn admits the following lower bound:

Pn � P n

def= 1

1 + Rn(y)
,

where

Rn(y)
def= Pr(X = 1 − en | y)

Pr(X = 1 | y)
= exp(−�n),

with

�n

def= 1

2σ 2

(
2ht

�n (y − H1) + ‖h�n‖2
)

+ µ.

3.2. Synthetic example

For illustrative purposes, let us compute the threshold value in a simple, yet realistic context.
The inspected object is made of a homogeneous material, with two homogeneous defects of
spherical shape. Its discrete representation contains 64×64×64 voxels, while each of the two
defects spreads over 32 voxels. Some schematic illustrations of the measurement context are
provided in figure 1. The data y consist in seven 2D projections (each one being a 128 × 128
image) that were corrupted by zero mean iid Gaussian perturbations with standard deviation
σ = 0.01, which is close to the maximum amplitude of the projection of a single voxel. Both
the ROI I and the backprojection were deduced from this data set. The former was computed
with the additional assumption that p1 = p0 (i.e., µ = 0).

Figures 2(left) and (right) depict the ‘central’ 2D cross-section of the backprojection H ty
and of the upper bound P n, respectively.
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Figure 2. Central 2D section of the backprojection (left) and of the map of the upper bound
P n (right), respectively, obtained from noisy projections (σ = 0.01), for a pair of superimposed
defects (L = 26 mm).

In this case, 17.3% of the 64 × 64 voxels of the central cross-section happen to belong
to the ROI, and only 1.5% of the 64 × 64 × 64 voxels of the object belong to it, while the
ROI incorporates all 64 voxels of the defects. This example shows that ROI selection can
lead to an impressive reduction of the problem dimension. However, it is worth stressing that
such a preliminary operation does not raise the main ambiguity concerning the position of the
defects, since the voxels that belong to the ROI are organized along the vertical axis, which
is the average direction of the rays. It is only aimed at lowering the dimensionality of the
reconstruction problem, not at solving it. However, as far as combinatory issues are involved,
the size of the vector of unknowns is known as a crucial parameter.

From (18), it should be clear that the achievable reduction depends on the number of
flaws in the volume, the noise in the data, and the number and the angular excursion of the
projections. Therefore, it is not easy to assess quantitative results concerning the size of the
ROI. However, our experience indicates that increasing the number of projections and/or their
angular excursion decreases the size of the ROI. Likewise, a smaller SNR yields a larger ROI.

3.3. Generalization to log-concave likelihoods

Proposition 1 can actually be stated in more general terms, provided that the observations y
are statistically independent given the object x, and that the likelihood of ym is a log-concave
function4 of ht

m�x.

Proposition 3. Let the likelihood function take the following form:

fY |X(y | x) =
M∏

m=1

φm

(
ht

m�x
)
, (19)

where φm are log-concave functions. Then (13)–(14) still hold.

Proof. See appendix B. �
4 By definition, φ is a log-concave function if log φ is a concave function.
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The main non-Gaussian model we have in mind is the Poisson data model, which is the
acknowledged model to describe that the measurements are related to a counting process. In
the present case of transmission tomography, the corresponding data likelihood reads

Pr(Y = y | X = x) =
M∏

m=1

(zm)ym

ym!
exp (zm) . (20)

In the latter expression, zm = τs exp (−ξm), where τs is the emission rate of the source and ξm

is related to the attenuation along the mth ray according to

ξm = ht
m�x + gm,

where g = (gm) stands for a background component that accounts for the Compton scattering
effect. Taking the scattering into account (gm 	= 0) leads to non-logconcave functions.
However, when the scattering can be neglected the Poisson likelihood (20) is a product of
log-concave functions of x and proposition 3 applies with the corresponding expression for
Rn(y):

Rn(y) =
M∏

m=1

exp (τs (exp (−hmn) − 1) + ymhmn) . (21)

Here we shall not investigate the Poisson data model further since our main concern is
to consider gamma or x-ray tomographic measurements with high counting rates, which are
well approximated by the simple Gaussian described in section 2.

4. Reconstruction using a BMLR approach

In the case of limited-angle tomography, designing a computationally attractive algorithm that
leads to high quality binary reconstructions is a challenge. Here, the proposed approach is
twofold. Firstly, the reconstructed volume is reduced to the ROI as defined in the previous
section. Our aim is then to minimize the penalized least-square criterion (8) with respect to
the binary voxels that pertain to the ROI, while the others are forced to zero. For this purpose,
we propose a deterministic procedure called block most likely replacement (BMLR). It is a
heuristic procedure comparable to ICM. However, it provides significantly better results than
ICM, while being still of a moderate computational cost for the considered NDE problems.

4.1. ROI constrained formulation

Let us introduce the set I = {x ∈ S : xn = 0 if n 	∈ I}. Hereafter, the assumption x ∈ I

is taken for granted. It is then natural to consider the problem of maximizing (8) under the
constraint x ∈ I. Let us remark here that such a constrained formulation is not necessarily
equivalent to the unconstrained one. Actually, it is easy to check that the two problems admit

the same solution if X̂
MAP ∈ I only. Unfortunately, it is far from easy to check the latter

condition since X̂
MAP

is unknown. Nonetheless, maximizing (8) under the constraint x ∈ I

remains coherent and likely to produce a meaningful solution. Moreover, it can be checked
by practice that the proposed maximization procedure with or without the ROI provides close
reconstruction results—see section 5.

4.2. ICM and SMLR heuristics

From the sake of low computational complexity, the ICM procedure introduced in [13] is
of particular interest since it amounts to simple successive scalar relaxation of voxels. Let
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N def= {n1, . . . , n|I|} be an arbitrary enumeration of the set I. From any initial solution x(1) ∈ I,
the kth iteration of ICM can be formally defined by

x(k,1) = x(k)

� = 1 · · · |I|, x(k,�+1) =
{
ζ(k,�) if J (ζ(k,�)) < J (x(k,�)),

x(k,�) otherwise,

x(k+1) = x(k,|I|+1),

where ζ(k,�) is a proposition vector defined by

ζ(k,�) def= x(k,�) ⊕ en�
, (22)

and ⊕ stands for the componentwise logical OR exclusive.
The ICM iterations can be implemented efficiently in a recursive fashion, as follows. Let

x and x′ be two binary N-length vectors that only differ at index n, i.e., x ′
n = xn ± 1. Then, it

is easy to establish that

J (x′) = J (x) + ht
�n (h�n ∓ 2ε) ± 2σ 2µ, (23)

where ε = y − Hx. Moreover, we have also

ε′ = y − Hx′ = ε ∓ h�n. (24)

In the implementation of ICM, equations (23) and (24) can be used to compare J (ζ(k,�)) to
J (x(k,�)) and to recursively compute ε(k,�) = y − Hx(k,�), respectively.

By construction, the ICM ensures that the criterion J never increases. Moreover,
convergence occurs after a finite number of iterations, as soon as x(k+1) = x(k). However,
an obvious drawback of this heuristic is that the solution is not invariant with respect to the
scanning order in I.

The latter limitation of ICM can be made by a single most likely replacement (SMLR)
procedure, as introduced by Kormylo and Mendel [14] in the field of sparse spike train
restoration. According to SMLR, each scan yields the swap of only one voxel, the one that
produces the largest decrease of the criterion

x(k+1) = arg max
x∈V(x(k))

J (x), (25)

where V(x(k)) = {ζ(k,�) : 1 � � � |I|} is the set of all proposition vectors generated by
elementary modifications of x(k). SMLR shares several features of ICM as follows.

• An efficient implementation is obtained thanks to the recursive expressions (23) and (24).
• The criterionJ never increases, and convergence occurs after a finite number of iterations,

as soon as x(k+1) = x(k).

Although very attractive from the computational side, none of these heuristics provide
faithful reconstructions in our context. In particular, we have found that the set V(x(k)) is
not rich enough to prevent ICM and SMLR getting stuck in bad solutions. To gain efficiency,
richer sets of propositions should prior allow neighbouring voxels to swap their values, so that
the position of the hypothetical defects can adjust more easily along the iterations. A possible
solution would be to adapt Chi and Mendel’s single-spike-shift detector [22]. We found it
more appropriate to develop an original variation of it, which is developed in the following
section.

4.3. The BMLR heuristic

Whereas the SMLR only explores the two possible values of a single voxel at each step, the
new heuristic explores the 28 = 256 configurations of a basic 2 × 2 × 2 cube of voxels in the
ROI. The resulting procedure is called block most likely replacement (BMLR).
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4.3.1. Formal expression of the heuristic. Let � stands for the set of nonempty intersections
between the ROI and the 2 × 2 × 2 cubes. Hereafter, such intersections will be called blocks.
Most of the blocks contain eight voxels, but some of those located at the boundaries of the
ROI may contain fewer voxels.

In what follows, the compact notation xω is employed for the subvector {xn, n ∈ ω},
where ω is a set of sites, i.e., a subset of {1, . . . , N}. Let us also introduce the notation ζ(k,ω,b)

for the proposition vector defined by

ζ(k,ω,b)
ω = x(k)

ω ⊕ b,

ζ
(k,ω,b)
I\ω = x(k)

I\ω,

where ω ∈ � and b ∈ {0, 1}|ω|. Then, the updating equation (25) still holds for the BMLR
heuristic, with an extended set of proposition vectors:

V(x(k)) = {ζ(k,ω,b) : ω ∈ �, b ∈ {0, 1}|ω|}.
Again, the criterion J never increases, and convergence occurs after a finite number of
iterations, as soon as x(k+1) = x(k). However, the examination of each block ω requires 2|ω|

evaluations of the criterion, where the block size |ω| varies between 1 and 8. The resulting
computational cost can be prohibitive if the implementation issue is not carefully dealt with.
The following subsection proposes an efficient solution based on grey codes.

4.3.2. Efficient implementation using grey codes. A grey code (or reflected code) is a binary
numeral system where two successive values differ in only one digit [23, section 20.2]:

(0, 1, 11, 10, 110, 111, 101, 100, 11000, 11001, . . .) .

Let us remark that the first 2n elements are obtained by some permutation of the first 2n natural
numbers.

For each block ω, we propose to explore the 2|ω| binary configurations in the grey code
order rather than in the usual one. Then, two successive trials b and b′, respectively, correspond
to two vectors ζ(k,ω,b) and ζ(k,ω,b′) that only differ at a single index. As a consequence, the
recursive expressions (23) and (24) can be applied to explore the 2|ω| values of J (ζ(k,ω,b)) at
an affordable numerical cost, for all ω ∈ �.

An even more efficient version consists in introducing fn = ht
�nε and gmn = ht

�mh�n for
all m, n ∈ ω, so that (23) can be replaced by

J (x′) = J (x) + gnn ∓ 2fn ± 2σ 2µ,

while the |ω| scalars fn can be recursively computed using

f ′
m = ht

�nε
′ = fm ∓ gmn.

While each of the 2|ω| applications of (23) involves a scalar product, none is required anymore
in the new recursion. Only |ω|(|ω| + 1)/2 scalar products are required to compute gmn for all
m, n ∈ ω.

Table 1 depicts the pseudo-code for the central part of the BMLR scheme. For the sake
of brevity, the set of blocks � is assumed available from previous calculation, as well as the
projection matrix H . For large size problems, H cannot be stored and its entries must rather
be recalculated when required.

In table 1, the initial configuration is the null object x0 = 0. However, a different
initialization point could be easily considered. In particular, a faster but less optimal method
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Table 1. Pseudo-code of BMLR.

could provide an initial solution, e.g., ICM, that would be refined using BMLR. For the sake
of computational time, such a two-step approach would be of particular interest to reconstruct
objects of larger extent than localized defects.



Efficient binary reconstruction for NDE using gammagraphy 1383

27

40

2639
64

18

27

40

2639
64

18

−0.3 1.1

0.3

1.1

−0.3 1.1

0.3

1.1

Figure 3. Left: pairs of voxelized spheres considered in the data generation process, in
configuration separated (L = 26 mm) and close (L = 12 mm), respectively. Right:
corresponding noisy projection from source S6 with noise standard deviation σ = 0.01.

5. Test on synthetic data sets

The 3D synthetic NDE problem presented in section 3.2 is now considered in order to test the
proposed reconstruction algorithm. The aim is to illustrate the detection, sizing and separation
capabilities of the method on the ground of simulations.

5.1. The simulation context

The considered reconstruction problem involves two superimposed defects of spherical shape
in a homogeneous material. The volume of interest contains 64 × 64 × 64 voxels, while each
of the two defects spreads over 32 voxels. Two different values have been considered for the
distance between the two defects: L ∈ {26 mm, 12 mm} (see figure 3(left)). The data set
y consists in seven projections that were corrupted by an uncorrelated Gaussian noise with
standard deviation σ ∈ {0, 0.005, 0.01} (see figure 3(right)). The geometric dimensions of
the problem are given in figure 1. They correspond to a realistic situation of in-service pipe
inspection in the nuclear industry [1, figure 1].

5.2. Non-binary reconstruction results

Here, a non-binary penalized approach tested in [1] is used as a comparative tool. It consists
of considering an optimization problem of the form (1) with X = R

N
+ and

ψ(x; θ) = λ
∑
i∼j

φ(xi − xj ; δ) + α

N∑
n=1

|xn|, (26)

where λ, α � 0, i ∼ j stands for all pairs of neighbouring sites in the first-order neighbourhood
system (hence, each voxel has six neighbours) and φ(t; δ) is a Huber function [24]. The role
of such a penalty function is to favour piecewise homogeneous solutions. In practice, the
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Figure 4. Reconstructions from noisy projections of a pair of voxelized spheres using a penalized
approach.

penalized approach requires the tuning of the three hyperparameters θ = (λ, δ, α)t. Here,
they have been empirically adjusted according to qualitative appreciation. The corresponding
reconstruction results are depicted in figure 4. As expected, the estimated attenuations are
underestimated, while the extension of the defects is overestimated along the vertical axis.
In particular, the result does not allow us to clearly discriminate the two spheres in the case
L = 12 mm.

The penalized least-square criterion being convex, the global minimizer can be computed
from an initial guess x(0) by an appropriate iterative descent algorithm. Here, x(0) has been
chosen as the backprojection of the data, and the minimization step was performed using a
projected-gradient method, i.e., a straightforward adaptation of steepest descent that handles
the positivity constraint in a natural way [25, p 203]. However, this algorithm inherits the slow
asymptotic convergence of a gradient method. Table 2 shows that several hours are required
to reach the adopted convergence criterion ψ(x(k−1)) − ψ(x(k)) < 10−6, where k ∈ N the
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Table 2. Number of iterations and CPU time for the penalized approach and the ICM and BMLR
heuristics on a Pentium III 2.4 GHz (586 series) with 1Go RAM.

Number of
Algorithm L (mm) σ iterations CPU time

Penalized approach 26 0 333 3 h 5 min
5 × 10−3 97 1 h 25 min
10−2 198 2 h 55 min

12 0 325 3 h 42 min
5 × 10−3 356 5 h 11 min
10−2 410 5 h 58 min

ICM 26 0 9 0.408 s
5 × 10−3 11 0.452 s
10−2 11 0.501 s

12 0 7 0.306 s
5 × 10−3 8 0.331 s
10−2 8 0.333 s

BMLR 26 0 30 1.57 s
5 × 10−3 27 1.55 s
10−2 346 16.94 s

12 0 19 1.18 s
5 × 10−3 19 1.23 s
10−2 339 17.08 s

BMLR (with isolated voxels 26 0 30 1.57 s
discarded from the ROI) 5 × 10−3 27 1.53 s

10−2 173 8.37 s
12 0 19 1.17 s

5 × 10−3 19 1.29 s
10−2 170 8.43 s

iteration number. Let us remark here that the same constrained minimization problem could
probably be addressed using more efficient, but more complex algorithms (see for instance
[26]).

5.3. Binary reconstruction results

In this section, the proposed BMLR algorithm is compared to the ICM. In all cases, the initial
state is chosen as a defect-free object, i.e., x(0) = 0. Both heuristics require the tuning of the
hyperparameter µ = log(p0/p1). Since the defects are expected to constitute a very small
part of the total volume, a strict Bayesian viewpoint would lead to choosing prior probabilities
p0 and p1 = 1 − p0 such that p0 � p1. For two distinct reasons, we rather set p0 = p1.

• On the one hand, false positives are preferable to false negatives, which justifies
overvaluing p1/p0. This could be reformulated more rigorously according to the Bayesian
cost theory, by replacing the MAP estimator by another Bayesian estimator that accounts
for distinct costs for false negatives and false positives, respectively c0 and c1. Then our
choice corresponds to the assumption that p0/c0 = p1/c1.

• On the other hand, choosing p0 = p1 leads to a fully unsupervised version of BMLR.

The reconstruction results are shown in figures 5 and 6 for the ICM and the BMLR
algorithms, respectively. Even in the noiseless case, the ICM fails to provide a faithful
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Figure 5. Reconstructions from noisy projections of a pair of voxelized spheres using an ICM
approach.

reconstruction in the case of two close spheres. In comparison, the BMLR algorithm achieves
a perfect reconstruction in all cases of high or moderate SNR.

On the other hand, the number of false positive voxels is subject to a threshold effect:
when the noise standard deviation reaches the magnitude of the projection of a single voxel
(whose maximum value is σth = 1/64 ≈ 0.015 in the present simulation), many spurious,
isolated voxels appear in the reconstruction. This is clearly visible in figure 6 in the case
σ = 0.01. In this case, two distinct strategies may be adopted to reduce the number of false
positive voxels.

The first one rests upon the fact that the BMLR reconstruction remains acceptable, let
alone those spurious voxels. As far as real defects can be assumed to extend over several
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Figure 6. BMLR reconstructions from noisy projections of a pair of discretized defects.

neighbouring voxels, the idea is then to remove isolated voxels by simple post-processing.
For the sake of computational burden, it is interesting to also discard isolated voxels from the
ROI. In the considered cases where σ = 0.01, a large number of iterations is spent activating
voxels that are isolated in the ROI, and can thus be saved. The resulting reconstruction is
depicted in the first column of figure 8.

An alternate strategy is to introduce a penalization of active voxels by assigning a positive

value to the regularization parameter λ
def= 2σ 2µ in criterion (8). The tuning of λ has a great

impact on the final quality of the 3D attenuation map. As illustrated in figure 9, a correct
tuning of λ significantly reduces the number of spurious voxels and produces a satisfactory
reconstruction of the flaws. However, overestimating λ leads to false negative voxels, so that
the tuning of λ must be cautiously handled.
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Figure 7. BMLR reconstructions from noisy projections of a pair of continuous defects.

The number of iterations and the CPU time required for convergence for the ICM and
BMLR heuristics are shown in table 2. Not surprisingly, ICM is a very fast method. However,
BMLR remains very attractive in terms of computing time. The step of building the ROI is
not expensive since it results from a simple thresholding of the backprojection map, see (18).
Depending on the SNR and on the positions of the spheres, the ROI varies from 1.1% to 1.6%
of the total number of voxels in the considered examples. The total number of iterations is
roughly proportional to the number of activated voxels in the solution. Obviously, the latter
depends on the volume of the defects, which is expected to be small in NDE. However, it is
also dependent on the SNR: the BMLR heuristic converges in a dozen iterations if σ < σth,
whereas a few hundreds are required if σ > σth. In the former case, the convergence is fast
and the solution is reached within 2 s. In the latter case, most of the iterations activate only
one isolated site of the ROI and the time needed for convergence increases significantly. As
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Figure 8. For the lowest SNR values, removing isolated voxels in the final BMLR reconstruction
provides a better solution to both discretized (left) and continuous (right) defect problems.

shown in table 2, removing isolated sites from the ROI allows us to speed up the convergence
of the BMLR in this case. As stated earlier in this section, this pre-processing of the ROI is
natural provided that flaws extend over more than a single voxel in the volume.

In principle, the BMLR heuristic can provide different solutions whether the ROI is
considered or not. In order to test the variability of the solution, we also ran the BMLR
heuristic with I = S, i.e., we ignored the ROI. For high-to-moderate SNR values, the results
were strictly identical to the previous ones, while only marginal differences appeared for
the low SNR case. Finally, let us remark that the BMLR heuristic asks for an unrealistic
computation time of several hours when the ROI is ignored, or if all the voxels belong to the
ROI. In such an unfavourable situation, the BMLR could still be efficiently implemented using
a parallel structure, since the blocks can be explored independently of each other.
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Figure 9. Impact of the regularization parameter λ = 2σ 2 log(p0/p1) on BMLR reconstruction at
the lowest SNR (i.e., σ = 0.01). Whereas under regularization (left) does not efficiently eliminate
spurious voxels and over regularization (right) cancels most of the voxels in the flaws, a correct
tuning of λ (centre) produces a satisfactory reconstruction.

5.4. BMLR: robustness with respect to modelling errors

In the previous subsection, the data are noisy projections of discretized objects. Obviously, real
objects are continuous and (3) only constitutes an approximate model. Therefore, we found
it appropriate to further investigate the robustness of the method by considering projections
from perfectly spherical objects, given that closed-form expressions are available for the
projection of ellipsoids. The reconstructions provided by the BMLR are shown in figure 7.
In the case of distant objects, a good reconstruction is obtained whatever the SNR—up to the
fact that spurious, isolated voxels must be removed for σ = 0.01, as shown in the second
column of figure 8. In the case of closer objects, the quality of the reconstruction deteriorates
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slightly, but the BMLR still provides meaningful results, since the two objects are still clearly
distinguishable one from another.

6. Conclusion

Spatially interacting models such as Markov random fields are usually employed within
a Bayesian approach to reconstruction. Here, we rather resorted to a simpler iid model,
and we proposed an efficient binary reconstruction algorithm, both in terms of robustness
and computational burden. For high-to-moderate SNR, the binary constraint is sufficient to
regularize the inversion of the tomographic problem. For low SNR, however, the number of
false positive voxels increases dramatically. A simple strategy to deal with this problem is
to cancel isolated voxels. Another strategy is to perform a penalization of active voxels by
assigning a positive value to the regularization parameter λ = 2σ 2µ in criterion (8). However,
the supervised tuning of λ must then be handled.

With a view to reconstruction from real data, several comments can be made about the
physical model considered here. Firstly, the additive Gaussian noise assumption may not
be appropriate for low counting rates τm. In such cases, the Poisson model (20) provides a
more accurate description of the data. The ROI should then be computed using (21), and
straightforward modifications should be brought to the BMLR algorithm. Secondly, it should
be noted that the Beer–Lambert relation (2) is only valid for a monochromatic emission of
photons under a non-diffractive propagation assumption. In particular, Compton scattering
is then negligible, which is not necessarily true for high energy gamma-ray sources (beyond
100 keV). In the latter case, further investigations would be required to define an appropriate
ROI, for instance on the basis of the scattering model developed in [27].
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Appendix A. Proof of proposition 1

First, it can immediately be checked that

�n = −log Rn(y) = 1

2σ 2
(‖y‖2 − ‖y − h�n‖2) − µ,

which readily gives expression (16).
Now let us show that

Rn(y) � fY |X(y|x)

fY |X(y|x′)
(A.1)

for all couples (x,x′) ∈ S
0
n × S

1
n such that x′ = x + en: given (5), the latter inequality holds,

since

1

σ 2
‖y − Hx′‖2 − 1

σ 2
‖y − Hx‖2 + �n = 2

σ 2
ht

�nHx � 0.

Given (12), inequalities (A.1) jointly imply that (13) holds.
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Appendix B. Proof of proposition 3

In the more general setting of proposition 3, let us show that (A.1) is still valid for all couples
(x,x′) ∈ S

0
n × S

1
n such that x′ = x + en. Given (19), this amounts to proving that

M∏
m=1

φm(a)φm(d)

φm(b)φm(c)
� 1,

with a = 0, b = Hmn, c = ht
m�x, and d = b+c, where Hmn denotes the (m, n) entry of matrix

H . It is actually true that each term of the above product belongs to [0, 1]. This is obvious
for those terms for which Hmn = ht

m�x = 0, since we have then a = b = c = d. Otherwise,
let us remark that a � b � d and a � c � d, so that

log φm(b) � θ log φm(a) + (1 − θ) log φm(d) (B.1)

log φm(c) � θ ′ log φm(a) + (1 − θ ′) log φm(d), (B.2)

where

θ = d − b

d − a
= c

b + c
∈ [0, 1], θ ′ = d − c

d − a
= b

b + c
= 1 − θ.

Finally, term-to-term summation of inequalities (B.1) and (B.2) allows us to conclude that
φm(a)φm(d) � φm(b)φm(c).
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