Data Integration

Hala Skaf-Molli
Maitre de Conférences
Université de Nantes
Hala.Skaf@univ-nantes.fr
http:/ / pagesperso.lina.univ-nantes.fr/ ~skaf-h

Data Integration

® Data integration involves combining data residing in different sources
and providing users with a unified view of these data.

® Database integration

® Semantic Web data integration

Wikipedia

Outhne

Introduction
Background
Distributed Database Design

Database Integration: book Prniciples of Distributed Database Systems (slides of T. Ozsu and P.
Valduriez),

= Schema Matching
= Schema Mapping

Semantic Data Control

Distributed Query Processing
Multimedia Query Processing
Distributed Transaction Management
Data Replication

Parallel Database Systems
Distributed Object DBMS
Peer-to-Peer Data Management

Web Data Management

Current Issues

Problem Definition

® Given existing databases with their Local Conceptual Schemas (LCSs),
how to integrate the LCSs into a Global Conceptual Schema (GCS)

= GCS is also called mediated schema

® Bottom-up design process

‘ Data integration I

Query

I

Global schema

Pl

R, C, | D
< d,
6|

Source schema

\ |
Mapping \ l

S

[

Source schema

Maurizio Lenzerini 1

Integration Alternatives

® Physical integration
= Source databases integrated and the integrated database is materialized
= Data warehouses

® Logical integration
= Global conceptual schema is virtual and not materialized

= Enterprise Information Integration (EII)

Data Warehouse Approach

P

Materialized
Global
Database

ETL
Tools

L
Database 1 Database 1
o

Bottom-up Design

® GCS (also called mediated schema) is defined first
= Map LCSs to this schema
= As in data warehouses

® GCS is defined as an integration of parts of LCSs
= Generate GCS and map LCSs to this GCS

GOS/LGS Relationship

® L ocal-as-view

= The GCS definition is assumed to exist, and each LCS is treated as a view

definition over it

® Global-as-view

= The GCS is defined as a set of views over the LCSs

Objects
expressible as queries
over the source DBMSs

Objects
accessible
through GCS

(a) GAV

Objects
expressible as queries
over the GCS

Source
"\DBMS n

Source
DBMS 1

(b) LAV

Database Integration Process

GCS

Schema Generator

Schema
Mapping

i

Schema

Integration

1

Schema

Matching

Translator 1

Translator 2

Database 1
Schema

Database 2
Schema

InS

Translator n

Database n
Schema

Recall Access Architecture

GES,| |GES,| |GES

N

LES,,| |LES,,| [LES

13 GCS

LES

n1

LES

n2

LES

nm

N

Z

LGS

LIS

AN

LCS

LIS,

Database Integration lssues

® Schema translation

= Component database schemas translated to a common intermediate canonical
representation

® Schema generation

= Intermediate schemas are used to create a global conceptual schema

Schema Translation

® What is the canonical data model?
= Relational

= Entity-relationship
+ DIKE

= Object-oriented
+ ARTEMIS
= Graph-oriented
+ DIPE, TranScm, COMA, Cupid
+ Preferable with emergence of XML
+ No common graph formalism
® Mapping algorithms

= These are well-known

Schema Generation

® Schema matching

= Finding the correspondences between multiple schemas
® Schema integration

= Creation of the GCS (or mediated schema) using the correspondences
® Schema mapping

= How to map data from local databases to the GCS

® Important: sometimes the GCS is defined first and schema matching and
schema mapping is done against this target GCS

Running Example

E-R Model

Relational pro,ect
1 PROJECT

WORKER

@

EMP(ENO, ENAME, TITLE)
PROJ(PNO, PNAME, BUDGET, LOC, CNAME) CLIENT

ASG(ENO, PNO, RESP, DUR)
PAY(TITLE, SAL) Glert

Schema Matching

® Schema heterogeneity

= Structural heterogeneity
+ Type contlicts
+ Dependency conflicts
+ Key conflicts
+ Behavioral conflicts

= Semantic heterogeneity
+ More important and harder to deal with
+ Synonyms, homonyms, hypernyms
+ Different ontology

+ Imprecise wording

Schema Matching: Schema Structural
heterogeneity

Type conflicts :

— the same object is represented by an attribute in one schema
and by an entity in another schema

Dependency conflicts :

— different cardinality one-to-one or many-to-one to represent
the same things in different schema

Key conflicts:

— different candidate keys are available and different primary keys
are selected in different schemas

Behavioral conflicts :

— implied by the modeling mechanism. Ex: the deletion the last
item from one database may cause the deletion of the
containing entity

1/

Example: Schema Structural
heterogeneity

* Two structural conflicts in the example

— Type conflict : clients of projects, entity or
attribute?

— Solution: transformation of entities/attributes/
relationships among each other (see example)

* Transform the attribute CNAME to entity

— Dependency conflict: WORKS_IN (many-to-one)
from ENGINEER to PROJECT, ASG (many-to-many)

* One possible solution is to choose the more general
relation (many-to-many)

Schema Matching: Schema Semantic
heterogeneity

* Synonym: Two identical entities that have different names are synonyms.
* Ex: ENGINEER and EMP, Salary and SAL (see example)

*Homonym: Two different entities that have identical names are homonym.
*Ex: TITLE in InS1 refers to title of engineers, TITLE in InS2 refers to the

titles of all employees, it has large domaine
* Nouns

* hypemyms: Y is a hypernym of Xif every Xis a (kind of) Y (canine is a hypernym of dog, because every dog is a member of the larger
category of canines)

* hyponyms: Yis a hyponym of Xif every Yis a (kind of) X (dog is a hyponym of canine)

* coordinate terms: Yis a coordinate term of Xif Xand Y share a hypernym (wolfis a coordinate term of dog, and dog is a coordinate
term of wolf)

* holonym: Yis a holonym of X if Xis a part of Y (building is a holonym of window)

* meronym: Y'is a meronym of Xif Yis a part of X (window is a meronym of building)

* Verbs

* hypemym: the verb Y is a hypernym of the verb X if the activity X is a (kind of) Y (fo perceive is an hypernym of to listen)

* troponym:. the verb Yis a troponym of the verb Xif the activity Y'is doing Xin some manner (fo lisp is a troponym of io talk)
* entailment. the verb Yis entailed by Xif by doing X you must be doing Y (to sleep is entailed by to snore)

* coordinate terms: those verbs sharing a common hypernym (to lisp and to yell)

From: http://en.wikipedia.org/wiki/WordNet

19

Schema Matching (cont’d)

® Other complications
= Insufficient schema and instance information
= Unavailability of schema documentation
= Subjectivity of matching
® Issues that affect schema matching
= Schema versus instance matching
= Element versus structure level matching

= Matching cardinality

Schema Matching Approaches

Individual Matchers

Schema-based Instance-based

TN

Element-level Structure-level Element-level

Linguistic Constraint-based Constraint-based Linguistic Constraint-based Learning-based

Linguistic Schema Matching

® Use element names and other textual information (textual descriptions,
annotations)

® May use external sources (e.g., Thesauri)
® (SCl.element-1 ~SC2.element-2, p,s)

= Element-1 in schema SC1 is similar to element-2 in schema SC2 if predicate p
holds with a similarity value of s

® Schema level
= Deal with names of schema elements
= Handle cases such as synonyms, homonyms, hypernyms, data type
similarities
® Instance level
= Focus on information retrieval techniques (e.g., word frequencies, key terms)

= “Deduce” similarities from these

Linguistic Matchers

® Use a set of linguistic (terminological) rules

® Basic rules can be hand-crafted or may be discovered from outside sources
(e.g., WordNet)

® Predicate p and similarity value s

= hand-crafted = specified,

= discovered = may be computed or specified by an expert after discovery
® Examples

= (uppercase names ~ lower case names, true, 1.0)

= (uppercase names ~ capitalized names, true, 1.0)

= <Capitalized names ~ lower case names, true, 1.0)

= (DB1.ASG =~ DB2.WORKS _IN, true, 0.8)

Automatic Discovery of Name
Similarities
@ Affixes

= Common prefixes and suffixes between two element name strings

® N-grams

= Comparing how many substrings of length n are common between the two
name strings

® Edit distance

= Number of character modifications (additions, deletions, insertions) that
needs to be performed to convert one string into the other

® Soundex code
= Phonetic similarity between names based on their soundex codes
® Also look at data types

= Data type similarity may suggest stronger relationship than the computed
similarity using these methods or to differentiate between multiple strings
with same value

N-gram FExample

@ 3-grams of string “Responsibility” are the following:

eRes e sib

eibi ® esp
ebip ® Spo
eili e pon
olit ® ons
oity ® nsi

@ 3-grams of string “Resp” are
= Res
= esp

® 3-gram similarity: 2/12 = 0.17

Edit Distance Example

® Again consider “Responsibility” and “Resp”

® To convert “Responsibility” to “Resp”

£ 77 41 __J77
t

/4 /4 /4 /4

- Delete Characters IIO/I’ llnll IISII lli/I’ IIbII, lli/I’ IIIII’ llil/

® To convert “Resp” to “Responsibility”

Y Add Characters IIOII, llnll IISI/ lliII, Ilbl/, IIiII, lllII, IIiII’ lltll llyll

7 /4 4

® The number of edit operations required is 10

@ Similarity is 1 — (10/14) = 0.29

Constraint-based Matchers

® Data always have constraints - use them
= Data type information
= Value ranges

® Examples

= RESP and RESPONSIBILITY: n-gram similarity = 0.17, edit distance similarity
=0.19 (low)

= If they come from the same domain, this may increase their similarity value
= ENO in relational, WORKER.NUMBER and PROJECT.NUMBER in E-R

= ENO and WORKER.NUMBER may have type INTEGER while
PROJECT.NUMBER may have STRING

Constraint-based Structural

Matching

@ If two schema elements are structurally similar, then there is a higher
likelihood that they represent the same concept

@ Structural similarity:
= Same properties (attributes)
= “Neighborhood” similarity
+ Using graph representation

+ The set of nodes that can be reached within a particular path length from a node
are the neighbors of that node

+ If two concepts (nodes) have similar set of neighbors, they are likely to represent
the same concept

l.earning-based Schema

Matching

® Use machine learning techniques to determine schema matches

® Classification problem: classify concepts from various schemas into classes

according to their similarity. Those that fall into the same class represent
similar concepts

@ Similarity is defined according to features of data instances

® Classification is “learned” from a training set

l.earning-based Schema

Matching

T={D,e,=D.e}

—)[Learner j

Probabilistic
knowledge

Y

—)[Classifier j

!

Classification
predictions

Combined Schema Matching
Approaches

® Use multiple matchers
= Each matcher focuses on one area (name, etc)
® Meta-matcher integrates these into one prediction

® Integration may be simple (take average of similarity values) or more
complex (see Fagin's work)

Schema Integration

® Use the correspondences to create a GCS

® Mainly a manual process, although rules can help

Integration Process

Binary n-ary

ladder balanced one-shot iterative

Binary Integration Methods

O

(a) Stepwise (b) Pure binary

N-ary Integration Methods

<IN

(a) One-pass (b) Iterative

Schema Mapping

® Mapping data from each local database (source) to GCS (target) while
preserving semantic consistency as defined in both source and target.

® Data warehouses = actual translation

® Data integration systems = discover mappings that can be used in the
query processing phase

® Mapping creation

® Mapping maintenance

Mapping Creation

Given
= A source LCS [S — {Sz}]
= A target GCS [T = {Ti }]

= A set of value correspondences discovered

during schema matching phase [V = {Vz }]

Produce a set of queries that, when executed, will create GCS data instances
from the source data.

We are looking, for each T}, a query Q, that is defined on a (possibly proper)
subset of the relations in $'such that, when executed, will generate data for

T. from the source relations

Mapping Creation Algorithm

General idea:

® Consider each T, in turn. Divide V, into subsets { V3, . . ., V" } such that
each VJ specifies one possible way that values of T}, can be computed

® Each V]can be mapped to a query ¢q kthat when executed, would generate
some of T,’s data.

® Union of these queries gives

Qr(= Ujql)

