
Manipulating Query Expressions

Hala Skaf-Molli
Nantes University

Hala.Skaf@univ-nantes.fr

This lecture is based on the book
Principles of Data Integration
(Chapter 2)

Introduction

§ How does a data integration system decide which
sources are relevant to a query? Which are
redundant? How to combine multiple sources to
answer a query?

§ Answer: by reasoning about the contents of data
sources.
§ Data sources are often described by queries / views.

§ This chapter describes the fundamental tools for
manipulating query expressions and reasoning about
them.

Outline

§ Review of basic database concepts
§ Query unfolding
§ Query containment
§ Answering queries using views

Basic Database Concepts

§ Relational data model
§ Integrity constraints
§ Queries and answers
§ Conjunctive queries
§ Datalog

Relational Terminology

Relational schemas
§ Tables, attributes

Relation instances
§ Sets (or multi-sets) of tuples

Integrity constraints
§ Keys, foreign keys, inclusion dependencies

§ A state of the database (database instance) (D): is a
snapshot of the contents of the database.

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Attribute
names

Tuples or rows

Table/relation name

SQL (very basic)

Interview(candidate, date, recruiter, hireDecision, grade)

EmployeePerf(empID, name, reviewQuarter, grade, reviewer)

select recruiter, candidate
from Interview, EmployeePerf
where recruiter=name AND

grade < 2.5

Employee(empID, name,hireDate,manger)

Query Answers

§ Q(D): the set (or multi-set) of rows resulting from
applying the query Q on the database D.

§ Unless otherwise stated, we will consider sets rather
than multi-sets.

SQL (w/aggregation)

EmployeePerf(empID, name, reviewQuarter, grade, reviewer)

select reviewer, Avg(grade)
from EmployeePerf
where reviewQuarter=�1/2007�

Integrity Constraints (Keys)

§ A key is a set of columns that uniquely determine a
row in the database:
§ There do not exist two tuples, t1 and t2 such that t1 ≠ t2

and t1 and t2 have the same values for the key columns.
§ (EmpID, reviewQuarter) is a key for EmployeePerf

Integrity Constraints (Functional
Dependencies)

§ A set of attribute A functionally determines a set of
attributes B if: whenever , t1 and t2 agree on the
values of A , they must also agree on the values of B.

§ For example, (EmpID, reviewQuarter) functionally
determine (grade).

§ Note: a key dependency is a functional dependency
where the key determines all the other columns.

Integrity Constraints (Foreign
Keys)

§ Given table T with key B and table S with key A: A is a
foreign key of B in T if whenever a S has a row where
the value of A is v, then T must have a row where the
value of B is v.

§ Example: the empID attribute of EmployeePerf is a
foreign key for attribute emp of Employee.

General Integrity Constraints

(∀X)s1(X1), ..., sm (Xm) → (∃Y) t1(Y1), ..., t l (Yl)

Tuple generating dependencies (TGD�s)

(∀X)s1(X1), ..., sm (Xm) → X1
1 = X2

1,...,Xk
1 = X2

k

Equality generating dependencies (EGD�s): right
hand side contains only equalities.

Exercise: express the previous constraints using
general integrity constraints.

Conjunctive Queries

€

Q1(X) :−g1(X1),...,gn (Xn)
Q: head, g1.. gn: body
Safe ..

Semantics (Evaluating CQ’s)
if j maps the body subgoals to tuples in D
then, is an answer.

€

ϕ(X)

Most common form of query; equivalent to select-project-join queries

Conjunctive Queries

Q(X,T) :- Interview(X,D,Y,H,F), EmployeePerf(E,Y,T,W,Z)

select candidate, recruiter
from Interview, EmployeePerf
where recruiter=name

Joins are expressed with multiple
occurrences of the same variable

Interview(candidate, date, recruiter, hireDecision, grade)
EmployeePerf(empID, name, reviewQuarter, grade, reviewer)

CQ Examples

§ Database schema: parent(parent,child)
§ CQ’S:

§ Parent-of-bart(X) :- parent(X, ``Bart’’)
§ Equivalent to relational algebra query:
§

§ Grandparent(X,Y):- parent(X,Z),parent(Z,Y)
§ Joins are expressed with multiple occurrences of the same

variable

§ Unsafe query:
§ Unsafe-query(X,Y):-parent(X,Z)

v Where would we get the value of Y in the query result ?

Evaluating CO’S
§ Substitute constants for variables in the body of Q

such that all subgoals becomes true
§ Result contains the head under the same substitution

§ Example:
§ grandparent(X,Y):- parent(X,Z), parent(Z,Y)
§ Database instance:

parent(”Abe”,”Homer”),parent(“Homer”,”Bart”),parent(“Ho
mer”,”Lisa”)

§ Only substitutions that make both subgoals true
v X->
v X->

§ These substitutions yields grandparent(“Abe”,”bart”) and
grandparent(“Abe”,”Lisa”), which are the result tuples

Conjunctive Queries (interpreted
predicates)

Q(X,T) :-
Interview(X,D,Y,H,F), EmployeePerf(E,Y,T,W,Z),
W < 2.5.

select recruiter, candidate
from Interview, EmployeePerf
where recruiter=name AND

grade < 2.5

Interpreted (or comparison) predicates.
Variables must also appear in regular atoms.

Conjunctive Queries (negated
subgoals)

Q(X,T) :-
Interview(X,D,Y,H,F), EmployeePerf(E,Y,T,W,Z),
¬OfferMade(X, date).

Safety: every head variable must appear in
a positive subgoal.

Unions of Conjunctive Queries

Q(X,T) :-
Interview(X,D,Y,H,F), EmployeePerf(E,Y,T,W,Z),
W < 2.5.

Q(X,T) :-
Interview(X,D,Y,H,F), EmployeePerf(E,Y,T,W,Z),
Manager(y), W > 3.9.

Multiple rules with the same head predicate
express a union

Datalog (recursion)

r1 path(X,Y) :- edge(X,Y)

r2 path(X,Y) :- edge(X,Z), path(Z,Y)

Database: edge(X,Y) – describing edges
in a graph.
Recursive query finds all paths in the
graph.

Outline

ü Review of basic database concepts
ØQuery unfolding
§ Query containment
§ Answering queries using views

Query Unfolding

§ Query composition is an important mechanism for
writing complex queries.
§ Build query from views in a bottom up fashion.

§ Query unfolding �unwinds� query composition.
§ Important for:

§ Comparing between queries expressed with views
§ Query optimization (to examine all possible join orders)

Query Unfolding Example

Q1(X,Y) :−Flight(X,Z),Hub(Z),Flight(Z,Y)
Q2 (X,Y) :−Hub(Z),Flight(Z,X),Flight(X,Y)
Q3(X,Z) :−Q1(X,Y),Q2 (Y,Z)

The unfolding of Q3 is:

Q '3(X,Z) :−Flight(X,U),Hub(U),Flight(U,Y),
Hub(W),Flight(W,Y),Flight(X,Z)

Relations: Flight(source, destination)
Hub(city)

Query Unfolding Algorithm

§ Find a subgoal p(X1 ,…,Xn) such that p is defined by a
rule r.

§ Unify p(X1 ,…,Xn) with the head of r.
§ Replace p(X1 ,…,Xn) with the result of applying the

unifier to the subgoals of r (use fresh variables for
the existential variables of r).

§ Iterate until no unifications can be found.
§ If p is defined by a union of r1, …, rn, create n rules,

for each of the r�s.

Exercise

§ Q1(X,Y):- S(X,Z),S(Y,Z)
§ Q2(X):-S(X,Y)

§ Q3(X):-Q1(X,Y),Q2(Y)

§ Unfolding ??

Query Unfolding Summary

§ Unfolding does not necessarily create a more
efficient query!
§ Just lets the optimizer explore more evaluation strategies.
§ Unfolding is the opposite of rewriting queries using views

(see later).
§ Allows query process to explore a wider collection of

query plans:
§ A larger possibility to order join operation ..

Outline

ü Review of basic database concepts
üQuery unfolding
ØQuery containment
§ Answering queries using views

Query Containment

§ For two queries Q1 and Q2, if all of the answers to
Q2 are a subset of those of Q1 for all databases,
then Q1 contains Q2.

§ Denoted :

Containment: Conjunctive Queries

€

Q1(X) :−g1(X1),...,gn (Xn)

No interpreted predicates (³,¹)
or negation for now.

Recall semantics (Evaluating CQ’s)
if j maps the body subgoals to tuples in D
then, is an answer.

€

ϕ(X)

Query Containment and Equivalence:
Definitions
Let Q1 and Q2 be two queries of the same
arity. We say that Q1 contains Q2 , denoted
by, Q1 Q2, if for any database D, Q1(D)
conatins Q2(D)

Query Q1 is equivalent to query Q2 if
Q1(D) Ê Q2(D) and Q2(DÊ) Q1(D)

Note: containment and equivalence are
properties of the queries, not of the
database!

Example of CQ containment

§ Q1 : p(X,Y) :- r(X,W), b(W,Z), r(Z,Y)

§ Q2 : p(X,Y) :- r(X,W), b(W,W) r(W,Y)

§ Claim: Q1 contains Q2 (Q1 Q2)

§ Proof:
§ If p(x,y) is in Q2, there is some w such that r(x,w), b(w,w) and r(w,y)

true

§ For Q1, make the substitution X->x; Y->y; W->w; Z->w

§ All subgoals of Q1 are true, and the head of Q1 becomes p(x,y)

§ Thus, p(x,y) is also in Q1, proving that Q1 contains Q2.

Containment Mappings

€

Q1(X) :−g1(X1),...,gn (Xn)

€

Q2(Y) :−h1(Y1),...,hm (Ym)

j: Vars(Q1) ®Vars(Q2) is a containment
mapping if :

€

ϕ(gi(Xi))∈ Body(Q2)

€

ϕ(X) =Y
and

Example 1

€

Q1(X,Z) :−p(X,Y,Z)
Q2(X,Z) :−p(X,X,Z)

€

Q1 ⊇ Q2

Example 2

Q1(X,Y) :−p(X,Z), p(Z,Y)
Q2 (X,Y) :−p(X,Z), p(Z,Y), p(X,W)

€

Q1 ⊇ Q2

Example 3

Q2 contains Q1 ?

§ Q1(X,Y) :- p(X,W,Z), r(Y,W,Z)
§ Q2(Y1,Y2) :- p(Y1,Y3,Y4), r(Y2,Y3,Y5)

Theorem
[Chandra and Merlin, 1977]

Q1 contains Q2 if and only if there is a
containment mapping from Q1 to Q2

Deciding whether Q1 contains Q2
is NP-complete in the size of the two queries

Outline

ü Review of basic database concepts
üQuery unfolding
üQuery containment
ØAnswering queries using views

Why Do We Need It?

§ When sources are described as views, we use
containment to compare among them.

§ If we can remove sub-goals from a query, we
can evaluate it more efficiently.

§ Actually, containment arises everywhere…

Example

Relations: Flight(source, destination)
Hub(city)

Views:
S1:Q1(X,Y) :- Flight(X,Z), Hub(Z), Flight(Z,Y)
S2: Q2(X,Y) :- Hub(Z), Flight(Z,X), Flight(X,Y)

Query:
Q3(X,Z) :- Q1(X,Y), Q2(Y,Z)

Unfolding:

Remove Redundant Subgoals

Redundant subgoals?
Q�3(X,Z) :- Flight(X,U), Hub(U), Flight(U,Y),

Hub(W), Flight(W,Y), Flight(Y,Z)
Þ
Q’’3(X,Z) :- Flight(X,U), Hub(U), Flight(U,Y),

Flight(Y,Z)

Is Q’’3 equivalent to Q’3?

Problem Definition

Input: Query Q
View definitions: V1,…,Vn

A rewriting: a query Q� that refers only
to the views and interpreted predicates

An equivalent rewriting of Q using V1,…,Vn:
a rewriting Q�, such that Q�Û Q.

Motivating Example (Part 1)

Movie(ID,title,year,genre)
Director(ID,director)
Actor(ID, actor)

€

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"
Director(I,D),Actor(I,D)

€

V1(T,Y,D) :−Movie(I,T,Y,G),Y ≥1940,G ="comedy"
Director(I,D),Actor(I,D)

€

Q'(T,Y,D) :−V1(T,Y,D),Y ≥1950

€

V1 ⊇ Q ⇒

Containment is enough to show that V1 can be used to
answer Q.

Motivating Example (Part 2)

€

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"
Director(I,D),Actor(I,D)

€

V2(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

€

Q' '(T,Y,D) :−V2(I,T,Y),V3(I,D)€

V3(I,D) :−Director(I,D),Actor(ID,D)
Containment does not hold, but intuitively, V2 and V3 are
useful for answering Q.

How do we express that intuition?

Answering queries using views!

The problem

§ Query writing: Given a query Q and a set of view
definition V1, …. Vn, a rewriting of the query using
the views is a query expression Q’ that refers only to
view V1,… Vn.

§ Equivalence Query Rewriting: Let Q a query and
V={V1… Vn} be a set of view definitions. The query
Q’ is equivalent rewriting of Q using V if:
§ Q’ refers only to the views in V, and
§ Q’ is equivalent to Q

§ Check equivalence between a query Q and a
rewriting, consider the unfolding of Q’ w.r.t the views

Motivating Example (Part 3)

Movie(ID,title,year,genre)
Director(ID,director)
Actor(ID, actor)

€

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"
Director(I,D),Actor(I,D)

€

V3(I,D) :−Director(I,D),Actor(ID,D)

€

V4 (I,T,Y) :−Movie(I,T,Y,G),Y ≥1960,G ="comedy"

€

Q' ' '(T,Y,D) :−V4 (I,T,Y),V3(I,D)

maximally-contained rewriting

Maximally-Contained Rewritings

Input: Query Q
Rewriting query language L
View definitions: V1,…,Vn

Q� is a maximally-contained rewriting of
Q using V1,…,Vn and L if:

1. Q� Î L,
2. Q’ is contained in Q (Q�Í Q), and
3. there is no Q’’ in L such that

Q’’Í Q and Q�Ì Q’’

Exercise: which of these views can
be used to answer Q?

€

Q(T,Y,D) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"
Director(I,D),Actor(I,D)

€

V2(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

€

V3(I,D) :−Director(I,D),Actor(I,D)

€

V6(T,Y) :−Movie(I,T,Y,G),Y ≥1950,G ="comedy"

€

V7(I,T,Y) :−Movie(I,T,Y,G),Y ≥1950,
G ="comedy",Award(I,W)

€

V8(I,T) :−Movie(I,T,Y,G),Y ≥1940,G ="comedy"

Algorithms for answering queries
using views

§ Step 1: we�ll bound the space of possible query
rewritings we need to consider (no interpreted
predicates)

§ Step 2: we�ll find efficient methods for searching the
space of rewritings
§ Bucket Algorithm, MiniCon Algorithm

§ Step 2b: we consider �logical approaches� to the
problem:
§ The Inverse-Rules Algorithm

§ We�ll consider interpreted predicates, …

Complexity Result
[LMSS, 1995]

§ Applies to queries with no interpreted predicates.
§ Finding an equivalent rewriting of a query using

views is NP-complete
§ Need only consider rewritings of query length or less.

§ Maximally-contained rewriting:
§ Union of all conjunctive rewritings of length n or less.

