
PaPro : Parallel Programming

Houssam-Eddine Zahaf
houssameddine.zahaf@univ-nantes.fr

PaPro

This lecture
Lecture in hours

Theoretical :
18h

Practical : 12h Exam : 1h20

Lecture content :
Theo. Prac. Title

4h Introduction to parallel programming
4h Parallel Programming : shared memory systems

4h Practice Pthreads and OpenMP
4h Parallel programming : distributed memory systems

4h Practice OpenMPI
6h Parallel programming : massively parallel hardware (GPUS)

4h Practice CUDA and OpenCL

PaPro : Parallel Programming September 26, 2022 1 / 27

This lecture
Lecture in hours

Theoretical :
18h

Practical : 12h Exam : 1h20

Lecture content :

Theo. Prac. Title
4h Introduction to parallel programming
4h Parallel Programming : shared memory systems

4h Practice Pthreads and OpenMP
4h Parallel programming : distributed memory systems

4h Practice OpenMPI
6h Parallel programming : massively parallel hardware (GPUS)

4h Practice CUDA and OpenCL

PaPro : Parallel Programming September 26, 2022 1 / 27

This lecture
Lecture in hours

Theoretical :
18h

Practical : 12h Exam : 1h20

Lecture content :
Theo. Prac. Title

4h Introduction to parallel programming
4h Parallel Programming : shared memory systems

4h Practice Pthreads and OpenMP
4h Parallel programming : distributed memory systems

4h Practice OpenMPI
6h Parallel programming : massively parallel hardware (GPUS)

4h Practice CUDA and OpenCL

PaPro : Parallel Programming September 26, 2022 1 / 27

This lecture
Lecture in hours

Theoretical :
18h

Practical : 12h Exam : 1h20

Lecture content :
Theo. Prac. Title

4h Introduction to parallel programming

4h Parallel Programming : shared memory systems
4h Practice Pthreads and OpenMP

4h Parallel programming : distributed memory systems
4h Practice OpenMPI

6h Parallel programming : massively parallel hardware (GPUS)
4h Practice CUDA and OpenCL

PaPro : Parallel Programming September 26, 2022 1 / 27

This lecture
Lecture in hours

Theoretical :
18h

Practical : 12h Exam : 1h20

Lecture content :
Theo. Prac. Title

4h Introduction to parallel programming
4h Parallel Programming : shared memory systems

4h Practice Pthreads and OpenMP
4h Parallel programming : distributed memory systems

4h Practice OpenMPI
6h Parallel programming : massively parallel hardware (GPUS)

4h Practice CUDA and OpenCL

PaPro : Parallel Programming September 26, 2022 1 / 27

This lecture
Lecture in hours

Theoretical :
18h

Practical : 12h Exam : 1h20

Lecture content :
Theo. Prac. Title

4h Introduction to parallel programming
4h Parallel Programming : shared memory systems

4h Practice Pthreads and OpenMP

4h Parallel programming : distributed memory systems
4h Practice OpenMPI

6h Parallel programming : massively parallel hardware (GPUS)
4h Practice CUDA and OpenCL

PaPro : Parallel Programming September 26, 2022 1 / 27

This lecture
Lecture in hours

Theoretical :
18h

Practical : 12h Exam : 1h20

Lecture content :
Theo. Prac. Title

4h Introduction to parallel programming
4h Parallel Programming : shared memory systems

4h Practice Pthreads and OpenMP
4h Parallel programming : distributed memory systems

4h Practice OpenMPI
6h Parallel programming : massively parallel hardware (GPUS)

4h Practice CUDA and OpenCL

PaPro : Parallel Programming September 26, 2022 1 / 27

This lecture
Lecture in hours

Theoretical :
18h

Practical : 12h Exam : 1h20

Lecture content :
Theo. Prac. Title

4h Introduction to parallel programming
4h Parallel Programming : shared memory systems

4h Practice Pthreads and OpenMP
4h Parallel programming : distributed memory systems

4h Practice OpenMPI

6h Parallel programming : massively parallel hardware (GPUS)
4h Practice CUDA and OpenCL

PaPro : Parallel Programming September 26, 2022 1 / 27

This lecture
Lecture in hours

Theoretical :
18h

Practical : 12h Exam : 1h20

Lecture content :
Theo. Prac. Title

4h Introduction to parallel programming
4h Parallel Programming : shared memory systems

4h Practice Pthreads and OpenMP
4h Parallel programming : distributed memory systems

4h Practice OpenMPI
6h Parallel programming : massively parallel hardware (GPUS)

4h Practice CUDA and OpenCL

PaPro : Parallel Programming September 26, 2022 1 / 27

This lecture
Lecture in hours

Theoretical :
18h

Practical : 12h Exam : 1h20

Lecture content :
Theo. Prac. Title

4h Introduction to parallel programming
4h Parallel Programming : shared memory systems

4h Practice Pthreads and OpenMP
4h Parallel programming : distributed memory systems

4h Practice OpenMPI
6h Parallel programming : massively parallel hardware (GPUS)

4h Practice CUDA and OpenCL

PaPro : Parallel Programming September 26, 2022 1 / 27

Plan

1 Sequential, Concurrent and PaPro

2 Hardware architecture for parallel programming

3 Sources of parallelisms

4 Parallelism efficiency

5 Practice preparation

Plan

1 Sequential, Concurrent and PaPro

2 Hardware architecture for parallel programming

3 Sources of parallelisms

4 Parallelism efficiency

5 Practice preparation

Single core limitations

PaPro : Parallel Programming September 26, 2022 2 / 27

Rough definitions
Concurrent: Multiple tasks compete for the same resources
→ Allows responsiveness

Sequential programming: at every point in time, one part of program executing:

Parallel programming: multiple parts of program execute at once:

In last both cases, we achieve the same functionality (task)
Objective : accelerate task execution, i.e. shorten task response time

PaPro : Parallel Programming September 26, 2022 3 / 27

Rough definitions
Concurrent: Multiple tasks compete for the same resources
→ Allows responsiveness

Sequential programming: at every point in time, one part of program executing:

Parallel programming: multiple parts of program execute at once:

In last both cases, we achieve the same functionality (task)
Objective : accelerate task execution, i.e. shorten task response time

PaPro : Parallel Programming September 26, 2022 3 / 27

Rough definitions
Concurrent: Multiple tasks compete for the same resources
→ Allows responsiveness

Sequential programming: at every point in time, one part of program executing:

Parallel programming: multiple parts of program execute at once:

In last both cases, we achieve the same functionality (task)
Objective : accelerate task execution, i.e. shorten task response time

PaPro : Parallel Programming September 26, 2022 3 / 27

Rough definitions
Concurrent: Multiple tasks compete for the same resources
→ Allows responsiveness

Sequential programming: at every point in time, one part of program executing:

Parallel programming: multiple parts of program execute at once:

In last both cases, we achieve the same functionality (task)
Objective : accelerate task execution, i.e. shorten task response time

PaPro : Parallel Programming September 26, 2022 3 / 27

Rough definitions
Concurrent: Multiple tasks compete for the same resources
→ Allows responsiveness

Sequential programming: at every point in time, one part of program executing:

Parallel programming: multiple parts of program execute at once:

In last both cases, we achieve the same functionality (task)
Objective : accelerate task execution, i.e. shorten task response time

PaPro : Parallel Programming September 26, 2022 3 / 27

Rough definitions
Concurrent: Multiple tasks compete for the same resources
→ Allows responsiveness

Sequential programming: at every point in time, one part of program executing:

Parallel programming: multiple parts of program execute at once:

In last both cases, we achieve the same functionality (task)
Objective : accelerate task execution, i.e. shorten task response time

PaPro : Parallel Programming September 26, 2022 3 / 27

Rough definitions
Concurrent: Multiple tasks compete for the same resources
→ Allows responsiveness

Sequential programming: at every point in time, one part of program executing:

Parallel programming: multiple parts of program execute at once:

In last both cases, we achieve the same functionality (task)
Objective : accelerate task execution, i.e. shorten task response time

PaPro : Parallel Programming September 26, 2022 3 / 27

Rough definitions
Concurrent: Multiple tasks compete for the same resources
→ Allows responsiveness

Sequential programming: at every point in time, one part of program executing:

Parallel programming: multiple parts of program execute at once:

In last both cases, we achieve the same functionality (task)
Objective : accelerate task execution, i.e. shorten task response time

PaPro : Parallel Programming September 26, 2022 3 / 27

Rough definitions
Concurrent: Multiple tasks compete for the same resources
→ Allows responsiveness

Sequential programming: at every point in time, one part of program executing:

Parallel programming: multiple parts of program execute at once:

In last both cases, we achieve the same functionality (task)
Objective : accelerate task execution, i.e. shorten task response time

PaPro : Parallel Programming September 26, 2022 3 / 27

Rough definitions
Concurrent: Multiple tasks compete for the same resources
→ Allows responsiveness

Sequential programming: at every point in time, one part of program executing:

Parallel programming: multiple parts of program execute at once:

In last both cases, we achieve the same functionality (task)

Objective : accelerate task execution, i.e. shorten task response time

PaPro : Parallel Programming September 26, 2022 3 / 27

Rough definitions
Concurrent: Multiple tasks compete for the same resources
→ Allows responsiveness

Sequential programming: at every point in time, one part of program executing:

Parallel programming: multiple parts of program execute at once:

In last both cases, we achieve the same functionality (task)
Objective : accelerate task execution, i.e. shorten task response time

PaPro : Parallel Programming September 26, 2022 3 / 27

Example (1) of a parallel program : binarization

→ What is the best configuration to execute a task on a parallel architecture?

PaPro : Parallel Programming September 26, 2022 4 / 27

Example (1) of a parallel program : binarization

→ What is the best configuration to execute a task on a parallel architecture?

PaPro : Parallel Programming September 26, 2022 4 / 27

Example (1) of a parallel program : binarization

→ What is the best configuration to execute a task on a parallel architecture?

PaPro : Parallel Programming September 26, 2022 4 / 27

Example (1) of a parallel program : binarization

→ What is the best configuration to execute a task on a parallel architecture?

PaPro : Parallel Programming September 26, 2022 4 / 27

Plan

1 Sequential, Concurrent and PaPro

2 Hardware architecture for parallel programming

3 Sources of parallelisms

4 Parallelism efficiency

5 Practice preparation

Single CPU - Single DRAM

Control Unit

ALU

Central memory

Single central memory + single compute unit

PaPro : Parallel Programming September 26, 2022 5 / 27

Shared memory model : Multiple CPU - Single DRAM

Control Unit

ALU

CPU0

Control Unit

ALU

CPU1

Control Unit

ALU

CPU2

Central memory

Global memory which can be accessed by all processors of a parallel computer.
Data in the global memory can be read/write by any of the processors.

PaPro : Parallel Programming September 26, 2022 6 / 27

Multiple CPU - Multiple DRAM

Control Unit

ALU

CPU0

Control Unit

ALU

CPU1

Control Unit

ALU

CPU2

Central memory 0 Central memory 1 Central memory 2

Every core has its own memory and no other processor can access directly this
memory
communicates with other through off-chip mechanisms (by message passing)PaPro : Parallel Programming September 26, 2022 7 / 27

Classification : Flynn

D
ata

pool

Instructions pool

CE

Single instruction
Single DATA SISD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Single instruction
multiple DATA SIMD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Multiple instruction
Single DATA MISD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Multiple instruction
Multiple DATA MIMD

PaPro : Parallel Programming September 26, 2022 8 / 27

Classification : Flynn

D
ata

pool

Instructions pool

CE

Single instruction
Single DATA SISD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Single instruction
multiple DATA SIMD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Multiple instruction
Single DATA MISD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Multiple instruction
Multiple DATA MIMD

PaPro : Parallel Programming September 26, 2022 8 / 27

Classification : Flynn

D
ata

pool

Instructions pool

CE

Single instruction
Single DATA SISD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Single instruction
multiple DATA SIMD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Multiple instruction
Single DATA MISD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Multiple instruction
Multiple DATA MIMD

PaPro : Parallel Programming September 26, 2022 8 / 27

Classification : Flynn

D
ata

pool

Instructions pool

CE

Single instruction
Single DATA SISD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Single instruction
multiple DATA SIMD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Multiple instruction
Single DATA MISD

D
ata

pool

Instructions pool

CE

CE

CE

CE

Multiple instruction
Multiple DATA MIMD

PaPro : Parallel Programming September 26, 2022 8 / 27

Classification : Heterogeneity
Identical
Identical: The processors are identical; hence the execution time of a processing is the same on
all processors.

Uniform
The rate of execution of a processing depends only on the speed of the processor. Thus, a
processor of speed ×2, will execute a processing at twice of the rate of a processor of speed 1.

Heterogeneous
The processors are different. The rate of execution of a processing depends on both the processor
and the task. Indeed, not all tasks may be able to execute on all processors and a processing may
have different execution rates on two different processors operating at the same speed.

PaPro : Parallel Programming September 26, 2022 9 / 27

Classification : Heterogeneity
Identical
Identical: The processors are identical; hence the execution time of a processing is the same on
all processors.

Uniform
The rate of execution of a processing depends only on the speed of the processor. Thus, a
processor of speed ×2, will execute a processing at twice of the rate of a processor of speed 1.

Heterogeneous
The processors are different. The rate of execution of a processing depends on both the processor
and the task. Indeed, not all tasks may be able to execute on all processors and a processing may
have different execution rates on two different processors operating at the same speed.

PaPro : Parallel Programming September 26, 2022 9 / 27

Classification : Heterogeneity
Identical
Identical: The processors are identical; hence the execution time of a processing is the same on
all processors.

Uniform
The rate of execution of a processing depends only on the speed of the processor. Thus, a
processor of speed ×2, will execute a processing at twice of the rate of a processor of speed 1.

Heterogeneous
The processors are different. The rate of execution of a processing depends on both the processor
and the task. Indeed, not all tasks may be able to execute on all processors and a processing may
have different execution rates on two different processors operating at the same speed.

PaPro : Parallel Programming September 26, 2022 9 / 27

Plan

1 Sequential, Concurrent and PaPro

2 Hardware architecture for parallel programming

3 Sources of parallelisms

4 Parallelism efficiency

5 Practice preparation

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Instruction level
is the ability to initiate multiple instructions during the same clock cycle.

1 2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1
2

3 4 5 6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6 7 8

1
2

3 4

5

6
7
8

1
2

3 4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5

6
7
8

1
2

3
4

5
6
7
8

1
2
3
4
5
6
7
8

Automatic parallelization of sequential programs
Compiler performs dependence analysis on a sequential program’s source data

Do not exploit functional parallelism (limited parallelism)

PaPro : Parallel Programming September 26, 2022 10 / 27

Data parallelism
Execute the same instruction or program segment over different data sets
simultaneously on multiple computing nodes.

Parallelism is exploited at data set level

Example

void MatrixMul()
{
for (i = 0; i < rlen_A; i++)
{

for (k = 0; k < clen_B; k++)
{
sum = 0;
for (j = 0; j < clen_A; j++)
{

sum += A[i][j] * B[j][k];
}
C[i][k] = sum;

}
}

void MatrixMul1()
{
for (i = 0; i < rlen_A/2; i++)
{

for (k = 0; k < clen_B; k++)
{

sum = 0;
for (j = 0; j < clen_A; j++)
{
sum += A[i][j] * B[j][k];

}
C[i][k] = sum;

}
}

void MatrixMul2()
{
for(i=rlen_A/2; i < rlen_A; i++)
{

for (k = 0; k < clen_B; k++)
{

sum = 0;
for (j = 0; j < clen_A; j++)
{
sum += A[i][j] * B[j][k];

}
C[i][k] = sum;

}
}

Data mapping is critical : static and dynamic?

PaPro : Parallel Programming September 26, 2022 11 / 27

Data parallelism
Execute the same instruction or program segment over different data sets
simultaneously on multiple computing nodes.

Parallelism is exploited at data set level

Example

void MatrixMul()
{
for (i = 0; i < rlen_A; i++)
{
for (k = 0; k < clen_B; k++)
{

sum = 0;
for (j = 0; j < clen_A; j++)
{

sum += A[i][j] * B[j][k];
}
C[i][k] = sum;

}
}

void MatrixMul1()
{
for (i = 0; i < rlen_A/2; i++)
{

for (k = 0; k < clen_B; k++)
{

sum = 0;
for (j = 0; j < clen_A; j++)
{
sum += A[i][j] * B[j][k];

}
C[i][k] = sum;

}
}

void MatrixMul2()
{
for(i=rlen_A/2; i < rlen_A; i++)
{

for (k = 0; k < clen_B; k++)
{

sum = 0;
for (j = 0; j < clen_A; j++)
{
sum += A[i][j] * B[j][k];

}
C[i][k] = sum;

}
}

Data mapping is critical : static and dynamic?

PaPro : Parallel Programming September 26, 2022 11 / 27

Data parallelism
Execute the same instruction or program segment over different data sets
simultaneously on multiple computing nodes.

Parallelism is exploited at data set level

Example

void MatrixMul()
{
for (i = 0; i < rlen_A; i++)
{
for (k = 0; k < clen_B; k++)
{

sum = 0;
for (j = 0; j < clen_A; j++)
{

sum += A[i][j] * B[j][k];
}
C[i][k] = sum;

}
}

void MatrixMul1()
{
for (i = 0; i < rlen_A/2; i++)
{

for (k = 0; k < clen_B; k++)
{

sum = 0;
for (j = 0; j < clen_A; j++)
{
sum += A[i][j] * B[j][k];

}
C[i][k] = sum;

}
}

void MatrixMul2()
{
for(i=rlen_A/2; i < rlen_A; i++)
{
for (k = 0; k < clen_B; k++)
{

sum = 0;
for (j = 0; j < clen_A; j++)
{

sum += A[i][j] * B[j][k];
}
C[i][k] = sum;

}
}

Data mapping is critical : static and dynamic?

PaPro : Parallel Programming September 26, 2022 11 / 27

Data parallelism
Execute the same instruction or program segment over different data sets
simultaneously on multiple computing nodes.

Parallelism is exploited at data set level

Example

void MatrixMul()
{
for (i = 0; i < rlen_A; i++)
{
for (k = 0; k < clen_B; k++)
{

sum = 0;
for (j = 0; j < clen_A; j++)
{

sum += A[i][j] * B[j][k];
}
C[i][k] = sum;

}
}

void MatrixMul1()
{
for (i = 0; i < rlen_A/2; i++)
{

for (k = 0; k < clen_B; k++)
{

sum = 0;
for (j = 0; j < clen_A; j++)
{
sum += A[i][j] * B[j][k];

}
C[i][k] = sum;

}
}

void MatrixMul2()
{
for(i=rlen_A/2; i < rlen_A; i++)
{
for (k = 0; k < clen_B; k++)
{

sum = 0;
for (j = 0; j < clen_A; j++)
{

sum += A[i][j] * B[j][k];
}
C[i][k] = sum;

}
}

Data mapping is critical : static and dynamic?

PaPro : Parallel Programming September 26, 2022 11 / 27

Task parallelism
Each processor performs a different task

Example

int main(int argc, char ** argv)
{
color_correction();
detect_lane();
segmentation();

}

int main(int argc, char ** argv)
{

if (CPU==CPU1)
color_correction();

if (CPU==CPU2)
detect_lane();

if (CPU==CPU1){
wait_for(detect_lane);
segmentation();

}
}

More difficult to balance load

PaPro : Parallel Programming September 26, 2022 12 / 27

Task parallelism
Each processor performs a different task

Example

int main(int argc, char ** argv)
{
color_correction();
detect_lane();
segmentation();

}

int main(int argc, char ** argv)
{

if (CPU==CPU1)
color_correction();

if (CPU==CPU2)
detect_lane();

if (CPU==CPU1){
wait_for(detect_lane);
segmentation();

}
}

More difficult to balance load

PaPro : Parallel Programming September 26, 2022 12 / 27

Task parallelism
Each processor performs a different task

Example

int main(int argc, char ** argv)
{
color_correction();
detect_lane();
segmentation();

}

int main(int argc, char ** argv)
{

if (CPU==CPU1)
color_correction();

if (CPU==CPU2)
detect_lane();

if (CPU==CPU1){
wait_for(detect_lane);
segmentation();

}
}

More difficult to balance load

PaPro : Parallel Programming September 26, 2022 12 / 27

Domain decomposition and load balancing
Domain decomposition

The computation domain is partitioned into several subdomains and then mapped
onto processors of a parallel system.
In general, the number of subdomains equals to the number of processors

Load balancing

The goal of partitioning is to distribute the computation load such that all processors
can finish their computation at about the same time
For identical cores parallel systems, the computation load is distributed as evenly as
possible in a parallel computer.
For heterogeneous parallel system, the computation load is distributed according to
the computing power of each processor.

PaPro : Parallel Programming September 26, 2022 13 / 27

Domain decomposition and load balancing
Domain decomposition

The computation domain is partitioned into several subdomains and then mapped
onto processors of a parallel system.
In general, the number of subdomains equals to the number of processors

Load balancing

The goal of partitioning is to distribute the computation load such that all processors
can finish their computation at about the same time
For identical cores parallel systems, the computation load is distributed as evenly as
possible in a parallel computer.
For heterogeneous parallel system, the computation load is distributed according to
the computing power of each processor.

PaPro : Parallel Programming September 26, 2022 13 / 27

Granularity

The size of load processed by a single computing component (software/hardware).

Can be classified to :
1 Fine-grain : In fine granularity, a process might consist of a few instructions (usually a lot

of workers).
2 Course-grain : each process contains a large number of sequential instructions and takes

a substantial time to execute (usually few workers)
3 Medium-grain : Medium granularity describes the middle ground between fine-grain and

course grain.

Alternative definition

granularity is defined as the time size of the computation between communication or
synchronization points

PaPro : Parallel Programming September 26, 2022 14 / 27

Granularity

The size of load processed by a single computing component (software/hardware).

Can be classified to :
1 Fine-grain : In fine granularity, a process might consist of a few instructions (usually a lot

of workers).
2 Course-grain : each process contains a large number of sequential instructions and takes

a substantial time to execute (usually few workers)
3 Medium-grain : Medium granularity describes the middle ground between fine-grain and

course grain.

Alternative definition

granularity is defined as the time size of the computation between communication or
synchronization points

PaPro : Parallel Programming September 26, 2022 14 / 27

Granularity

The size of load processed by a single computing component (software/hardware).

Can be classified to :
1 Fine-grain : In fine granularity, a process might consist of a few instructions (usually a lot

of workers).
2 Course-grain : each process contains a large number of sequential instructions and takes

a substantial time to execute (usually few workers)
3 Medium-grain : Medium granularity describes the middle ground between fine-grain and

course grain.

Alternative definition

granularity is defined as the time size of the computation between communication or
synchronization points

PaPro : Parallel Programming September 26, 2022 14 / 27

granularity

Increase the granularity allow reduce the cost of process creation and inter-process
communication
BUT will likely reduce the number of concurrent processes and the amount of
parallelism

→ suitable compromise has to be made
It is better to design a parallel program in which it is easy to vary granularity: i.e. a
scalable program design.

Exercice
Propose a granularity compute function to distribute the workload among m workers to
achieve square matrix multiplications of n rows. Each worker is identified by its id
ranging from 0 to m − 1.

PaPro : Parallel Programming September 26, 2022 15 / 27

Plan

1 Sequential, Concurrent and PaPro

2 Hardware architecture for parallel programming

3 Sources of parallelisms

4 Parallelism efficiency

5 Practice preparation

Key Performance Indicators
Once a parallelization has been defined, how to measure the efficiency of my
implementation?

There are a number of metrics that can be used to evaluate its effectiveness of a
parallelization

timing performance : metrics related to completion

clarity : metric related readability of domain decomposition

portability: ability to be auto-tune decomposition

generality : how much it is replicable

Embarrassingly parallel and inherently sequential

PaPro : Parallel Programming September 26, 2022 16 / 27

Speedup factor
Refers to the ratio between sequential time and parallel-time S =

Tpar
Tseq

Bounded by the number of processors

Obtaining linear speedup factor is challenging, (likely difficult to develop)
Bottleneck : communication and synchronization overheads

PaPro : Parallel Programming September 26, 2022 17 / 27

Speedup factor
Refers to the ratio between sequential time and parallel-time S =

Tpar
Tseq

Bounded by the number of processors

Obtaining linear speedup factor is challenging, (likely difficult to develop)
Bottleneck : communication and synchronization overheads

PaPro : Parallel Programming September 26, 2022 17 / 27

Speedup factor
Refers to the ratio between sequential time and parallel-time S =

Tpar
Tseq

Bounded by the number of processors

Obtaining linear speedup factor is challenging, (likely difficult to develop)

Bottleneck : communication and synchronization overheads

PaPro : Parallel Programming September 26, 2022 17 / 27

Speedup factor
Refers to the ratio between sequential time and parallel-time S =

Tpar
Tseq

Bounded by the number of processors

Obtaining linear speedup factor is challenging, (likely difficult to develop)
Bottleneck : communication and synchronization overheads

PaPro : Parallel Programming September 26, 2022 17 / 27

Amdahl’s law

S =
1

(1 − p) + p
s

S is the theoretical speedup of the task;
s is the speedup of the parallelizable parts of the task
p is the proportion of execution time of the parallelizable part

PaPro : Parallel Programming September 26, 2022 18 / 27

Amdahl’s law

S =
1

(1 − p) + p
s

S is the theoretical speedup of the task;
s is the speedup of the parallelizable parts of the task
p is the proportion of execution time of the parallelizable part

PaPro : Parallel Programming September 26, 2022 18 / 27

Other metrics
Clarity

Is the ability to write clear, yet efficient parallel algorithms.
Task and data allocation must be clearly identified
Usually sacrificed to improve the speedup

Generality

Same approach for various types of problems
Especially for parallel programming libraries : OpenMP, CUDA, OpenMPI, etc.

PaPro : Parallel Programming September 26, 2022 19 / 27

Other metrics
Clarity

Is the ability to write clear, yet efficient parallel algorithms.
Task and data allocation must be clearly identified
Usually sacrificed to improve the speedup

Generality

Same approach for various types of problems
Especially for parallel programming libraries : OpenMP, CUDA, OpenMPI, etc.

PaPro : Parallel Programming September 26, 2022 19 / 27

Other metrics : Portability

A program’s portability is practically assured in the sequential computing thanks to
compilers.

More complex for parallel application because of the extreme differences that exist
between platforms

Number of cores, nature of cores, memory hierarchy, etc.

Portability implies that a given program will behave consistently on all machines,
regardless of their architectural features.

Performance portability implies that the given program will have good timing
performances even in the presence of hardware differences

PaPro : Parallel Programming September 26, 2022 20 / 27

embarrassingly parallel and non parallel problems

An embarrassingly parallel workload or problem (also called embarrassingly
parallelizable, perfectly parallel) is the one where little or no effort is needed to
separate the problem into a number of parallel tasks

Some classes of problems are not parallelizable by nature, ex. Fibonacci sequence
(decision at iteration n depends on n − 1)

Some sequential by nature problems can be parallelized if the dependency can be
spatially or temporally broken

PaPro : Parallel Programming September 26, 2022 21 / 27

embarrassingly parallel and non parallel problems

An embarrassingly parallel workload or problem (also called embarrassingly
parallelizable, perfectly parallel) is the one where little or no effort is needed to
separate the problem into a number of parallel tasks

Some classes of problems are not parallelizable by nature, ex. Fibonacci sequence
(decision at iteration n depends on n − 1)

Some sequential by nature problems can be parallelized if the dependency can be
spatially or temporally broken

PaPro : Parallel Programming September 26, 2022 21 / 27

embarrassingly parallel and non parallel problems

An embarrassingly parallel workload or problem (also called embarrassingly
parallelizable, perfectly parallel) is the one where little or no effort is needed to
separate the problem into a number of parallel tasks

Some classes of problems are not parallelizable by nature, ex. Fibonacci sequence
(decision at iteration n depends on n − 1)

Some sequential by nature problems can be parallelized if the dependency can be
spatially or temporally broken

PaPro : Parallel Programming September 26, 2022 21 / 27

Example (2) minimum tableau
Exercise

Propose techniques to parallelize the problem of computing the minimum values of an
array of size n

PaPro : Parallel Programming September 26, 2022 22 / 27

Plan

1 Sequential, Concurrent and PaPro

2 Hardware architecture for parallel programming

3 Sources of parallelisms

4 Parallelism efficiency

5 Practice preparation

Parallelization requirements : NVIDIA Jetson Nano

PaPro : Parallel Programming September 26, 2022 23 / 27

Parallelization requirements : NVIDIA Jetson Nano

PaPro : Parallel Programming September 26, 2022 23 / 27

Parallelization requirements : NVIDIA Jetson Nano

PaPro : Parallel Programming September 26, 2022 23 / 27

Parallelization requirements : NVIDIA Jetson Nano

PaPro : Parallel Programming September 26, 2022 23 / 27

Secured remote connection with SSH (Practice)
What is SSH

SSH is a remote connection protocol
Connections are secured : asymmetric encryption, decryption
Functions : secure command shell, port redirecting, file transfer

Client Server

Several implementations exists : for the server it is Open SSH server
PaPro : Parallel Programming September 26, 2022 24 / 27

Remote secured connection by SSH
each card is labeled by an identifier X.

Client
Adresse IP : 192.168.1.X

Server
Adresse IP : 192.168.1.(X+100)

Secure Command Shell

From the client:
1 ssh [utilisateur]@[machine]

Example :
ssh geii@192.168.1.X

PS : do not forget to configure your IP address in the same network as the board.
PaPro : Parallel Programming September 26, 2022 25 / 27

File copy through SSH
Achieved thanks to scp

Syntax

From client terminal :
1 scp [source] [destination]

Example

copy from client to server
scp /home/geii/f1.txt geii@192.168.1.X:/home/zahaf/f1.txt

Copy from server to client
scp geii@192.168.1.X:/home/zahaf/f1.txt /home/geii/f1.txt

PaPro : Parallel Programming September 26, 2022 26 / 27

Extra
Define a dynamic domain decomposition for the image binarization problem.

PaPro : Parallel Programming September 26, 2022 27 / 27

	 Sequential, Concurrent and PaPro
	Hardware architecture for parallel programming
	Sources of parallelisms
	Parallelism efficiency
	Practice preparation

