
Shared memory parallel programming
models

Pthread and OpenMP by example

Houssam-Eddine Zahaf
houssameddine.zahaf@univ-nantes.fr

shared-mem



Plan

1 Introduction to shared-memory parallel programming model

2 Parallel programming using OpenMP

3 Pthread as shared memory parallel programming model

4 Exercices



Plan

1 Introduction to shared-memory parallel programming model

2 Parallel programming using OpenMP

3 Pthread as shared memory parallel programming model

4 Exercices



Shared memory model : Multiple CPU - Single DRAM

Control Unit

ALU

CPU0

Control Unit

ALU

CPU1

Control Unit

ALU

CPU2

Central memory

Global memory which can be accessed by all processors of a parallel computer.
Data in the global memory can be read/write by any of the processors.

Shared memory parallel programming models September 27, 2022 1 / 36



Shared memory : programming
Programmed thanks to a collection of threads

A thread is the smallest schedulable unit within an operating system
Can be created dynamically

Each thread has its set of private variables (local stack variables)
Might share variables

Threads communicate

implicitly by reading and writing shared variables
coordinate using synchronization mechanisms on shared variables

Shared memory

th1 th2 th3 th4

Shared memory parallel programming models September 27, 2022 2 / 36



Shared memory : programming
Programmed thanks to a collection of threads

A thread is the smallest schedulable unit within an operating system
Can be created dynamically

Each thread has its set of private variables (local stack variables)
Might share variables

Threads communicate

implicitly by reading and writing shared variables
coordinate using synchronization mechanisms on shared variables

Shared memory

th1 th2 th3 th4

Shared memory parallel programming models September 27, 2022 2 / 36



Shared memory : programming
Programmed thanks to a collection of threads

A thread is the smallest schedulable unit within an operating system
Can be created dynamically

Each thread has its set of private variables (local stack variables)
Might share variables

Threads communicate

implicitly by reading and writing shared variables
coordinate using synchronization mechanisms on shared variables

Shared memory

th1 th2 th3 th4

Shared memory parallel programming models September 27, 2022 2 / 36



Programming platforms for shared memory hardware
Several Thread Libraries/systems

PTHREADS is the POSIX Standard (Portable Operating System Interface)

OpenMP standard for application level programming OpenMP (Open Multi-Processing) is
an application programming interface (API) that supports multi-platform shared-memory
multiprocessing programming in C, C++, and Fortran on many platforms, instruction-set
architectures and operating systems.

TBB Thread Building Blocks Intel is a C++ template library developed by Intel for parallel
programming on multi-core processors. Using TBB, a computation is broken down into
tasks that can run in parallel. The library manages and schedules threads to execute
these tasks.
CILK: Cilk, Cilk++, Cilk Plus and OpenCilk are general-purpose programming
languages designed for multithreaded parallel computing. They are based on the C and
C++ programming languages.
Java threads Built on top of POSIX threads : threads in the java virtual machine

Shared memory parallel programming models September 27, 2022 3 / 36



Programming platforms for shared memory hardware
Several Thread Libraries/systems

PTHREADS is the POSIX Standard (Portable Operating System Interface)
OpenMP standard for application level programming OpenMP (Open Multi-Processing) is
an application programming interface (API) that supports multi-platform shared-memory
multiprocessing programming in C, C++, and Fortran on many platforms, instruction-set
architectures and operating systems.

TBB Thread Building Blocks Intel is a C++ template library developed by Intel for parallel
programming on multi-core processors. Using TBB, a computation is broken down into
tasks that can run in parallel. The library manages and schedules threads to execute
these tasks.
CILK: Cilk, Cilk++, Cilk Plus and OpenCilk are general-purpose programming
languages designed for multithreaded parallel computing. They are based on the C and
C++ programming languages.
Java threads Built on top of POSIX threads : threads in the java virtual machine

Shared memory parallel programming models September 27, 2022 3 / 36



Programming platforms for shared memory hardware
Several Thread Libraries/systems

PTHREADS is the POSIX Standard (Portable Operating System Interface)
OpenMP standard for application level programming OpenMP (Open Multi-Processing) is
an application programming interface (API) that supports multi-platform shared-memory
multiprocessing programming in C, C++, and Fortran on many platforms, instruction-set
architectures and operating systems.

TBB Thread Building Blocks Intel is a C++ template library developed by Intel for parallel
programming on multi-core processors. Using TBB, a computation is broken down into
tasks that can run in parallel. The library manages and schedules threads to execute
these tasks.
CILK: Cilk, Cilk++, Cilk Plus and OpenCilk are general-purpose programming
languages designed for multithreaded parallel computing. They are based on the C and
C++ programming languages.
Java threads Built on top of POSIX threads : threads in the java virtual machine

Shared memory parallel programming models September 27, 2022 3 / 36



Plan

1 Introduction to shared-memory parallel programming model

2 Parallel programming using OpenMP

3 Pthread as shared memory parallel programming model

4 Exercices



OpenMP

Stands for Open MultiProcessing

Three languages supported: C, C++, Fortran

Portable :
Supported on multiple operating systems: UNIX, Linux, Windows, etc.
Supported by multiple compilers : gcc, Intel C/C++, etc

Compiler directives Functions library
Environment

variables

Shared memory parallel programming models September 27, 2022 4 / 36



OpenMP

Stands for Open MultiProcessing

Three languages supported: C, C++, Fortran

Portable :
Supported on multiple operating systems: UNIX, Linux, Windows, etc.
Supported by multiple compilers : gcc, Intel C/C++, etc

Compiler directives Functions library
Environment

variables

Shared memory parallel programming models September 27, 2022 4 / 36



OpenMP execution model

OpenMP program is a sequence fork-joins (sequential and
parallel regions)

Sequential code is executed by the main process/thread
Parallel code can be executed by one or multiple workers
Synchronization primitives can be used to synchronize each
fork-joint phase
It allows to parallelize:

loops
Region
Functions
etc.

Shared memory parallel programming models September 27, 2022 5 / 36



OpenMP execution model

OpenMP program is a sequence fork-joins (sequential and
parallel regions)
Sequential code is executed by the main process/thread

Parallel code can be executed by one or multiple workers
Synchronization primitives can be used to synchronize each
fork-joint phase
It allows to parallelize:

loops
Region
Functions
etc.

Shared memory parallel programming models September 27, 2022 5 / 36



OpenMP execution model

OpenMP program is a sequence fork-joins (sequential and
parallel regions)
Sequential code is executed by the main process/thread
Parallel code can be executed by one or multiple workers

Synchronization primitives can be used to synchronize each
fork-joint phase
It allows to parallelize:

loops
Region
Functions
etc.

Shared memory parallel programming models September 27, 2022 5 / 36



OpenMP execution model

OpenMP program is a sequence fork-joins (sequential and
parallel regions)
Sequential code is executed by the main process/thread
Parallel code can be executed by one or multiple workers
Synchronization primitives can be used to synchronize each
fork-joint phase

It allows to parallelize:
loops
Region
Functions
etc.

Shared memory parallel programming models September 27, 2022 5 / 36



OpenMP execution model

OpenMP program is a sequence fork-joins (sequential and
parallel regions)
Sequential code is executed by the main process/thread
Parallel code can be executed by one or multiple workers
Synchronization primitives can be used to synchronize each
fork-joint phase
It allows to parallelize:

loops
Region
Functions
etc.

Shared memory parallel programming models September 27, 2022 5 / 36



OpenMP Structure
OpenMP parallelization instruction are provided through directives and clauses
They define how to (i) share work between several workers, synchronize them and (ii)
the policy to the shared data management.

pragmas start by “#” and they are ignored by default, except if the correct compiler
options are specified → helps to write sequential and parallel program in the same
“syntax”

OpenMP routine

Functions and subroutines are part of a OpenMP library loaded at link time

Behavior

pragma(s) might trigger fork-join section
the master task spawns (“forks”) children tasks and ensures that at their completion
the master thread “gathers” to continue onward the execution.

Shared memory parallel programming models September 27, 2022 6 / 36



OpenMP Structure
OpenMP parallelization instruction are provided through directives and clauses
They define how to (i) share work between several workers, synchronize them and (ii)
the policy to the shared data management.
pragmas start by “#” and they are ignored by default, except if the correct compiler
options are specified → helps to write sequential and parallel program in the same
“syntax”

OpenMP routine

Functions and subroutines are part of a OpenMP library loaded at link time

Behavior

pragma(s) might trigger fork-join section
the master task spawns (“forks”) children tasks and ensures that at their completion
the master thread “gathers” to continue onward the execution.

Shared memory parallel programming models September 27, 2022 6 / 36



OpenMP Structure
OpenMP parallelization instruction are provided through directives and clauses
They define how to (i) share work between several workers, synchronize them and (ii)
the policy to the shared data management.
pragmas start by “#” and they are ignored by default, except if the correct compiler
options are specified → helps to write sequential and parallel program in the same
“syntax”

OpenMP routine

Functions and subroutines are part of a OpenMP library loaded at link time

Behavior

pragma(s) might trigger fork-join section
the master task spawns (“forks”) children tasks and ensures that at their completion
the master thread “gathers” to continue onward the execution.

Shared memory parallel programming models September 27, 2022 6 / 36



OpenMP Structure
OpenMP parallelization instruction are provided through directives and clauses
They define how to (i) share work between several workers, synchronize them and (ii)
the policy to the shared data management.
pragmas start by “#” and they are ignored by default, except if the correct compiler
options are specified → helps to write sequential and parallel program in the same
“syntax”

OpenMP routine

Functions and subroutines are part of a OpenMP library loaded at link time

Behavior

pragma(s) might trigger fork-join section
the master task spawns (“forks”) children tasks and ensures that at their completion
the master thread “gathers” to continue onward the execution.

Shared memory parallel programming models September 27, 2022 6 / 36



Main pragma(s)

We can define a parallel region using
#pragma omp parallel
{
/* Parallel region code */

}

We can define a parallel loop using
#pragma omp for
/* the for loop */

Shared memory parallel programming models September 27, 2022 7 / 36



OpenMP : sharing clauses

shared(...): list of shared variables by all OpenMP tasks

private(...): list of variables that are visible only by their task
the variable is not initialized within the parallel part of the code
the variable get its initial value when leaving the parallel region

firstprivate(...): Similar to the previous but data are initialized with their value
before the parallel part of the code.

default(none,private,shared): denotes the default behavior for given
variables set to shared

by default if the sharing is not specified, it is set to shared

Shared memory parallel programming models September 27, 2022 8 / 36



Hello parallel region

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char ** argv){
# pragma omp parallel
{
int tid = omp_get_thread_num();
printf (" Hello, I am parallel [%d] \n",tid);

}
return EXIT_SUCCESS ;

}

gcc hello_parregion.c -o hello_parregion.out -Wall -fopenmp

Shared memory parallel programming models September 27, 2022 9 / 36



Hello share clauses (1)

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char ** argv){
int i = 0;

# pragma omp parallel private(i)
{
int tid = omp_get_thread_num();
i*=2;
printf (" ID [%d] : i : %d \n",tid,i);

}
return EXIT_SUCCESS ;

}

Shared memory parallel programming models September 27, 2022 10 / 36



Hello share clauses (1)

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char ** argv){
int i = 0;

# pragma omp parallel private(i)
{
int tid = omp_get_thread_num();
i*=2;
printf (" ID [%d] : i : %d \n",tid,i);

}
return EXIT_SUCCESS ;

}

Shared memory parallel programming models September 27, 2022 10 / 36



Hello share clauses (1)

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char ** argv){
int i = 0;

# pragma omp parallel private(i)
{
int tid = omp_get_thread_num();
i*=2;
printf (" ID [%d] : i : %d \n",tid,i);

}
return EXIT_SUCCESS ;

}

Shared memory parallel programming models September 27, 2022 10 / 36



Hello share clauses (2) - Correction

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char ** argv){
int i = 2;

# pragma omp parallel firstprivate(i)
{
int tid = omp_get_thread_num();
i*=tid;
printf (" ID [%d] : i : %d \n",tid,i);

}
return EXIT_SUCCESS ;

}

Shared memory parallel programming models September 27, 2022 11 / 36



Hello share clauses

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char ** argv){
int i = 2;

# pragma omp parallel default(shared)
{
int tid = omp_get_thread_num();
i*=tid;
int z = 1;
z++;
printf (" ID [%d] : i : %d : %d\n",tid,i, z);

}
return EXIT_SUCCESS ;

}

Shared memory parallel programming models September 27, 2022 12 / 36



Loops by example

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char ** argv){
# pragma omp parallel
{

#pragma omp for
for (int i=0;i<10;i++){

int tid = omp_get_thread_num();
printf (" ID [%d] : i : %d \n",tid,i);

}
}
return EXIT_SUCCESS ;

}

Shared memory parallel programming models September 27, 2022 13 / 36



Loops : a particular attention
The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)

The iterator of the parallelized loop is always (not the ones if nested loops exist)
There is an implicit barrier at the end of the loop.

remove it by adding the clause nowait on the same line: #pragma omp for nowait

Specify iteration scheduling : schedule(ScheduleType, chunksize)

[static] distributes the iteration chunks across threads in a round-robin
default chunksize is computer to load balance different threads
useful when iterations are regular

[dynamic] (work stealing) divides the iteration space to multiple chunks. When
complete a chunk, it dequeues the next one.

By default, chunksize is 1.
Very useful if the time to process individual iterations varies.

Shared memory parallel programming models September 27, 2022 14 / 36



Loops : a particular attention
The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)
The iterator of the parallelized loop is always (not the ones if nested loops exist)

There is an implicit barrier at the end of the loop.
remove it by adding the clause nowait on the same line: #pragma omp for nowait

Specify iteration scheduling : schedule(ScheduleType, chunksize)

[static] distributes the iteration chunks across threads in a round-robin
default chunksize is computer to load balance different threads
useful when iterations are regular

[dynamic] (work stealing) divides the iteration space to multiple chunks. When
complete a chunk, it dequeues the next one.

By default, chunksize is 1.
Very useful if the time to process individual iterations varies.

Shared memory parallel programming models September 27, 2022 14 / 36



Loops : a particular attention
The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)
The iterator of the parallelized loop is always (not the ones if nested loops exist)
There is an implicit barrier at the end of the loop.

remove it by adding the clause nowait on the same line: #pragma omp for nowait

Specify iteration scheduling : schedule(ScheduleType, chunksize)

[static] distributes the iteration chunks across threads in a round-robin
default chunksize is computer to load balance different threads
useful when iterations are regular

[dynamic] (work stealing) divides the iteration space to multiple chunks. When
complete a chunk, it dequeues the next one.

By default, chunksize is 1.
Very useful if the time to process individual iterations varies.

Shared memory parallel programming models September 27, 2022 14 / 36



Loops : a particular attention
The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)
The iterator of the parallelized loop is always (not the ones if nested loops exist)
There is an implicit barrier at the end of the loop.

remove it by adding the clause nowait on the same line: #pragma omp for nowait

Specify iteration scheduling : schedule(ScheduleType, chunksize)

[static] distributes the iteration chunks across threads in a round-robin
default chunksize is computer to load balance different threads
useful when iterations are regular

[dynamic] (work stealing) divides the iteration space to multiple chunks. When
complete a chunk, it dequeues the next one.

By default, chunksize is 1.
Very useful if the time to process individual iterations varies.

Shared memory parallel programming models September 27, 2022 14 / 36



Loops : a particular attention
The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)
The iterator of the parallelized loop is always (not the ones if nested loops exist)
There is an implicit barrier at the end of the loop.

remove it by adding the clause nowait on the same line: #pragma omp for nowait

Specify iteration scheduling : schedule(ScheduleType, chunksize)

[static] distributes the iteration chunks across threads in a round-robin
default chunksize is computer to load balance different threads
useful when iterations are regular

[dynamic] (work stealing) divides the iteration space to multiple chunks. When
complete a chunk, it dequeues the next one.

By default, chunksize is 1.
Very useful if the time to process individual iterations varies.

Shared memory parallel programming models September 27, 2022 14 / 36



Loops : a particular attention
The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)
The iterator of the parallelized loop is always (not the ones if nested loops exist)
There is an implicit barrier at the end of the loop.

remove it by adding the clause nowait on the same line: #pragma omp for nowait

Specify iteration scheduling : schedule(ScheduleType, chunksize)

[static] distributes the iteration chunks across threads in a round-robin
default chunksize is computer to load balance different threads
useful when iterations are regular

[dynamic] (work stealing) divides the iteration space to multiple chunks. When
complete a chunk, it dequeues the next one.

By default, chunksize is 1.
Very useful if the time to process individual iterations varies.

Shared memory parallel programming models September 27, 2022 14 / 36



Loops scheduling (Link configuration, result)

# include <stdio.h>
# include <stdlib.h>
# include <omp.h>
int main(int argc, char ** argv){

int nthreads=0;
;

#pragma omp parallel
{

nthreads= omp_get_num_threads();
}
int nb[nthreads];
for (int i=0;i<nthreads;i++) nb[i]=0;

#pragma omp parallel for schedule(static, 3)
for (int i=0;i<30;i++){

int tid = omp_get_thread_num();
nb[tid]++;
printf("-> [%d] : %d \n", tid, i);

}
for (int i=0;i<nthreads;i++)

printf("[%d]=%d\n", i, nb[i]);
return EXIT_SUCCESS ;

}

dynamic, 5 dynamic, 3 dynamic, 1 static, 5 static, 2

Shared memory parallel programming models September 27, 2022 15 / 36



Loops scheduling (Link configuration, result)

# include <stdio.h>
# include <stdlib.h>
# include <omp.h>
int main(int argc, char ** argv){

int nthreads=0;
;

#pragma omp parallel
{

nthreads= omp_get_num_threads();
}
int nb[nthreads];
for (int i=0;i<nthreads;i++) nb[i]=0;

#pragma omp parallel for schedule(static, 3)
for (int i=0;i<30;i++){

int tid = omp_get_thread_num();
nb[tid]++;
printf("-> [%d] : %d \n", tid, i);

}
for (int i=0;i<nthreads;i++)

printf("[%d]=%d\n", i, nb[i]);
return EXIT_SUCCESS ;

}

dynamic, 5 dynamic, 3 dynamic, 1 static, 5 static, 2

Shared memory parallel programming models September 27, 2022 15 / 36



What does it do?

# include <stdio.h>
# include <stdlib.h>
# include <omp.h>
int main(int argc, char ** argv){
int count=0;

#pragma omp parallel for schedule(dynamic) shared(count)
for (int i=0;i<30;i++){

count++;
}

printf("-> %d \n", count);
return EXIT_SUCCESS ;

}

Shared memory parallel programming models September 27, 2022 16 / 36



What does it do?

# include <stdio.h>
# include <stdlib.h>
# include <omp.h>
int main(int argc, char ** argv){
int count=0;

#pragma omp parallel for schedule(dynamic) shared(count)
for (int i=0;i<30;i++){

count++;
}

printf("-> %d \n", count);
return EXIT_SUCCESS ;

}

Shared memory parallel programming models September 27, 2022 16 / 36



Critical section

# include <stdio.h>
# include <stdlib.h>
# include <omp.h>
int main(int argc, char ** argv){
int count=0;

#pragma omp parallel for schedule(dynamic) shared(count)
for (int i=0;i<30;i++){
# pragma omp critical

{
count++;

}
}
printf("-> %d \n", count);
return EXIT_SUCCESS ;

}

pragma omp atomic can be used for an atomic arithmetic instruction
if supported by hardware, low level atomic instruction execution can be generated

Shared memory parallel programming models September 27, 2022 17 / 36



Critical section

# include <stdio.h>
# include <stdlib.h>
# include <omp.h>
int main(int argc, char ** argv){
int count=0;

#pragma omp parallel for schedule(dynamic) shared(count)
for (int i=0;i<30;i++){
# pragma omp critical

{
count++;

}
}
printf("-> %d \n", count);
return EXIT_SUCCESS ;

}

pragma omp atomic can be used for an atomic arithmetic instruction
if supported by hardware, low level atomic instruction execution can be generated

Shared memory parallel programming models September 27, 2022 17 / 36



Other synchronization mechanisms
barrier Directive : #pragma omp barrier

All threads will wait at this point

All parallel regions have an implicit barrier.

single Directive

a single thread will execute the sequence of instructions located in the single region

There is an implicit barrier at the end of the region

master Directive

only the master will execute the sequence of instructions located in the single region,

the region will be executed only once without implicit barrier at the end of the region.

nowait Clause

can be used on omp for, single, and critical directives to remove the implicit barrier they feature

Shared memory parallel programming models September 27, 2022 18 / 36



Other synchronization mechanisms
barrier Directive : #pragma omp barrier

All threads will wait at this point

All parallel regions have an implicit barrier.

single Directive

a single thread will execute the sequence of instructions located in the single region

There is an implicit barrier at the end of the region

master Directive

only the master will execute the sequence of instructions located in the single region,

the region will be executed only once without implicit barrier at the end of the region.

nowait Clause

can be used on omp for, single, and critical directives to remove the implicit barrier they feature

Shared memory parallel programming models September 27, 2022 18 / 36



Other synchronization mechanisms
barrier Directive : #pragma omp barrier

All threads will wait at this point

All parallel regions have an implicit barrier.

single Directive

a single thread will execute the sequence of instructions located in the single region

There is an implicit barrier at the end of the region

master Directive

only the master will execute the sequence of instructions located in the single region,

the region will be executed only once without implicit barrier at the end of the region.

nowait Clause

can be used on omp for, single, and critical directives to remove the implicit barrier they feature

Shared memory parallel programming models September 27, 2022 18 / 36



Other synchronization mechanisms
barrier Directive : #pragma omp barrier

All threads will wait at this point

All parallel regions have an implicit barrier.

single Directive

a single thread will execute the sequence of instructions located in the single region

There is an implicit barrier at the end of the region

master Directive

only the master will execute the sequence of instructions located in the single region,

the region will be executed only once without implicit barrier at the end of the region.

nowait Clause

can be used on omp for, single, and critical directives to remove the implicit barrier they feature

Shared memory parallel programming models September 27, 2022 18 / 36



Environment variables
Under Linux: export VAR=VALUE

Variable Name Default Description
OMP_NUM_THREADS Number of procs (OS) Sets the maximum number of threads to use by parallel regions
OMP_SCHEDULE STATIC Sets the run-time schedule type and an optional chunk size
OMP_DYNAMIC FALSE Enables (.TRUE.) or disables (.FALSE.) the dynamic

adjustment of the number of threads.
OMP_NESTED FALSE Enables (.TRUE.) or disables (.FALSE.)nested parallelism.
OMP_STACKSIZE depend on arch. Sets the number of bytes to allocate for each OpenMP

thread to use as the private stack for the thread.
OMP_MAX_ACTIVE_LEVELS No enforced limit Limits the number of simultaneously executing threads .

in an OpenMP program

Other dependant variables (Intel)

KMP_BLOCKTIME, (default 200 milliseconds) : Sets the time, in milliseconds, that a thread should wait, after
completing the execution of a parallel region, before sleeping.

KMP_LIBRARY, (default throughput) : Selects the OpenMP run-time library execution mode. The options for the
variable value are throughput, turnaround, and serial.

· · ·

Shared memory parallel programming models September 27, 2022 19 / 36



Environment variables
Under Linux: export VAR=VALUE

Variable Name Default Description
OMP_NUM_THREADS Number of procs (OS) Sets the maximum number of threads to use by parallel regions
OMP_SCHEDULE STATIC Sets the run-time schedule type and an optional chunk size
OMP_DYNAMIC FALSE Enables (.TRUE.) or disables (.FALSE.) the dynamic

adjustment of the number of threads.
OMP_NESTED FALSE Enables (.TRUE.) or disables (.FALSE.)nested parallelism.
OMP_STACKSIZE depend on arch. Sets the number of bytes to allocate for each OpenMP

thread to use as the private stack for the thread.
OMP_MAX_ACTIVE_LEVELS No enforced limit Limits the number of simultaneously executing threads .

in an OpenMP program

Other dependant variables (Intel)

KMP_BLOCKTIME, (default 200 milliseconds) : Sets the time, in milliseconds, that a thread should wait, after
completing the execution of a parallel region, before sleeping.

KMP_LIBRARY, (default throughput) : Selects the OpenMP run-time library execution mode. The options for the
variable value are throughput, turnaround, and serial.

· · ·

Shared memory parallel programming models September 27, 2022 19 / 36



Plan

1 Introduction to shared-memory parallel programming model

2 Parallel programming using OpenMP

3 Pthread as shared memory parallel programming model

4 Exercices



Pthread as shared memory parallel programming
model

Stands for “Posix Threads”
Posix is an IEEE standard for a Portable Operating System

functions are spawn as separate threads
The thread terminates when:

the function completes,
pthread_exit() is called

All threads share a single executable, a single set of global variables,
Each thread has its own stack (function arguments, private variables)

Compared to OpenMP, it is a low-level API, indeed OpenMP is implemented on the top
of Pthreads

Shared memory parallel programming models September 27, 2022 20 / 36



Pthread as shared memory parallel programming
model

Stands for “Posix Threads”
Posix is an IEEE standard for a Portable Operating System

functions are spawn as separate threads
The thread terminates when:

the function completes,
pthread_exit() is called

All threads share a single executable, a single set of global variables,
Each thread has its own stack (function arguments, private variables)

Compared to OpenMP, it is a low-level API, indeed OpenMP is implemented on the top
of Pthreads

Shared memory parallel programming models September 27, 2022 20 / 36



Pthread as shared memory parallel programming
model

Stands for “Posix Threads”
Posix is an IEEE standard for a Portable Operating System

functions are spawn as separate threads
The thread terminates when:

the function completes,
pthread_exit() is called

All threads share a single executable, a single set of global variables,
Each thread has its own stack (function arguments, private variables)

Compared to OpenMP, it is a low-level API, indeed OpenMP is implemented on the top
of Pthreads

Shared memory parallel programming models September 27, 2022 20 / 36



Pthread as shared memory parallel programming
model

Stands for “Posix Threads”
Posix is an IEEE standard for a Portable Operating System

functions are spawn as separate threads
The thread terminates when:

the function completes,
pthread_exit() is called

All threads share a single executable, a single set of global variables,
Each thread has its own stack (function arguments, private variables)

Compared to OpenMP, it is a low-level API, indeed OpenMP is implemented on the top
of Pthreads

Shared memory parallel programming models September 27, 2022 20 / 36



Pthread execution model

main routines
int pthread_create(

pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

int pthread_join(pthread_t thread, void **retval);

void pthread_exit(void *retval);

int pthread_detach(pthread_t thread);

main()

pthread_create x3+1

pthread_join x2+1

pthread_detach

Shared memory parallel programming models September 27, 2022 21 / 36



Minimal Example using pthread
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>

void *foo(void *arg){
sleep(1);
printf("Hello, I am a thread \n");
return NULL;

}

int main(){
pthread_t thread_id;
printf("Before invoking the thread function\n");
pthread_create(&thread_id, NULL, foo, NULL);
pthread_join(thread_id, NULL);
printf("After Thread\n");

}

Shared memory parallel programming models September 27, 2022 22 / 36



Scheduling pthreads : the Linux case
Specified through pthread_attr_t

#include <pthread.h>
...
int pthread_attr_setschedpolicy(pthread_attr_t *att, int policy);

att : Scheduling attributes (the priority)
policy : Scheduling policy : SCHED_FIFO, SCHED_RR, SCHED_DEAD

It is required to be super-user to apply the real-time scheduling policies
→ Attention : A thread with the highest RT priority will never be preempted.

Shared memory parallel programming models September 27, 2022 23 / 36



Scheduling pthreads : the Linux case
Specified through pthread_attr_t

#include <pthread.h>
...
int pthread_attr_setschedpolicy(pthread_attr_t *att, int policy);

att : Scheduling attributes (the priority)
policy : Scheduling policy : SCHED_FIFO, SCHED_RR, SCHED_DEAD

It is required to be super-user to apply the real-time scheduling policies
→ Attention : A thread with the highest RT priority will never be preempted.

Shared memory parallel programming models September 27, 2022 23 / 36



Scheduling pthreads : the Linux case
Specified through pthread_attr_t

#include <pthread.h>
...
int pthread_attr_setschedpolicy(pthread_attr_t *att, int policy);

att : Scheduling attributes (the priority)

policy : Scheduling policy : SCHED_FIFO, SCHED_RR, SCHED_DEAD

It is required to be super-user to apply the real-time scheduling policies
→ Attention : A thread with the highest RT priority will never be preempted.

Shared memory parallel programming models September 27, 2022 23 / 36



Scheduling pthreads : the Linux case
Specified through pthread_attr_t

#include <pthread.h>
...
int pthread_attr_setschedpolicy(pthread_attr_t *att, int policy);

att : Scheduling attributes (the priority)
policy : Scheduling policy : SCHED_FIFO, SCHED_RR, SCHED_DEAD

It is required to be super-user to apply the real-time scheduling policies
→ Attention : A thread with the highest RT priority will never be preempted.

Shared memory parallel programming models September 27, 2022 23 / 36



Scheduling pthreads : the Linux case
Specified through pthread_attr_t

#include <pthread.h>
...
int pthread_attr_setschedpolicy(pthread_attr_t *att, int policy);

att : Scheduling attributes (the priority)
policy : Scheduling policy : SCHED_FIFO, SCHED_RR, SCHED_DEAD

It is required to be super-user to apply the real-time scheduling policies
→ Attention : A thread with the highest RT priority will never be preempted.

Shared memory parallel programming models September 27, 2022 23 / 36



Steps before creating pthreads
Highest priority thread is scheduled first
Priority is specified at thread creation time
→ pthread_attr_t et struct sched_param

E1. create thread id structures and scheduling parameters :
pthread_t th; pthread_attr_t my_attr; struct sched_param param;

E2. pthread_attr_init(&my_attr) → initialization of the attribute
E3. pthread_attr_setschedpolicy(&my_attr, SCHED_FIFO); → select the

scheduler
E4. param.sched_priority = 1; → Set the priority
E5. pthread_attr_setschedparam(&my_attr, &param); → Link scheduling

parameters and attributes
E6. pthread_create(&th1, &my_attr, foo, 0); → launch the threads.
E7. pthread_attr_destroy(&my_attr); → destroying the parameters

Shared memory parallel programming models September 27, 2022 24 / 36



Sched-other (Round-Robin fair scheduler)

Not based on the priority

Each task is served for a quantum

Quantum is defined based on the thread execution, and the load of the system:
Very small quantum: system overloading due to the important number of context switches
Very long quantum: system reactivity is compromised
Implemented through the management of two run-queues : served, and not-yet-served

Calling routine nice(), and setpriority() increases the quantum

Shared memory parallel programming models September 27, 2022 25 / 36



Sched-other (Round-Robin fair scheduler)

Not based on the priority

Each task is served for a quantum

Quantum is defined based on the thread execution, and the load of the system:
Very small quantum: system overloading due to the important number of context switches
Very long quantum: system reactivity is compromised
Implemented through the management of two run-queues : served, and not-yet-served

Calling routine nice(), and setpriority() increases the quantum

Shared memory parallel programming models September 27, 2022 25 / 36



Sched-other (Round-Robin fair scheduler)

Not based on the priority

Each task is served for a quantum

Quantum is defined based on the thread execution, and the load of the system:
Very small quantum: system overloading due to the important number of context switches
Very long quantum: system reactivity is compromised
Implemented through the management of two run-queues : served, and not-yet-served

Calling routine nice(), and setpriority() increases the quantum

Shared memory parallel programming models September 27, 2022 25 / 36



Sched-other (Round-Robin fair scheduler)

Not based on the priority

Each task is served for a quantum

Quantum is defined based on the thread execution, and the load of the system:
Very small quantum: system overloading due to the important number of context switches
Very long quantum: system reactivity is compromised
Implemented through the management of two run-queues : served, and not-yet-served

Calling routine nice(), and setpriority() increases the quantum

Shared memory parallel programming models September 27, 2022 25 / 36



Race condition and mutual exclusion

The more threads are independent, the better.
BUT : in parallel programming, they share resources and communicate

Objective

Guarantee that concurrency and communications will not impact the system
correctness (similarly as in OpenMP)

A BR

Constraints

Guarantee that a task will have access to shared resources
Ensure that the access to the shared resource is controlled

Shared memory parallel programming models September 27, 2022 26 / 36



Race condition and mutual exclusion
The more threads are independent, the better.
BUT : in parallel programming, they share resources and communicate

Objective

Guarantee that concurrency and communications will not impact the system
correctness (similarly as in OpenMP)

A BR

Constraints

Guarantee that a task will have access to shared resources
Ensure that the access to the shared resource is controlled

Shared memory parallel programming models September 27, 2022 26 / 36



Race condition and mutual exclusion
The more threads are independent, the better.
BUT : in parallel programming, they share resources and communicate

Objective

Guarantee that concurrency and communications will not impact the system
correctness (similarly as in OpenMP)

A BR

Constraints

Guarantee that a task will have access to shared resources
Ensure that the access to the shared resource is controlled

Shared memory parallel programming models September 27, 2022 26 / 36



Race condition and mutual exclusion
The more threads are independent, the better.
BUT : in parallel programming, they share resources and communicate

Objective

Guarantee that concurrency and communications will not impact the system
correctness (similarly as in OpenMP)

A BR

Constraints

Guarantee that a task will have access to shared resources
Ensure that the access to the shared resource is controlled

Shared memory parallel programming models September 27, 2022 26 / 36



Race condition and mutual exclusion
The more threads are independent, the better.
BUT : in parallel programming, they share resources and communicate

Objective

Guarantee that concurrency and communications will not impact the system
correctness (similarly as in OpenMP)

A BR

Constraints

Guarantee that a task will have access to shared resources
Ensure that the access to the shared resource is controlled

Shared memory parallel programming models September 27, 2022 26 / 36



Race condition and mutual exclusion
The more threads are independent, the better.
BUT : in parallel programming, they share resources and communicate

Objective

Guarantee that concurrency and communications will not impact the system
correctness (similarly as in OpenMP)

A BR

Constraints

Guarantee that a task will have access to shared resources
Ensure that the access to the shared resource is controlled

Shared memory parallel programming models September 27, 2022 26 / 36



Solution : Mutex
The problem to solve

Consider thread A and B sharing a buffer. A produces the buffer and B consumes it. We
would like to guarantee that if A is producing data, therefore B can not consume it, and
vice-versa.

mutex m;

while(1) {
// proccessing 3
p(mutex);
for (int i=0;i<buffer_size;i++){

buffer[i] = function(i);
} // ressource partagée
v(mutex);

}

Tâche A

while(1) {
// proccessing 1
p(mutex);
process(buffer)
v(mutex);
// processing 2

}

Tâche B
Shared memory parallel programming models September 27, 2022 27 / 36



Revised solution
Issues

The solution depends on the duration of function function() and function
process

→ General rule : reduce at maximum the duration of critical section

while(1) {
// proccessing 3
for (int i=0;i<buffer_size;i++){

buffer_1[i] = function(i);
} // ressource partagée
p(mutex_1);
swap(buffer_1,buffer);
v(mutex_1);

}

Tâche A

while(1) {
// proccessing 1
p(mutex_1);
swap(buffer,buffer_2);
v(mutex_1);

process(buffer_2)

}

Tâche BShared memory parallel programming models September 27, 2022 28 / 36



Mutex with pthread
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Shared memory parallel programming models September 27, 2022 29 / 36



Semaphores and other forms of synchronization

Semaphores

nt sem_init(sem_t *semaphore, int pshared, unsigned int valeur);
nt sem_wait(sem_t *semaphore);
nt sem_timedwait(sem_t *semaphore, const struct timespec *abs_timeout);
nt sem_post(sem_t *semaphore);

Barrier

int pthread_barrier_destroy(pthread_barrier_t *barrier);
int pthread_barrier_init(pthread_barrier_t *restrict barrier,
const pthread_barrierattr_t *restrict attr, unsigned count);

Spin-locks

Spin-locks : active wait : thread is kept in active state

Shared memory parallel programming models September 27, 2022 30 / 36



Semaphores and other forms of synchronization
Semaphores

nt sem_init(sem_t *semaphore, int pshared, unsigned int valeur);
nt sem_wait(sem_t *semaphore);
nt sem_timedwait(sem_t *semaphore, const struct timespec *abs_timeout);
nt sem_post(sem_t *semaphore);

Barrier

int pthread_barrier_destroy(pthread_barrier_t *barrier);
int pthread_barrier_init(pthread_barrier_t *restrict barrier,
const pthread_barrierattr_t *restrict attr, unsigned count);

Spin-locks

Spin-locks : active wait : thread is kept in active state

Shared memory parallel programming models September 27, 2022 30 / 36



Semaphores and other forms of synchronization
Semaphores

nt sem_init(sem_t *semaphore, int pshared, unsigned int valeur);
nt sem_wait(sem_t *semaphore);
nt sem_timedwait(sem_t *semaphore, const struct timespec *abs_timeout);
nt sem_post(sem_t *semaphore);

Barrier

int pthread_barrier_destroy(pthread_barrier_t *barrier);
int pthread_barrier_init(pthread_barrier_t *restrict barrier,
const pthread_barrierattr_t *restrict attr, unsigned count);

Spin-locks

Spin-locks : active wait : thread is kept in active state

Shared memory parallel programming models September 27, 2022 30 / 36



Semaphores and other forms of synchronization
Semaphores

nt sem_init(sem_t *semaphore, int pshared, unsigned int valeur);
nt sem_wait(sem_t *semaphore);
nt sem_timedwait(sem_t *semaphore, const struct timespec *abs_timeout);
nt sem_post(sem_t *semaphore);

Barrier

int pthread_barrier_destroy(pthread_barrier_t *barrier);
int pthread_barrier_init(pthread_barrier_t *restrict barrier,
const pthread_barrierattr_t *restrict attr, unsigned count);

Spin-locks

Spin-locks : active wait : thread is kept in active state

Shared memory parallel programming models September 27, 2022 30 / 36



Other useful pthreads functions
pthread_detach( pthread_t thread ); Detach a thread

pthread_exit( address_t value );Terminate this thread, returning value to any thread
that is waiting for it

pthread_cancel( pthread_t thread );Cancel a thread

pthread_kill( pthread_t thread, int sig );Send a signal to a thread (e.g., SIGINT,
SIGKILL)

pthread_self(( ) Returns the thread id of this thread

pthread_equal( pthread_t id1, pthread_t id2 )Tells you if two thread ids refer to the
same thread. It returns 0 (false) or !0 (true).

pthread_once_t inits and pthread_once_init( &inits );

Shared memory parallel programming models September 27, 2022 31 / 36



Pthread affinity: by example
int pthread_setaffinity_np(pthread_t thread, size_t cpusetsize,
const cpu_set_t *cpuset);

first parameter is the pid, 0 = calling thread
second parameter is the size of your cpuset
third param is the cpuset in which your thread will be placed. Each bit represents a CPU.

cpu_set_t cpuset;
int cpu = 2;

CPU_ZERO(&cpuset);
CPU_SET( cpu , &cpuset);
sched_setaffinity(0, sizeof(cpuset), &cpuset);

Shared memory parallel programming models September 27, 2022 32 / 36



Pthread affinity: by example
int pthread_setaffinity_np(pthread_t thread, size_t cpusetsize,
const cpu_set_t *cpuset);

first parameter is the pid, 0 = calling thread
second parameter is the size of your cpuset
third param is the cpuset in which your thread will be placed. Each bit represents a CPU.

cpu_set_t cpuset;
int cpu = 2;

CPU_ZERO(&cpuset);
CPU_SET( cpu , &cpuset);
sched_setaffinity(0, sizeof(cpuset), &cpuset);

Shared memory parallel programming models September 27, 2022 32 / 36



Thread input data passing by example
Manipulated data are passed using the last parameter of function pthread_create

int pthread_create( ..., void *restrict arg);
If multiple parameters are to be passed → must be regrouped in a struct or defined as
global

#include ...

int a;
int b;

v8DEoid *foo(void *arg){
sleep(1);
printf("Hello, I am a thread %d %d \n", a, b);
return NULL;

}
int main(){
a=1;
b=2;
pthread_t thread_id;
printf("Before invoking the thread function\n");
pthread_create(&thread_id, NULL, foo, NULL);
pthread_join(thread_id, NULL);
printf("After Thread\n");

}

#include ...
struct couple {

int a;
int b;

};
void *foo(void *arg){

struct couple * c = (struct couple *) (arg);
sleep(1);
printf("Hello, I am a thread %d %d \n", c->a, c->b);
return NULL;

}
int main(){

struct couple c={.a = 1, .b=2};
pthread_t thread_id;
printf("Before invoking the thread function\n");
pthread_create(&thread_id, NULL, foo, &c);
pthread_join(thread_id, NULL);
printf("After Thread\n");

}

Shared memory parallel programming models September 27, 2022 33 / 36



Thread input data passing by example
Manipulated data are passed using the last parameter of function pthread_create

int pthread_create( ..., void *restrict arg);
If multiple parameters are to be passed → must be regrouped in a struct or defined as
global

#include ...

int a;
int b;

v8DEoid *foo(void *arg){
sleep(1);
printf("Hello, I am a thread %d %d \n", a, b);
return NULL;

}
int main(){

a=1;
b=2;
pthread_t thread_id;
printf("Before invoking the thread function\n");
pthread_create(&thread_id, NULL, foo, NULL);
pthread_join(thread_id, NULL);
printf("After Thread\n");

}

#include ...
struct couple {

int a;
int b;

};
void *foo(void *arg){

struct couple * c = (struct couple *) (arg);
sleep(1);
printf("Hello, I am a thread %d %d \n", c->a, c->b);
return NULL;

}
int main(){

struct couple c={.a = 1, .b=2};
pthread_t thread_id;
printf("Before invoking the thread function\n");
pthread_create(&thread_id, NULL, foo, &c);
pthread_join(thread_id, NULL);
printf("After Thread\n");

}

Shared memory parallel programming models September 27, 2022 33 / 36



Example of parallel computations : data parallelism
Array addition using Pthreads

Shared memory parallel programming models September 27, 2022 34 / 36



Plan

1 Introduction to shared-memory parallel programming model

2 Parallel programming using OpenMP

3 Pthread as shared memory parallel programming model

4 Exercices



Exercise Work-stealing with OpenMP
define a work stealing mechanism for Pthreads to compute array addition.

Shared memory parallel programming models September 27, 2022 35 / 36



long num_steps = 10000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
for (i=0;i<num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;
printf("%lf \n", pi);

}

Create a parallel version of the pi program using a parallel construct, without any use
of synchronization mechanisms (without parallelizing loops with the help of open mp).
Improve the previous solution using synchronization mechanisms
use parallel loops with openMP, improve the solving time using the OpenMP schedules

Shared memory parallel programming models September 27, 2022 36 / 36


	Introduction to shared-memory parallel programming model
	Parallel programming using OpenMP
	Pthread as shared memory parallel programming model
	Exercices

