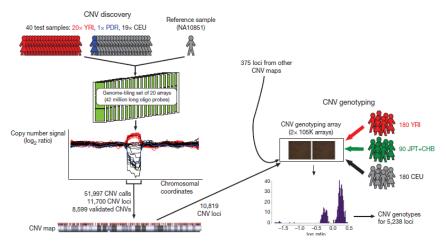
Finding structural variants associated with disease

Lachlan Coin

Department of Epidemiology and Public Health, Imperial College London, UK

January 2010

Finding structural variants associated with disease


Limited association between common CNVs and common disease

Locus	CNV frequency	Clinical phenotype	CNV type	Risk estimate (
CCL3L1 [9,11]	10–20%	HIV/AIDS susceptibility [9] Rheumatoid arthritis [11]	Deletion Gain: >2 copies	0.67–0.90 1.34
FCGR3B [10]	Deletion: ~ 25% Gain: ~ 15%	Systemic autoimmune disease	Deletion	1.58-2.56ª
C4 [12]	~ 40%	Systemic lupus erythematosus	Deletion	Absence: 5.27 Carrier: 1.61 Gains: 0.57
DEFB4 [33,34]	2-12 copies (median 4)	Colonic Crohn disease [33] Psoriasis [34]	Loss: <4 copies Gain: >5 copies	3.06 1.69
GSTM1 [13-16]	Up to 50%	Asthma, lung function, allergic response	Deletion	1.59-1.89

lonitaLaza et. al. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis

Genomics 2008

WTCCC scan for common CNVs associated with disease found 'few' new signals

Conrad et al. Origins and functional impact of copy number variation in the human genome Nature 2009

Few CNVs correlated with trait-associated SNPs (I)

KIF1B	Multiple sclerosis
CATSPER4	Height
NEGR1	Body mass index
AK002179	Smoking behaviour
LCE3D, LCE3A	Psoriasis
CRP	C-reactive protein
NOS1AP	QT interval
WDR12	Myocardial infarction (early onset)
CTDSPL	Prostate cancer
KCNAB1	Ageing traits
NR	Bone mineral density
NR	Bone mineral density
CLPTM1L	Lung cancer
IRGM	Crohn's disease
IRGM	Crohn's disease
SGCD	Multiple sclerosis (age of onset)
HI A-C	Psoriasis
SGCD	Multiple sclerosis (age of onset)
HLA-C	Psoriasis
HLA-C	AIDS progression

Conrad et al. Origins and functional impact of copy number variation in the human genome Nature 2009

Few CNVs correlated with trait-associated SNPs (II)

HLA-DRB1 HLA-DPB1 HLA-DPB1 BAK1 CCR6 AK127771 Intergenic Intergenic MADD, FOLH1 Intergenic NR DIFUZ RAB40C LITAF NDRG4 MC1R

Multiple sclerosis Hepatitis B Hepatitis B Testicular germ cell tumour Crohn's disease Neuroticism Schizophrenia Schizophrenia HDL cholesterol Cognitive test performance Type 2 diabetes Height Height OT interval OT interval Skin sensitivity to sun

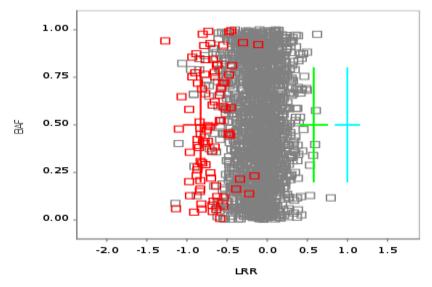
Conrad et al. Origins and functional impact of copy number variation in the human genome Nature 2009

WTCCC conclude common CNVs do not account for missing heritability

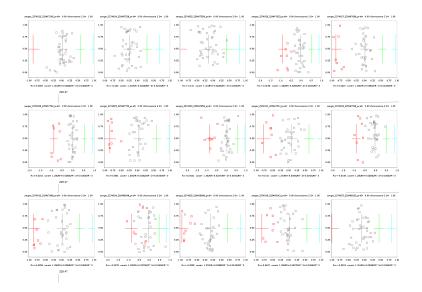
- ▶ 77% of 'genotypeable' CNVs well-tagged ($r^2 > 0.5$) by SNPs
- Conclude that GWAS have already screened for SNP effects
- Estimate they have genotyped 25 35% of common CNVs > 1kb

Conrad et al. Origins and functional impact of copy number variation in the human genome Nature 2009

50% of 20 sequenced deletions were part of extended haplotypes > 50kb


Chr	Freq	Deletion haplotype	% with hapl.	Length (kb)
1	0,06	BAABBBAABBAABAAABBBBBBBAABAABBBB ABBABB	100%	403
2:	0,20	BAABABB BA	100%	69
3:	0,18	BAA	92%	15
4	0,22	AABBBB BBBABBBA	88%	269
5:	0,04	AAAAA BABBA	80%	47
5	0,16	A	100%	5
6:	0,18	AAAAA BABBA	80%	47
6	0,08	BAAA BBBB	100%	180
6:	0,10	BABBB BABABABABABAAAABBABBBBBBBBBBB	100%	173
7:	0.24	B AAABBBABABBAB	100%	110
12	0,52	AA	85%	33
14	0,10	BBB BB	100%	18
14	0,20	BBABBABABBBBBBAA AAAAABAAA	90%	312
15	0,28	ВАААВ	92%	15
16	0,88	AA	100%	14
16	0,36	BAAABA BBAAB	100%	49
16	0,10	BAAABBABB ABAAB	100%	63
16	0,04	N/A (only 1 sample with genotype data)	N/A	N/A
19	0,12	AABBA	100%	50
22	0,16	BABB AAABBABA	100%	78

Are CNVs still worth pursuing?


- Amplifications are less well-tagged than deletions
- Tagging efficiency of 0.5 will require many more samples to detect weak effect
- Conclusions not applicable to complex multi-allelic CNVs
- Conclusions only for common CNVs which were discovereable in cohort of 20YRI+20CEU

WTCCC discovery data is challenging

sanger_global probe only chromosome 2 Q= 1.00

WTCCC discovery data is challenging (I)

cnvHap identified sequenced deletion with < 100 bp resolution using WTCCC discovery data

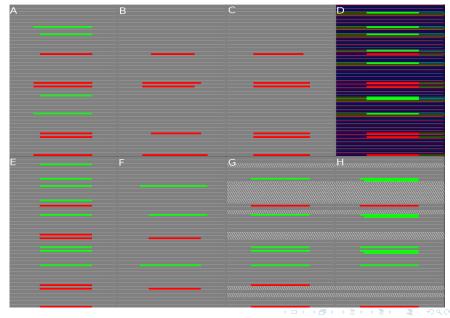
Finding structural variants associated with disease

CNV-phenotype association strategies

- 1. Identify 'Genotypable CNV regions'
 - CNV discovery (typically using HMM, or circular segmentation) per-sample
 - Known CNV regions
- 2. Genotype CNV pointwise across samples in fixed CNV regions \Rightarrow association of integer CN state with phenotype
- 3. Association of continuous intensity signal with phenotype in fixed CNV regions

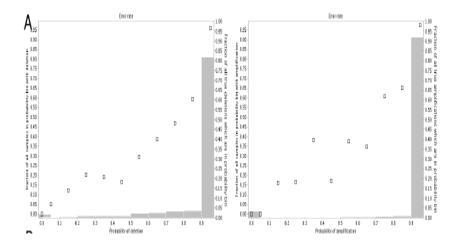
CNV association beset by various technical difficulties

- ► Different plates have different intensity response at each probe ⇒ need for between plate normalisation ⇒ particularly problematic if plates are case/control specific
- Probe binding efficiency varies according to GC-content, which results in wave-like effects of intensity across genome
- High variance of intensity measurements
- $\blacktriangleright \Rightarrow \mathsf{CNV}$ genotyping accuracy is still low
- ▶ Difficult to combine results in meta-analyses across different chips and different populations ⇒ wide variety of chips and platforms in use


Benchmarking study to ascertain sensitivity/specifity genomewide

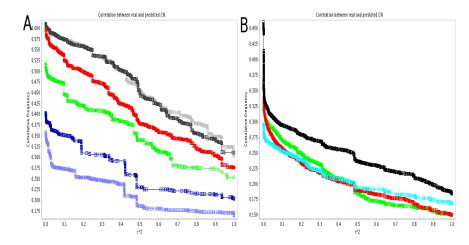
- 50 French individuals genotyped on
 - Illumina Human1M BeadArray
 - Agilent 244k CGH array
- 35 of these genotyped on
 - Illumina 317k BeadArray
 - Agilent 185k CGH array

We performed two comparisons


- Run PennCNV, cnvPartition, cnvHap on 1M data
 - Map predictions to 244k probes using imputation
 - Compare with direct CNV annotation on aCGH 244k probeset according to ADM2
- Reverse experiment to compare cnvHap to ADM2 on aCGH data using 1M annotation as benchmark

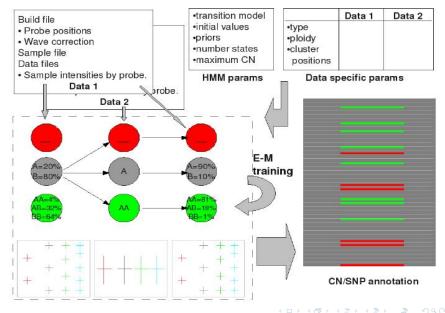
Performance of algorithms on test region

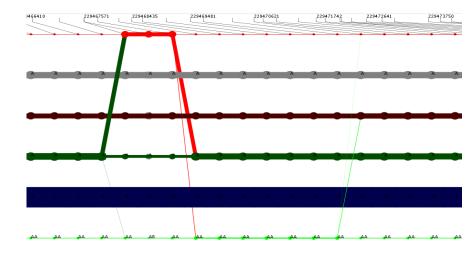
Finding structural variants associated with disease


Feasibility of CNV Imputation

<ロ> <同> <同> < 国> < 国>

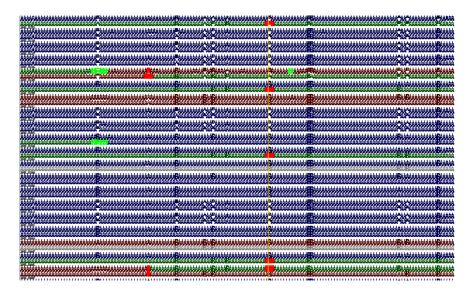
Finding structural variants associated with disease


Correlation between real and predicted CN genomewide

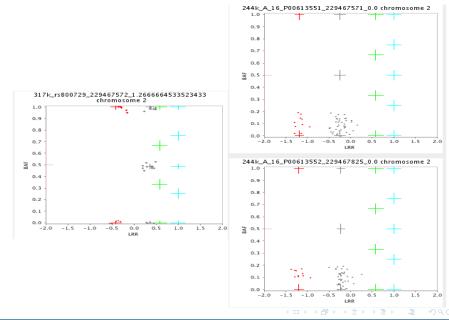

cnvHap: Population haplotype model for multi-platform CNV prediction and imputation

- Integrates information from multiple chips into a single consistent CNV annotation
- ► Models CNVs at the single chromosome level → improves sensitivity by integrating LD information (between SNPS and CNVS, and also between SNPS/SNPS and CNVS/CNVS) into CNV prediction
- Models all samples simultaneously
- Updates cluster positions as part of maximisation procedure
- Also imputes CN genotype at unmeasured loci, and estimates the uncertainty in this estimation, so can be used to map CNV prediction from one probeset onto another

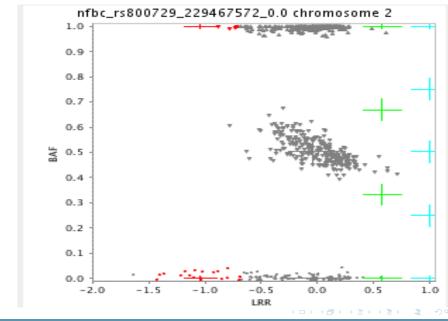
cnvHap model

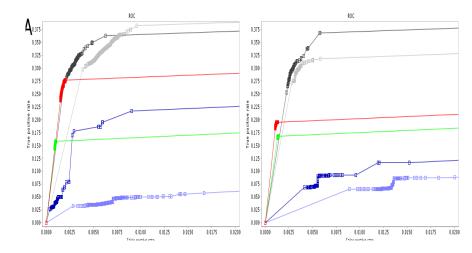


Haplotype model found common deletion haplotype

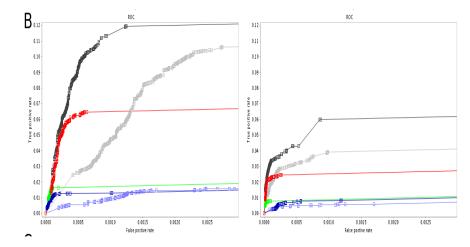


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = つへで

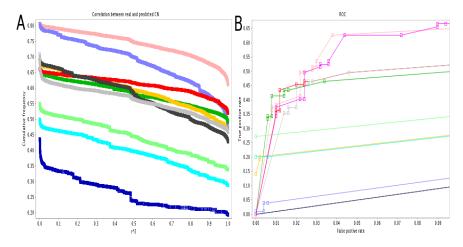

Identifying CNV haplotypes


Considering population improves accuracy

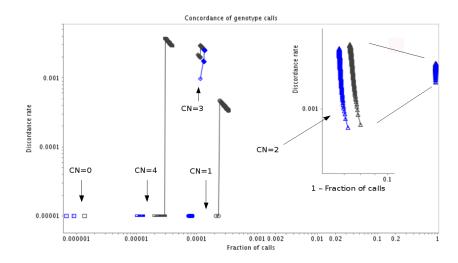
... particularly in a larger population



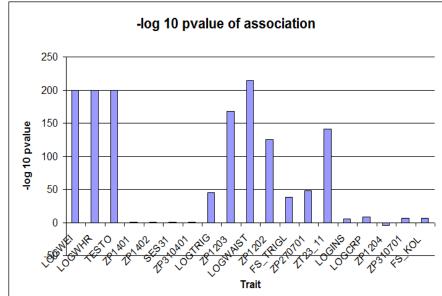
ROC curves for detecting CNVs by individual


イロト イポト イヨト イヨト

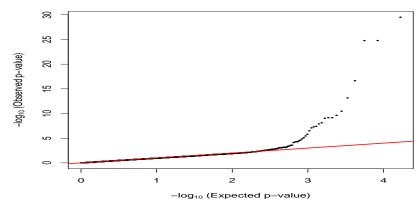
ROC curves for detecting CNV break points


<ロ> <回> <回> <回> < 回> < 回>

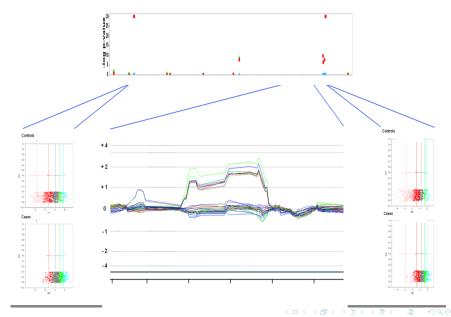
Combining datasets improves accuracy



Magenta=244k+1M+185k+317k; pink=244k+1M; red=185k+244k; dark green=244k+317k; light blue =317k+1M;orange=1M+185k; dark grey=1M; light-grey=244k; light green=185k+317k; cyan = 185k; dark blue= 317k.

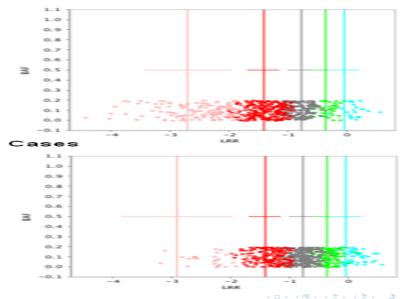

cnvHap model enables genotyping within different CN states

Strong CNV association on chromosome 1 for multiple metabolic traits

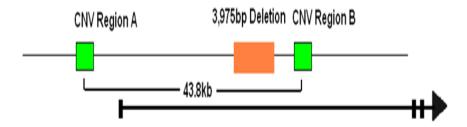

Detecting CNV associations

-log₁₀QQ

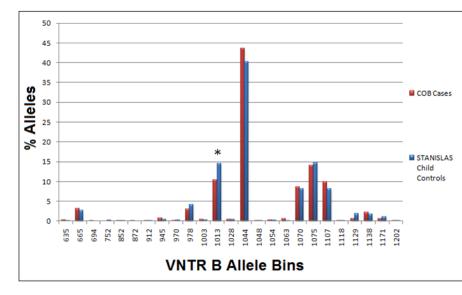
<ロ> <回> <回> <回> < 回> < 回>


Discovery and validation of CNV association

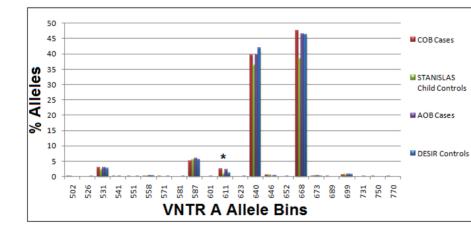
Finding structural variants associated with disease


Discovery and validation of CNV association

Controls



'OB3' CNV region


OB3 CNV Region

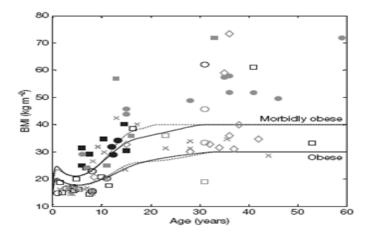
Discovery and validation of CNV association

Discovery and validation of CNV association

Identification and validation of deletions at 16p11.2

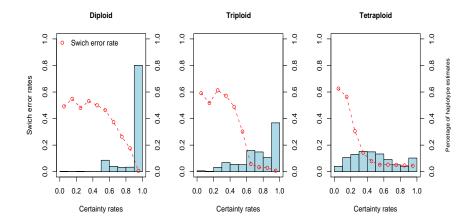
Walters et al, Nature 2010

Frequency of detected 16p11.2 deletions in multiple cohorts


Table 1 Frequency of detected 16p11.2 deletions in multiple cohorts	Table 1 Frequency of	f detected 16	p11.2 deletions	in multiple cohorts
---	----------------------	---------------	-----------------	---------------------

Cohort	Deletions/total					Technology
	Lean/normal	al Overweight	Obese	Morbidly obese	Total	-
Ascertained for cognitive deficits/malformations and ob	esity					
Lille/Strasbourg*					8/279	qPCR, aCGH
London*					1/33	aCGH, MLPA
Ascertained for cognitive deficits/malformations						
French-Swiss cytogenetic clinical diagnostic group*					21/3,870	aCGH, QMPSF, gPCR, FISH
Estonian cases of cognitive deficit*					1/77	Illumina CNV370-Duo, gPCR
Ascertained for obesity						
Swedish families with discordant siblings [†] §	0/140	0/54	0/115	2/44	2/353	Illumina 610K-Quad, MLPA
French adult case-control ⁺	0/669	0/174	-	4/705	4/1,548	Illumina CNV370-Duo, MLPA
French child case-controlt	0/530	0/51	1/260	3/383	4/1,224	Illumina CNV370-Duo, MLPA
British extreme early-onset obesity (SCOOP):	-	-	-	3/931	3/931	Affymetrix 6.0, MLPA
French bariatric weight-loss surgery†	-	-	0/15	2/126	2/141	Illumina 1M-duo, MLPA
Population cohorts (origin)						
NFBC66 (Finnish)†	1/3,148	0/1,622	1/434	1/42	3/5,246	Illumina CNV370-Duo
CoLaus (Swiss)†	0/2,675	0/2,049	0/830	0/58	0/5,612	Affymetrix 500K
EGPUT (Estonian)†	0/412	0/358	1/213	0/15	1/998	Illumina CNV370-Duo, gPCR
Total without as certainment for cognitive deficits/ malformations§	1/7,434	0/4,254		13/2,260		

For each colord, 15,012 deletions were identified and validated with the indicated technologies. Where full phenotypic data were available, members of cohorts were categorized in accordance with the appropriate obesity oriteria (see Supplementary Information): "not categorized complete phenotypic data were available, HBMI thresholds for overweight, obseared morbidy obese were the SUS comment and a standard deviations above the mean respectively, corrected for age and gender. SDiscordant shillings were not included in totals because of relatedness. QMPSF, quantitative multiplex PCR of short fluorescent fragments, FFBH, fluorescence in site hybridization.

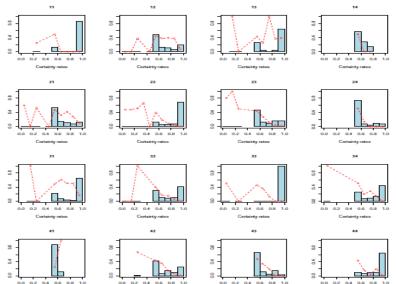

Walters et al, Nature 2010

Dependence of BMI on age in subjects having a deletion at 16p11.2

Lines denote the thresholds corrected for age and gender (solid, male; broken, female) for obesity and morbid obesity. Squares, male; circles, female; black, ascertained for developmental delay; grey, not ascertained for developmental delay; filled, ascertained for obesity; open, not ascertained for obesity; diamonds, first-degree relative

Phasing accuracy on paired male X chromosomes

Determining alleleic configuration of CNVS


 Table 1.4: The Distribution of Copy Numbers and Prediction Errors of

 Allele Configuration

	Copy numbers of the genotype				
	0	1	2	3	4
Distribution of copy numbers	967	4642	664847	60010	15237
Homozygous genotypes	967	0	454608	24471	12152
Prediction errors	NA	NA	NA	392	276
(Error rate)				(0.011)	(0.018)

Phasing CNVS

Certainty rates

Containty rates

Finding structural variants associated with disease

Certainty rates

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」 のへで

Certainty rates

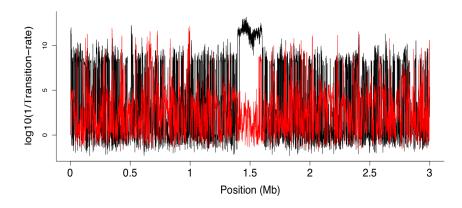
Comparison to CNVPhaser

Table 1.7: The Comparison between our Method and CN-Vphaser

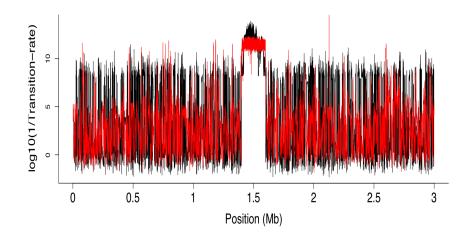
	Number of individual having switch error		
Number of sites	Our method	CNVphaser	
3	0	0	
8	1	24	

・ロト ・回ト ・ヨト ・ヨト

Methods for detecting inversions

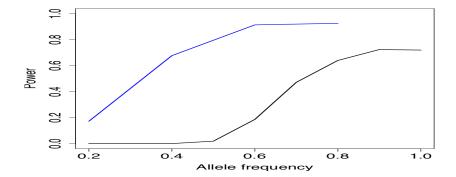

- 1. Sequencing '1000 Genomes' Project (only certain pop's)
- 2. Aberant long range LD patterns Bansal et al. (low power)
- 3. Suppression of recombination between inverted and non-inverted chromosomes.

Developed *invert*HMM to capture point 3:


- 1. Use two hidden 'super' states to model inverted vs non-inverted haplotype \Rightarrow allows us to model recombination rate between inversion/ non-inversion
- 2. Use two hidden 'sub' states within each super-state to model underlying rate of recombination
- 3. Regions with low 'between' and 'within' super-state recombination are just regions of low recombination
- 4. Regions with low 'between' but normal 'within' are inversion candidates
- 5. We then predict from model which samples have inversion

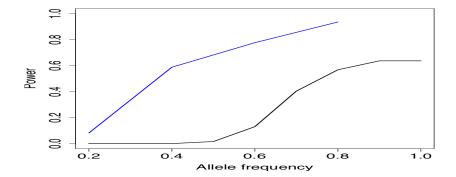
invertHMM: Simulation with 200kb, 60% inversion

BLACK: Between-superstate transition rate (reciprocal, log-scale); RED: Between-substate transition rate (reciprocal, log-scale)



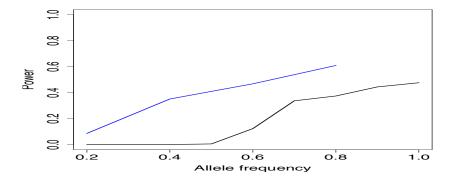
invertHMM: Simulation with 200kb of no recombination

invertHMM: Power analysis (500kb inversion)


BLACK: LD method; BLUE: invertHMM

.∋...>

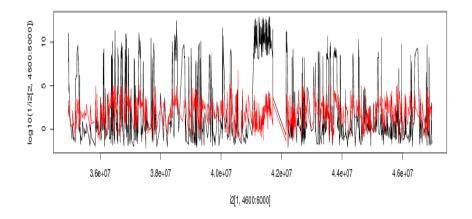
invertHMM: Power analysis (200kb inversion)


BLACK: LD method; BLUE: invertHMM

.∋...>

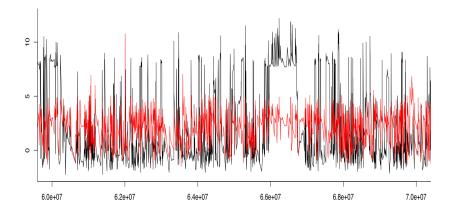
invertHMM: Power analysis (100kb inversion)

BLACK: LD method; BLUE: invertHMM



.∋...>

invertHMM: Applied to real data


- Scans over WTCCC & French data provided almost 400 candidates genome-wide
- Null distribution formed using a complex model incorporating demographic factors, and variation in recombination rate, calibrated to reflect real data (Schaffner et al. 2005)
- The method applied to the null data suggests just over half these candidates are real inversions (though results indicate null is too conservative here)

MAPT inversion, at $\approx 20\%$ (chromosome 17)

-

Potential novel inversion

<ロ> <回> <回> <回> < 回> < 回>

Acknowledgements

Imperial College

Paul O'Reilly Shu-Yi Su **Clive Hoggart** Julian Asher Penny Charoen Harrieta Eleftherohorinou Adam de Smith Robin Walters Alex Blakemore David Balding Phillipe Froguel McGill University

Rob Sladek