Shared memory parallel programming

models
Pthread and OpenMP by example

Houssam-Eddine Zahaf
houssameddine.zahaf@univ-nantes.fr

shared-mem

Plan

El Introduction to shared-memory parallel programming model

E1 Parallel programming using OpenMP

E] Pthread as shared memory parallel programming model

1 Exercices

Plan

El Introduction to shared-memory parallel programming model

Shared memory model : Multiple CPU - Single DRAM

Central memory

Control Unit Control Unit Control Unit
| ALU o ALU L ALU |
S CPUO I 1. CPUT_____ ! ' _ . . cPU2 |
m Global memory which can be accessed by all processors of a parallel computer.
m Data in the global memory can be read/write by any of the processors. Tﬂt

§ SANVN

hared memory parallel programming models September 27, 2022 1/36

Shared memory : programming

m Programmed thanks to a collection of threads

m A thread is the smallest schedulable unit within an operating system
m Can be created dynamically

hared memory parallel programming models September 27, 2022

2/36

il

i

§ SAINVN

Shared memory : programming

m Programmed thanks to a collection of threads

m A thread is the smallest schedulable unit within an operating system
m Can be created dynamically

m Each thread has its set of private variables (local stack variables)
m Might share variables

hared memory parallel programming models September 27, 2022

2/36

il

i

§ SANVN

Shared memory : programming

m Programmed thanks to a collection of threads

m A thread is the smallest schedulable unit within an operating system
m Can be created dynamically

m Each thread has its set of private variables (local stack variables)

m Might share variables

Threads communicate

m implicitly by reading and writing shared variables

m coordinate using synchronization mechanisms on shared variables

Shared memory

tht

the /

\ th3

i

hared memory parallel programming models

September 27, 2022

2/36

il

t

i S3INVN

Programming platforms for shared memory hardware

m Several Thread Libraries/systems
m PTHREADS is the POSIX Standard (Portable Operating System Interface)

il

hared memory parallel programming models September 27, 2022 3/36

§ SAINVN

Programming platforms for shared memory hardware

m Several Thread Libraries/systems

m PTHREADS is the POSIX Standard (Portable Operating System Interface)

m OpenMP standard for application level programming OpenMP (Open Multi-Processing) is
an application programming interface (API) that supports multi-platform shared-memory
multiprocessing programming in C, C++, and Fortran on many platforms, instruction-set
architectures and operating systems.

il

hared memory parallel programming models September 27, 2022 3/36

§ SANVN

Programming platforms for shared memory hardware

m Several Thread Libraries/systems

m PTHREADS is the POSIX Standard (Portable Operating System Interface)

m OpenMP standard for application level programming OpenMP (Open Multi-Processing) is
an application programming interface (API) that supports multi-platform shared-memory
multiprocessing programming in C, C++, and Fortran on many platforms, instruction-set
architectures and operating systems.

m TBB Thread Building Blocks Intel is a C++ template library developed by Intel for parallel
programming on multi-core processors. Using TBB, a computation is broken down into
tasks that can run in parallel. The library manages and schedules threads to execute
these tasks.

m CILK: Cilk, Cilk++, Cilk Plus and OpenCilk are general-purpose programming
languages designed for multithreaded parallel computing. They are based on the C and
C++ programming languages.

m Java threads Built on top of POSIX threads : threads in the java virtual machine ?ut

§ SANVN

hared memory parallel programming models September 27, 2022 3/36

Plan

E1 Parallel programming using OpenMP

OpenMP

m Stands for Open MultiProcessing

m Three languages supported: C, C++, Fortran

m Portable :

m Supported on multiple operating systems: UNIX, Linux, Windows, etc.
m Supported by multiple compilers : gcc, Intel C/C++, etc

hared memory parallel programming models September 27, 2022

4/36

il

i

§ SANVN

OpenMP

m Stands for Open MultiProcessing

m Three languages supported: C, C++, Fortran

m Portable :

m Supported on multiple operating systems: UNIX, Linux, Windows, etc.
m Supported by multiple compilers : gcc, Intel C/C++, etc

Compiler directives

Functions library

Environment

variables

hared memory parallel programming models

September 27, 2022

4/36

il

i

§ SANVN

OpenMP execution model

m OpenMP program is a sequence fork-joins (sequential and
parallel regions)

hared memory parallel programming models

September 27, 2022

5/36

il

i

§ SAINVN

OpenMP execution model

m OpenMP program is a sequence fork-joins (sequential and
parallel regions)

m Sequential code is executed by the main process/thread

hared memory parallel programming models September 27, 2022 5/36

OpenMP execution model

m OpenMP program is a sequence fork-joins (sequential and
parallel regions)

m Sequential code is executed by the main process/thread
m Parallel code can be executed by one or multiple workers J H

hared memory parallel programming models September 27, 2022 5/36

OpenMP execution model

m OpenMP program is a sequence fork-joins (sequential and
parallel regions)

m Sequential code is executed by the main process/thread
m Parallel code can be executed by one or multiple workers J H

m Synchronization primitives can be used to synchronize each L
fork-joint phase =

hared memory parallel programming models September 27, 2022 5/36

OpenMP execution model

m OpenMP program is a sequence fork-joins (sequential and
parallel regions)

m Sequential code is executed by the main process/thread
m Parallel code can be executed by one or multiple workers J H

m Synchronization primitives can be used to synchronize each L
fork-joint phase e —

m |t allows to parallelize:
m loops L

= Region [H
m Functions

m efc.

hared memory parallel programming models September 27, 2022 5/36

OpenMP Structure

m OpenMP parallelization instruction are provided through directives and clauses
m They define how to (i) share work between several workers, synchronize them and (ii)
the policy to the shared data management.

il

hared memory parallel programming models September 27, 2022 6/36

§ SANVN

OpenMP Structure

m OpenMP parallelization instruction are provided through directives and clauses

m They define how to (i) share work between several workers, synchronize them and (ii)
the policy to the shared data management.

m pragmas start by “#” and they are ignored by default, except if the correct compiler
options are specified — helps to write sequential and parallel program in the same
“syntax”

il

hared memory parallel programming models September 27, 2022 6/36

§ SANVN

OpenMP Structure

m OpenMP parallelization instruction are provided through directives and clauses

m They define how to (i) share work between several workers, synchronize them and (ii)
the policy to the shared data management.

m pragmas start by “#” and they are ignored by default, except if the correct compiler
options are specified — helps to write sequential and parallel program in the same
“syntax”

OpenMP routine

m Functions and subroutines are part of a OpenMP library loaded at link time

il

hared memory parallel programming models September 27, 2022 6/36

i S3INVN

OpenMP Structure

m OpenMP parallelization instruction are provided through directives and clauses

m They define how to (i) share work between several workers, synchronize them and (ii)
the policy to the shared data management.

m pragmas start by “#” and they are ignored by default, except if the correct compiler
options are specified — helps to write sequential and parallel program in the same
“syntax”

OpenMP routine

m Functions and subroutines are part of a OpenMP library loaded at link time

m pragma(s) might trigger fork-join section
m the master task spawns (“forks”) children tasks and ensures that at their completion g
the master thread “gathers” to continue onward the execution. 1l

hared memory parallel programming models September 27, 2022 6/36

Main pragmag(s)

We can define a parallel region using

#pragma omp parallel
{

/* Parallel region code #*/

}
We can define a parallel loop using

#pragma omp for

/+ the for loop #*/ !

hared memory parallel programming models September 27, 2022 7/36

OpenMP : sharing clauses

B shared(...): list of shared variables by all OpenMP tasks

®m private (...): list of variables that are visible only by their task

m the variable is not initialized within the parallel part of the code
m the variable get its initial value when leaving the parallel region

m firstprivate (...): Similar to the previous but data are initialized with their value
before the parallel part of the code.

m default (none,private, shared) : denotes the default behavior for given
variables set to shared

m by default if the sharing is not specified, it is set to shared ?ﬂt%

hared memory parallel programming models September 27, 2022 8/36

Hello parallel region

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

=

int main(int argc, char *x argv) {
pragma omp parallel
{
int tid = omp_get_thread_num();
printf (" Hello, I am parallel [%d] \n",tid);
}
return EXIT_SUCCESS ;

H
H
H
He
H
H
H
Hel

B gcc hello_parregion.c -o hello_parregion.out -Wall —fopenmp@ut

7 G3INVN

hared memory parallel programming models September 27, 2022 9/36

Hello share clauses (1)

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char ** argv) {
int 1 = 0;
pragma omp parallel private (i)
{
int tid = omp_get_thread_num();
ix=2;
printf (" ID [%d] : i : %d \n",tid,1i);
}
return EXIT_SUCCESS ;

hared memory parallel programming models

September 27, 2022

10/36

©
gl
SALNYN

Liniverst de Nar

¥

Hello share clauses (1)

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char »* argv) {
int 1 = 0;
pragma omp parallel private (1)
{
int tid = omp_get_thread_num();
i*x=2;
printf (" ID [%d] : i : %d \n",tid,1i);
}
return EXIT_SUCCESS ;

share_clausesl.c:12:6: i’ i uninitial [] @y g
| - I %
: u

Liniverst de Narres

hared memory parallel programming models September 27, 2022 10/ 36

Hello share clauses (1)

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, char »* argv) {

int 1 = 0;
pragma omp parallel private (i)
{
int tid = omp_get_thread_num();
i*x=2;
printf (" ID [%d] : i : %d \n",tid,1i);
}

return EXIT_SUCCESS ;

share_clausesl.c:12:6:
12 | :

is used uninitialized

hared memory parallel programming models

September 27, 2022

10/36

Hello share clauses (2) - Correction

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int 1 = 2;
{

ix=tid;

printf (" ID [%d]
}
return EXIT_SUCCESS

int main(int argc, char »* argv) {
pragma omp parallel firstprivate (i)

int tid = omp_get_thread_num();

i : %d \n",tid,1);

hared memory parallel programming models

September 27, 2022

11/36

Hello share clauses

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int i = 2;

{

ix=tid;

int z = 1;

z++;

printf (" ID [%d]

}
return EXIT_SUCCESS

int main(int argc, char »* argv) {
pragma omp parallel default (shared)

int tid = omp_get_thread_num();

%d : %d\n",tid, i, z);

hared memory parallel programming models

September 27, 2022

12/36

Loops by example

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main (int argc,
pragma omp parallel
{
#pragma omp for
for (int i=0;1i<10;1i++){

printf (" ID

[$d] = i

}
return EXIT_SUCCESS ;

char *+ argv) {

int tid = omp_get_thread_num();

%d \n",tid,1);

hared memory parallel programming models

2 i

2 i

: i

: i

: i

: 1 =
i
i
i
i

WM @ U

&~

September 27, 2022

13/36

Loops : a particular attention

m The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)

hared memory parallel programming models September 27, 2022 14/ 36

il

i

§ SAINVN

Loops : a particular attention

m The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)

m The iterator of the parallelized loop is always (not the ones if nested loops exist)

hared memory parallel programming models September 27, 2022 14/ 36

il

i

§ SANVN

Loops : a particular attention
m The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)
m The iterator of the parallelized loop is always (not the ones if nested loops exist)

m There is an implicit barrier at the end of the loop.
m remove it by adding the clause nowait on the same line: #pragma omp for nowait

hared memory parallel programming models September 27, 2022 14/ 36

i

§ SANVN

Loops : a particular attention

m The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)
m The iterator of the parallelized loop is always (not the ones if nested loops exist)
m There is an implicit barrier at the end of the loop.
m remove it by adding the clause nowait on the same line: #pragma omp for nowait

Specify iteration scheduling : schedule (ScheduleType, chunksize)

hared memory parallel programming models September 27, 2022 14/36

§ GAINVN

Loops : a particular attention
m The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)
m The iterator of the parallelized loop is always (not the ones if nested loops exist)

m There is an implicit barrier at the end of the loop.
m remove it by adding the clause nowait on the same line: #pragma omp for nowait

Specify iteration scheduling : schedule (ScheduleType, chunksize)

m [static] distributes the iteration chunks across threads in a round-robin

m default chunksize is computer to load balance different threads
m useful when iterations are regular

hared memory parallel programming models September 27, 2022 14/36

§ GAINVN

Loops : a particular attention

m The iterator of a omp for loop must use additions/substractions to get to the next
iteration (no other types of post conditions are supported)
m The iterator of the parallelized loop is always (not the ones if nested loops exist)
m There is an implicit barrier at the end of the loop.
m remove it by adding the clause nowait on the same line: #pragma omp for nowait

Specify iteration scheduling : schedule (ScheduleType, chunksize)

m [static] distributes the iteration chunks across threads in a round-robin

m default chunksize is computer to load balance different threads
m useful when iterations are regular

= [dynamic] (work stealing) divides the iteration space to multiple chunks. When
complete a chunk, it dequeues the next one.

m By default, chunksize is 1.
m Very useful if the time to process individual iterations varies.

hared memory parallel programming models September 27, 2022 14/36

§ GAINVN

Loops scheduling (Link configuration, result)

include <stdio.h>

include <stdlib.h>

include <omp.h>

int main(int argc, char «x argv) {
int nthreads=0;

#pragma omp parallel
{
nthreads= omp_get_num_threads();
}
int nb[nthreads];
for (int i=0;i<nthreads;i++) nb[1]=0;
#pragma omp parallel for schedule(static, 3)
for (int 1i=0;1<30;i++){
int tid = omp_get_thread_num();
nb[tid]++;
printf("-> [%d] : %d \n", tid, i);
}
for (int i=0;i<nthreads;i++)
printf (" [%d]=%d\n", i, nb[i]);
return EXIT_SUCCESS ;

ed memory parallel programmi

©
gl
SALNYN

Liniverst de Narres

September 27, 2022

Loops scheduling (Link configuration, result)

dynamic, 5 dynamic, 3 dynamic, 1 static, 5 static, 2

)

int main(int argc, char +x argv) {
int nthreads=0;

i
#prac
{
nthreads= omp_get_num_threads () ;
}
int nb[nthreads];
for (int i=0;i<nthreads;i++) nb[i]=0;
#pra > p el(s c, 3)
for (int 1=0;1i<30;1i++){
int tid = omp_get_thread_num();
nb[tid]++;
printf ("-> [%d] : %d \n", tid, 1i);
}
for (int i=0;i<nthreads;i++)
printf (" [%d]=%d\n", 1, nb[i]);
return EXIT_SUCCESS ;

hared memory parallel programming models September 27, 2022

What does it do?

include <stdio.h>

include <stdlib.h>

include <omp.h>

int main(int argc, char «x argv) {
int count=0;

for (int i=0;1<30;1i++){
count++;

}

printf ("-> %d \n", count);
return EXIT_SUCCESS ;

#pragma omp parallel for schedule(dynamic) shared (count)

d memory parallel programmi

September

2022 16/

Oz
>

zZ

5

m

u

Liniverst de Narres

What does it do?

e e

int count=0;

#pragma o

ic) shared(co

for (int 1i=0;i<30;i++){
count++;

}

printf ("-> %d \n", count);
return EXIT_SUCCESS ;

hared memory parallel programmi

September

2022

16 /36

it

S3INVN

Critical section

include <omp.h>
int main(int argc, char «x argv) {
int count=0;

#pragma ~ schedule (dynamic
for (int

count++;
}
}
printf ("-> %d \n", count);
return EXIT_SUCCESS ;

) shared (count)

hared memory parallel programmi

September 27

202

17 /36

Critical section

cal with.out

de <omp. with.
in(int argc, char *x argv) {
int count=0; $./critical with.

1 hared (count)

with.

count++; $./critic: with

}
}
printf ("-> %d \n", count);
return EXIT_SUCCESS ;

}

B pragma omp atomic can be used for an atomic arithmetic instruction
m if supported by hardware, low level atomic instruction execution can be generated ?ﬂt

§ SANVN

hared memory parallel programming models September 27, 2022 17/36

Other synchronization mechanisms

m All threads will wait at this point
m All parallel regions have an implicit barrier.

il

hared memory parallel programming models September 27, 2022 18/36

§ SAINVN

Other synchronization mechanisms

m All threads will wait at this point
m All parallel regions have an implicit barrier.

single Directive

= a single thread will execute the sequence of instructions located in the single region
m There is an implicit barrier at the end of the region

il

hared memory parallel programming models September 27, 2022 18/36

i SINVN

Other synchronization mechanisms

barrier Directive : #pragma omp barrier

m All threads will wait at this point
m All parallel regions have an implicit barrier.

single Directive

= a single thread will execute the sequence of instructions located in the single region
m There is an implicit barrier at the end of the region

master Directive

= only the master will execute the sequence of instructions located in the single region,
m the region will be executed only once without implicit barrier at the end of the region.

it

S3INVN

Liniverst de Narres

hared memory parallel programming models September 27, 2022 18/ 36

Other synchronization mechanisms

barrier Directive : #pragma omp barrier

m All threads will wait at this point
m All parallel regions have an implicit barrier.

single Directive

= a single thread will execute the sequence of instructions located in the single region
m There is an implicit barrier at the end of the region

master Directive

= only the master will execute the sequence of instructions located in the single region,
m the region will be executed only once without implicit barrier at the end of the region.

nowait Clause

®m canbeusedonomp for, single,and critical directives to remove the implicit barrier they feature

%)
it

S3INVN

hared memory parallel programming models September 27, 2022 18/ 36

Environment variables

® Under Linux: export VAR=VALUE

Variable Name

Default

Description

OMP_NUM_THREADS

Number of procs (OS)

Sets the maximum number of threads to use by parallel regions

OMP_SCHEDULE

STATIC

Sets the run-time schedule type and an optional chunk size

OMP_DYNAMIC FALSE Enables (.TRUE.) or disables (.FALSE.) the dynamic
adjustment of the number of threads.
OMP_NESTED FALSE Enables (.TRUE.) or disables (.FALSE.)nested parallelism.

OMP_STACKSIZE

depend on arch.

Sets the number of bytes to allocate for each OpenMP
thread to use as the private stack for the thread.

OMP_MAX_ACTIVE_LEVELS

No enforced limit

Limits the number of simultaneously executing threads .
in an OpenMP program

il

hared memory parallel programming models September 27, 2022 19/36

§ SANVN

Environment variables

® Under Linux: export VAR=VALUE

| Variable Name | Default | Description |

OMP_NUM_THREADS Number of procs (OS) | Sets the maximum number of threads to use by parallel regions
OMP_SCHEDULE STATIC Sets the run-time schedule type and an optional chunk size
OMP_DYNAMIC FALSE Enables (.TRUE.) or disables (.FALSE.) the dynamic

adjustment of the number of threads.
OMP_NESTED FALSE Enables (.TRUE.) or disables (.FALSE.)nested parallelism.
OMP_STACKSIZE depend on arch. Sets the number of bytes to allocate for each OpenMP

thread to use as the private stack for the thread.
OMP_MAX_ACTIVE_LEVELS | No enforced limit Limits the number of simultaneously executing threads .

in an OpenMP program

Other dependant variables (Intel)

B KMP_BLOCKTIME, (default 200 milliseconds) : Sets the time, in milliseconds, that a thread should wait, after
completing the execution of a parallel region, before sleeping.

® KMP_LIBRARY, (default throughput) : Selects the OpenMP run-time library execution mode. The options for the
variable value are throughput, turnaround, and serial.

P
"R =

hared memory parallel programming models September 27, 2022 19/36

Plan

E] Pthread as shared memory parallel programming model

Pthread as shared memory parallel programming
model

m Stands for “Posix Threads”
m Posix is an IEEE standard for a Portable Operating System

hared memory parallel programming models September 27, 2022 20/ 36

il

i

§ SAINVN

Pthread as shared memory parallel programming
model

m Stands for “Posix Threads”
m Posix is an IEEE standard for a Portable Operating System

m functions are spawn as separate threads
m The thread terminates when:

m the function completes,
B pthread_exit() is called

hared memory parallel programming models September 27, 2022 20/ 36

il

i

§ SAINVN

Pthread as shared memory parallel programming
model

m Stands for “Posix Threads”
m Posix is an IEEE standard for a Portable Operating System

m functions are spawn as separate threads
m The thread terminates when:

m the function completes,
B pthread_exit() is called

m All threads share a single executable, a single set of global variables,
m Each thread has its own stack (function arguments, private variables)

hared memory parallel programming models September 27, 2022 20/ 36

il

i

§ SANVN

Pthread as shared memory parallel programming
model

m Stands for “Posix Threads”
m Posix is an IEEE standard for a Portable Operating System

m functions are spawn as separate threads
m The thread terminates when:

m the function completes,
B pthread_exit() is called

m All threads share a single executable, a single set of global variables,
m Each thread has its own stack (function arguments, private variables)

m Compared to OpenMP, it is a low-level API, indeed OpenMP is implemented on th
of Pthreads | %

§ SAINVN

hared memory parallel programming models September 27, 2022 20/ 36

Pthread execution model

main routines main()

B int pthread_create(thread_create x3+1
pthread_t =*thread,
const pthread_attr_t =xattr,
void * (*start_routine) (void =),
void =xarqg);
B int pthread_join(pthread_t thread, void xxretval);
B void pthread_exit (void =xretval);

B int pthread_detach (pthread_t thread); Pthread_join x2+1

pthread_|detach

it

Liniverst de Narres

S3INVN

hared memory parallel programming models September 27, 2022 21/36

Minimal Example using pthread

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>

void xfoo (void xarg) {
sleep(l);
printf ("Hello, I am a thread \n");
return NULL;

int main () {
pthread_t thread_id;
printf ("Before invoking the thread function\n");
pthread_create (&thread_id, NULL, foo, NULL);
pthread_join (thread_id, NULL);
printf ("After Thread\n");

©
1S3INYN

hared memory parallel programming models September 27, 2022 22/36

Scheduling pthreads : the Linux case
m Specified through pthread_attr_t

hared memory parallel programming models

September 27, 2022

23/36

il

I

§ SAINVN

Scheduling pthreads : the Linux case
m Specified through pthread_attr_t

#include <pthread.h>

int pthread_attr_setschedpolicy (pthread_attr_t xatt, int policy);

hared memory parallel programming models September 27, 2022

23/36

il

i SINVN

Scheduling pthreads : the Linux case
m Specified through pthread_attr_t

#include <pthread.h>

int pthread_attr_setschedpolicy (pthread_attr_t xatt, int policy);

m att : Scheduling attributes (the priority)

hared memory parallel programming models September 27, 2022

23/36

il

i SINVN

Scheduling pthreads : the Linux case
m Specified through pthread_attr_t

#include <pthread.h>

int pthread_attr_setschedpolicy (pthread_attr_t xatt, int policy);

m att : Scheduling attributes (the priority)
B policy : Scheduling policy : SCHED_FIFO, SCHED_RR, SCHED_DEAD

hared memory parallel programming models September 27, 2022

23/36

il

i

§ SAINVN

Scheduling pthreads : the Linux case
m Specified through pthread_attr_t

#include <pthread.h>

int pthread_attr_setschedpolicy (pthread_attr_t xatt, int policy);

m att : Scheduling attributes (the priority)
B policy : Scheduling policy : SCHED_FIFO, SCHED_RR, SCHED_DEAD

m Itis required to be super-user to apply the real-time scheduling policies
— Attention : A thread with the highest RT priority will never be preempted.

hared memory parallel programming models September 27, 2022

23/36

il

i

§ SANVN

Steps before creating pthreads

m Highest priority thread is scheduled first
m Priority is specified at thread creation time

E1.

E2.
ES.

E4.
ES5.

E6.
E7.

— pthread_attr_t et struct sched_param
create thread id structures and scheduling parameters :

B pthread_t th; pthread_attr_t my_attr; struct sched_param param;
pthread_attr_init (&my_attr) — initialization of the attribute

pthread_attr_setschedpolicy (&my_attr, SCHED_FIFO); — selectthe
scheduler

param.sched_priority = 1; — Setthe priority

pthread_attr_setschedparam(&my_attr, ¶m); — Link scheduling
parameters and attributes

pthread_create (&thl, &my_attr, foo, 0); — launch the threads. @ut
pthread_attr_destroy (&my_attr); — destroying the parameters |

§ SANVN

hared memory parallel programming models September 27, 2022 24/36

Sched-other (Round-Robin fair scheduler)

m Not based on the priority

hared memory parallel programming models September 27, 2022

25/36

il

I

§ SAINVN

Sched-other (Round-Robin fair scheduler)

m Not based on the priority

m Each task is served for a quantum

hared memory parallel programming models September 27, 2022

25/36

il

i SINVN

Sched-other (Round-Robin fair scheduler)

m Not based on the priority
m Each task is served for a quantum

m Quantum is defined based on the thread execution, and the load of the system:

m Very small quantum: system overloading due to the important number of context switches
m Very long quantum: system reactivity is compromised
m Implemented through the management of two run-queues : served, and not-yet-served

il

hared memory parallel programming models September 27, 2022 25/36

§ SANVN

Sched-other (Round-Robin fair scheduler)

m Not based on the priority
m Each task is served for a quantum

m Quantum is defined based on the thread execution, and the load of the system:

m Very small quantum: system overloading due to the important number of context switches
m Very long quantum: system reactivity is compromised
m Implemented through the management of two run-queues : served, and not-yet-served

m Calling routine nice (), and setpriority () increases the quantum @ﬂ’(
|

hared memory parallel programming models September 27, 2022 25/36

Race condition and mutual exclusion

hared memory parallel programming models

September 27, 2022

26 /36

il

1

§ SAINVN

Race condition and mutual exclusion

m The more threads are independent, the better.
m BUT :in parallel programming, they share resources and communicate

hared memory parallel programming models September 27, 2022

26 /36

il

i

§ SAINVN

Race condition and mutual exclusion

m The more threads are independent, the better.
m BUT :in parallel programming, they share resources and communicate

hared memory parallel programming models September 27, 2022

26 /36

il

i

§ SAINVN

Race condition and mutual exclusion

m The more threads are independent, the better.
m BUT :in parallel programming, they share resources and communicate

m Guarantee that concurrency and communications will not impact the system
correctness (similarly as in OpenMP)

il

hared memory parallel programming models September 27, 2022 26 /36

i SINVN

Race condition and mutual exclusion

m The more threads are independent, the better.
m BUT :in parallel programming, they share resources and communicate

m Guarantee that concurrency and communications will not impact the system
correctness (similarly as in OpenMP)

SR

il

hared memory parallel programming models September 27, 2022 26 /36

§ SAINVN

Race condition and mutual exclusion

m The more threads are independent, the better.
m BUT :in parallel programming, they share resources and communicate

m Guarantee that concurrency and communications will not impact the system
correctness (similarly as in OpenMP)

5 ()

m Guarantee that a task will have access to shared resources

m Ensure that the access to the shared resource is controlled i

o

hared memory parallel programming models September 27, 2022 26 /36

i S3INVN

Solution : Mutex

The problem to solve

Consider thread A and B sharing a buffer. A produces the buffer and B consumes it. We
would like to guarantee that if A is producing data, therefore B can not consume it, and

vice-versa.

mutex m;

while (1) { while (1) {
// proccessing 1
p (mutex) ;

// proccessing 3
p (mutex) ;

for (int i=0;i<buffer_size;i++) { process (buffer)
buffer[i] = function(i); v (mutex) ;
} // ressource partagée // processing 2

v (mutex) ;

—
-
=6
;}\ D o
7 G3INVN

hared memory parallel programming models September 27, 2022

Revised solution

Issues

m The solution depends on the duration of function function () and function
process

— General rule : reduce at maximum the duration of critical section

while (1) { while (1) {
// proccessing 3 // proccessing 1
for (int i=0;i<buffer_size;i++) { p (mutex_1);
buffer_ 1[i] = function(i); swap (buffer,buffer_2);
} // ressource partagée v (mutex_1);
p(mutex_1);
swap (buffer_1,buffer); process (buffer_2)

v (mutex_1); @\Jﬂt
) } lat

hared memory parallel programming models September 27, 2022 28/36

§ SAINVN

Mutex with pthread

int pthread _mutex_init (pthread_mutex_t xrestrict mutex,
const pthread_mutexattr_t +restrict attr);
int pthread_mutex_destroy (pthread_mutex_t smutex);

int pthread_mutex_lock (pthread_mutex_t smutex);
int pthread_mutex_unlock (pthread_mutex_t xmutex);

hared memory parallel programming models September 27, 2022

29/36

it

Liniverst de Nar

S3INVN

¥

Semaphores and other forms of synchronization

hared memory parallel programming models September 27, 2022 30/36

il

1

§ SAINVN

Semaphores and other forms of synchronization

Semaphores

nt
nt
nt
nt

sem_init (sem_t xsemaphore, int pshared, unsigned int valeur);

sem_wait (sem_t xsemaphore);

sem_timedwait (sem_t *semaphore, const struct timespec xabs_timeout);

sem_post (sem_t xsemaphore);

hared memory parallel programming models

September 27, 2022

30/36

il

i SINVN

Semaphores and other forms of synchronization

Semaphores

nt sem_init (sem_t *semaphore, int pshared, unsigned int valeur);

nt sem_wait (sem_t *semaphore);

nt sem_timedwait (sem_t xsemaphore, const struct timespec *abs_timeout);
nt sem_post (sem_t xsemaphore);

Barrier

int pthread_barrier_destroy (pthread_barrier_t +barrier);
int pthread_barrier_init (pthread_barrier_t =*restrict barrier,
const pthread_barrierattr_t xrestrict attr, unsigned count);

it

Liniverst de Nar

S3INVN

hared memory parallel programming models September 27, 2022 30/36

¥

Semaphores and other forms of synchronization

Semaphores

nt
nt
nt
nt

sem_init (sem_t xsemaphore, int pshared, unsigned int valeur);
sem_wait (sem_t xsemaphore);

sem_timedwait (sem_t *semaphore, const struct timespec xabs_timeout);
sem_post (sem_t xsemaphore);

Barrier

int pthread_barrier_destroy (pthread_barrier_t +barrier);
int pthread_barrier_init (pthread_barrier_t =*restrict barrier,
const pthread_barrierattr_t xrestrict attr, unsigned count);

Spin-locks

m Spin-locks : active wait : thread is kept in active state

1t

Liniverst de Nar

i SINVN

hared memory parallel programming models September 27, 2022 30/36

Other useful pthreads functions

m pthread_detach(pthread_t thread); Detach a thread

m pthread_exit(address_t value);Terminate this thread, returning value to any thread
that is waiting for it

m pthread_cancel(pthread_t thread);Cancel a thread

m pthread_kill(pthread_t thread, int sig);Send a signal to a thread (e.g., SIGINT,
SIGKILL)

m pthread_self(() Returns the thread id of this thread

m pthread_equal(pthread_t id1, pthread_t id2)Tells you if two thread ids refer to the
same thread. It returns 0 (false) or !0 (true).

§ SANVN

. 9
m pthread_once_t inits and pthread_once_init(&inits); | t

hared memory parallel programming models September 27, 2022 31/36

Pthread affinity: by example

B int pthread_setaffinity np(pthread_t thread, size_t cpusetsize,
const cpu_set_t =*cpuset);

m first parameter is the pid, 0 = calling thread
m second parameter is the size of your cpuset
m third param is the cpuset in which your thread will be placed. Each bit represents a CPU.

il

hared memory parallel programming models September 27, 2022 32/36

§ SAINVN

Pthread affinity: by example

B int pthread_setaffinity_ np(pthread_t thread, size_t cpusetsize,
const cpu_set_t =*cpuset);
m first parameter is the pid, 0 = calling thread
m second parameter is the size of your cpuset
m third param is the cpuset in which your thread will be placed. Each bit represents a CPU.

cpu_set_t cpuset;
int cpu = 2;

CPU_ZERO (&cpuset) ;
CPU_SET(cpu , &cpuset);
sched_setaffinity (0, sizeof (cpuset), &cpuset);

hared memory parallel programming models September 27, 2022 32/36

Thread input data passing by example

m Manipulated data are passed using the last parameter of function pthread_create

int pthread_create(..., void xrestrict arg);
m If multiple parameters are to be passed — must be regrouped in a struct or defined as
global

il

hared memory parallel programming models September 27, 2022 33/36

§ SAINVN

Thread input data passing by example

m Manipulated data are passed using the last parameter of function pthread_create

int pthread_create(

« e ey

void xrestrict argqg);

m If multiple parameters are to be passed — must be regrouped in a struct or defined as

global

#include ...

int a;
int b;

v8DEoid *foo(void xarg) {
sleep(1);
printf("Hello,
return NULL;

}

int main () {
a=1;
b=2;
pthread_t thread_id;
printf ("Before invoking the thread function\n");
pthread_create (¢thread_id, NULL, foo, NULL);
pthread_join(thread_id, NULL);
printf ("After Thread\n");

I am a thread %d %d \n", a, b);

#include ...

struct couple ({
int a;
int b;

bi

void xfoo(void xarg) {
struct couple * c =
sleep(1l);
printf ("Hello,
return NULL;

}

int main () {
struct couple c={.a = 1,
pthread_t thread_id;

(struct couple «)

I am a thread %d %d \n",

b=2};

pthread_create (¢thread_id, NULL,
pthread_join (thread_id, NULL);
printf ("After Thread\n");

foo,

(arqg) ;

c->a,

printf ("Before invoking the thread function\n");
&c);

c—>b);

hared memory parallel programming models

September 27, 2022

33/36

S3INVN

12 Nares

Example of parallel computations : data parallelism

m Array addition using Pthreads

hared memory parallel programming models September 27, 2022 34/36

il

I

§ SAINVN

Plan

1 Exercices

Exercise Work-stealing with OpenMP

define a work stealing mechanism for Pthreads to compute array addition.

hared memory parallel programming models September 27, 2022

35/36

il

i SINVN

long num_steps = 10000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;
step = 1.0/ (double) num_steps;
for (i=0;i<num_steps; i++) {

x = (1i+0.5) xstep;

sum = sum + 4.0/ (1.0+x*x);
}
Pl = step * sum;
printf ("%$1f \n", pi);

m Create a parallel version of the pi program using a parallel construct, without any use

of synchronization mechanisms (without parallelizing loops with the help of open .
m Improve the previous solution using synchronization mechanisms %i')t
m use parallel loops with openMP, improve the solving time using the OpenMP schedules™

S3INVN

hared memory parallel programming models September 27, 2022 36/36

	Introduction to shared-memory parallel programming model
	Parallel programming using OpenMP
	Pthread as shared memory parallel programming model
	Exercices

