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Limited association between common CNVs and common
disease

IonitaLaza et. al. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis

Genomics 2008
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WTCCC scan for common CNVs associated with disease
found ‘few’ new signals

Conrad et al. Origins and functional impact of copy number variation in the human genome Nature 2009
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Few CNVs correlated with trait-associated SNPs (I)

Conrad et al. Origins and functional impact of copy number variation in the human genome Nature 2009
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Few CNVs correlated with trait-associated SNPs (II)

Conrad et al. Origins and functional impact of copy number variation in the human genome Nature 2009
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WTCCC conclude common CNVs do not account for
missing heritability

I 77% of ‘genotypeable’ CNVs well-tagged (r2 > 0.5) by SNPs

I Conclude that GWAS have already screened for SNP effects

I Estimate they have genotyped 25− 35% of common CNVs >
1kb

Conrad et al. Origins and functional impact of copy number variation in the human genome Nature 2009
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50% of 20 sequenced deletions were part of extended
haplotypes > 50kb

   

De Smith et al, Small deletion variants have stable breakpoints commonly associated with alu elements.PLOS One

2008
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Are CNVs still worth pursuing?

I Amplifications are less well-tagged than deletions

I Tagging efficiency of 0.5 will require many more samples to
detect weak effect

I Conclusions not applicable to complex multi-allelic CNVs

I Conclusions only for common CNVs which were discovereable
in cohort of 20YRI+20CEU
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WTCCC discovery data is challenging
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WTCCC discovery data is challenging (I)
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cnvHap identified sequenced deletion with < 100bp
resolution using WTCCC discovery data
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CNV-phenotype association strategies

1. Identify ‘Genotypable CNV regions’
I CNV discovery (typically using HMM, or circular

segmentation) per-sample
I Known CNV regions

2. Genotype CNV pointwise across samples in fixed CNV regions
⇒ association of integer CN state with phenotype

3. Association of continuous intensity signal with phenotype in
fixed CNV regions
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CNV association beset by various technical difficulties

I Different plates have different intensity response at each probe
⇒ need for between plate normalisation ⇒ particularly
problematic if plates are case/control specific

I Probe binding efficiency varies according to GC-content,
which results in wave-like effects of intensity across genome

I High variance of intensity measurements

I ⇒ CNV genotyping accuracy is still low

I Difficult to combine results in meta-analyses across different
chips and different populations ⇒ wide variety of chips and
platforms in use
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Benchmarking study to ascertain sensitivity/specifity
genomewide

I 50 French individuals genotyped on
I Illumina Human1M BeadArray
I Agilent 244k CGH array

I 35 of these genotyped on
I Illumina 317k BeadArray
I Agilent 185k CGH array

We performed two comparisons
I Run PennCNV, cnvPartition, cnvHap on 1M data

I Map predictions to 244k probes using imputation
I Compare with direct CNV annotation on aCGH 244k probeset

according to ADM2

I Reverse experiment to compare cnvHap to ADM2 on aCGH
data using 1M annotation as benchmark
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Performance of algorithms on test region
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Feasibility of CNV Imputation
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Correlation between real and predicted CN genomewide
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cnvHap: Population haplotype model for multi-platform
CNV prediction and imputation

I Integrates information from multiple chips into a single
consistent CNV annotation

I Models CNVs at the single chromosome level → improves
sensitivity by integrating LD information (between SNPS and
CNVS, and also between SNPS/SNPS and CNVS/CNVS)
into CNV prediction

I Models all samples simultaneously

I Updates cluster positions as part of maximisation procedure

I Also imputes CN genotype at unmeasured loci, and estimates
the uncertainty in this estimation, so can be used to map
CNV prediction from one probeset onto another
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cnvHap model
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Haplotype model found common deletion haplotype
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Identifying CNV haplotypes
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Considering population improves accuracy . . .
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. . . particularly in a larger population
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ROC curves for detecting CNVs by individual
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ROC curves for detecting CNV break points
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Combining datasets improves accuracy

Magenta=244k+1M+185k+317k; pink=244k+1M; red=185k+244k; dark green=244k+317k;light blue

=317k+1M;orange=1M+185k; dark grey=1M; light-grey=244k;light green=185k+317k; cyan = 185k; dark blue=

317k.
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cnvHap model enables genotyping within different CN
states
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Strong CNV association on chromosome 1 for multiple
metabolic traits
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Detecting CNV associations
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Discovery and validation of CNV association
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Discovery and validation of CNV association
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‘OB3’ CNV region
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Discovery and validation of CNV association
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Discovery and validation of CNV association
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Identification and validation of deletions at 16p11.2

Walters et al,Nature 2010
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Frequency of detected 16p11.2 deletions in multiple cohorts

Walters et al,Nature 2010
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Dependence of BMI on age in subjects having a deletion at
16p11.2

Lines denote the thresholds corrected for age and gender (solid, male; broken, female) for obesity and morbid

obesity. Squares, male; circles, female; black, ascertained for developmental delay; grey, not ascertained for

developmental delay; filled, ascertained for obesity; open, not ascertained for obesity; diamonds, first-degree relative

of proband; crosses, previously published data. Walters et al,Nature 2010Finding structural variants associated with disease



Phasing accuracy on paired male X chromosomes
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Determining alleleic configuration of CNVS
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Phasing CNVS
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Comparison to CNVPhaser
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Methods for detecting inversions

1. Sequencing — ’1000 Genomes’ Project (only certain pop’s)

2. Aberant long range LD patterns — Bansal et al. (low power)

3. Suppression of recombination between inverted and
non-inverted chromosomes.

Developed invertHMM to capture point 3:

1. Use two hidden ’super’ states to model inverted vs
non-inverted haplotype ⇒ allows us to model recombination
rate between inversion/ non-inversion

2. Use two hidden ’sub’ states within each super-state to model
underlying rate of recombination

3. Regions with low ’between’ and ’within’ super-state
recombination are just regions of low recombination

4. Regions with low ’between’ but normal ’within’ are inversion
candidates

5. We then predict from model which samples have inversion
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invertHMM: Simulation with 200kb, 60% inversion

BLACK: Between-superstate transition rate (reciprocal, log-scale);
RED: Between-substate transition rate (reciprocal, log-scale)
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invertHMM: Simulation with 200kb of no recombination
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invertHMM: Power analysis (500kb inversion)

BLACK: LD method; BLUE: invertHMM
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invertHMM: Power analysis (200kb inversion)

BLACK: LD method; BLUE: invertHMM
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invertHMM: Power analysis (100kb inversion)

BLACK: LD method; BLUE: invertHMM
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invertHMM: Applied to real data

I Scans over WTCCC & French data provided almost 400
candidates genome-wide

I Null distribution formed using a complex model incorporating
demographic factors, and variation in recombination rate,
calibrated to reflect real data (Schaffner et al. 2005)

I The method applied to the null data suggests just over half
these candidates are real inversions (though results indicate
null is too conservative here)
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MAPT inversion, at ≈ 20% (chromosome 17)
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Potential novel inversion
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