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Journée thématique BILGWAS, Nantes, 28 Janvier 2010



GWAS: is the glass half full? or half empty?

Common Disease Common Variant hypothesis verified

I many new common variants identified

But

I effect sizes small

I explain relatively little of genetic contribution to disease
I valid pointers to mechanisms but

I weakly associated variants may play a minor role in complex
mechanisms

I perhaps many causal pathways
I role of rarer variants probably easier to discern

I because of stringent significance thresholds, these form “tip of
iceberg”

I estimates of number of SNPs associated with some complex
diseases are ∼ 104 − 105.



Published Genome-Wide Associations through 9/2009,                  
536 published GWA at p < 5 x 10-8

NHGRI GWA Catalog
www.genome.gov/GWAStudies



Observed effect sizes: NHGRI Catalog of GWA Studies



Where is the missing genetic variation?

Weak, common variants form part of the story, but there could
also be a big role for

I many rare variants of large effect sizes and/or
intermediate-frequency alleles of intermediate effects

I copy-number variants
I WTCCC2: common CNVs have little impact on disease
I rare CNVs likely to be important

I epigenetic factors

I intermediate phenotypes (e.g. gene expression)

Some of the missing variation may come from ongoing GWAS -
better designed and better analysed.

I multi-ethnic studies; admixed populations
I gene-by-environment interactions

I prospective cohorts

I gene-by-gene interactions
I pairwise or pathway-based analyses



Effectiveness of linkage and association
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Intermediate variants?
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Genetic association studies

I Seek correlation between phenotype (e.g. disease state or drug
response) and genotype, usually in “unrelated” individuals
(the relationship is unknown and assumed to be distant).

Genotype:

Phenotype:

G8G7G6G5G4G3G2G1

I Contrast with linkage studies which look for correlation
between phenotype and parent-child transmissions of alleles.

Parent (m)

Genotype  Gm

Child (c)

Parent (p)

Phenotype Yp

Genotype  Gc

Phenotype Yc

Phenotype Ym

Genotype  Gp



Rationale for a linkage study

I We can do linkage in all
kinds of pedigrees

I it isn’t necessary for transmissions
over generations to be directly
observed

I e.g. affected sib pairs (ASP):

commonUnknown
Unknown
ancestry

Genotype  G1 Genotype  G2

ancestor

Recent

ancestry



Pros and cons of Linkage

Pro:
I Conditioning on the known

pedigree provides protection from
confounding (we look for patterns
of transmission that deviate from
those expected given the pedigree).

I Need fewer markers.

I Larger linked region ⇒ higher prior
probability of linkage (less multiple
testing problem) ⇒ smaller sample
sizes / greater power.

I Good for rare, high-penetrant
causal alleles, since cases are then
concentrated in families.

Con:

I Need to recruit study
participants of
known relatedness.

I Known pedigrees ⇒
few meioses ⇒ crude
localisation ⇒
greater fine-mapping
problem.

I Ineffective for
diseases of complex
genetic etiology.



Rationale for an association study

Genotype:

common
ancestors

case

control

  mutation
Risk enhancing

G8G7G6G5G4G3G2G1

Remote

Genealogy at
tested locus
(haploid)

Correlated transmis-
sions of genotype and
phenotype generate
the associations that
we seek in both linkage
and association.

In effect we infer trans-
missions of a risk-
enhancing allele from
a remote unobserved
ancestor in a case-rich
group of study sub-
jects with similar geno-
types/haplotypes.

I similar to ASP
study.



So what’s the difference between linkage and association?

I linkage conditions on known pedigree when inferring IBD;

I in association, we infer shared ancestry at a locus ignoring the
pedigree.

Inference without pedigree information brings advantages:

I can exploit remote shared ancestors ⇒ many recombinations
leading to fine-scale mapping;

I fewer constraints on ascertainment of study subjects
I can enrich for rare phenotype, e.g. case-control design.

But also comes with costs
I allelic heterogeneity makes inference of ancestry difficult

I best suited to common variants;

I lose possibility to track parent-of-origin and maternal effects;

I phenotype-related genotyping error can confound;

I unobserved pedigree may have structure that is associated
with phenotype ⇒ confounding by population structure or
cryptic relatedness.



Unobserved pedigree is a confounder for association studies

Two genealogies at distinct loci in the same individuals. They:

I are embedded in the same underlying pedigree;

I are independent at unlinked loci conditional on the pedigree;

I are not unconditionally independent.

solid: lineages of
study subjects at
two loci;

dashed: pedigree
relationships not
part of any lineage
at this locus.



How does the pedigree confound?

Polygenic inheritance:

I Many loci distributed genome-wide each make a small
contribution to phenotype;

I Genealogies at these loci are correlated because they are all
constrained to follow the same pedigree;

I Pattern of association at a locus may be correlated with the
pedigree and so signal may in part arise from polygenic
inheritance.

I e.g. if there is a North-South frequency gradient for an allele
in Europe, it will be correlated with any N-S varying
phenotype. But this also reflects the pedigree structure of
Europeans ⇒ confounding.

This is usually discussed as the problem of population structure

I but an “island” subpopulation model describes only one form
of pedigree structure;

I another important special case is cryptic relatedness.



Principal Components Analysis of Europe

Genes Mirror Geography in Europe, Novembre et al. Nature 2008.



Principal components can measure major pedigree effects...
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.... and adjust for confounding

I Including leading PCs as regression predictors then removes
from the test of SNP association any signal of phenotype that
can be attributed to large-scale pedigree structure;

I generally an effective approach but
I does not deal with finer-scale population structure or cryptic

relatedness
I can discard useful information



Solutions to pedigree confounding: 2 Linear mixed models

Tackle the pedigree confounding issue directly:

I the matrix of (estimated) pairwise kinship coefficients K gives
a much richer description of the pedigree than leading PCs;

I many parameters to estimate, but OK for GWAS data.

Include K in inference via a mixed model

yi = α + βxi + ui + ei

I without ui this is standard (prospective) regression model
I β is the SNP effect parameter of interest;

I assume the random effects ui have correlation ∝ K (the
constant specifies the heritability).

I Intuition: the correlation structure of y that can be attributed
to additive polygenic effects is removed from inferences about
β.



Estimating kinship from GWAS markers:
1. Total allele sharing (IBS = IBD).

I arises under assumption that
IBS =⇒ IBD; common
assumption for SNPs, not
always true;

I simple Method of Moment
estimator;

I an allele counts the same
whether it is rare or
common;

I “Unrelated” individuals (all
shared ancestors are remote)
have kinship 6= 0

A !> C

AAAAACCCCC



Estimating kinship from GWAS markers:
2. Kinship = allelic correlation.

I arises under population
genetics models in which
two alleles are either IBD or
independent choices from a
hypothetical gene pool with
known allele fractions;

I simple Method of Moment
estimator;

I interpretation as excess
allele sharing: allele fraction
p is important.

I estimation of p can lead to
downward bias in kinships;
negative values possible.

C

Gene Pool
Allele fractions
p and 1!pA

C

A

A

C
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Allelic correlation estimator of K

I Allelic correlation estimator uses p and is more efficient than
IBS estimator:

I 40% lower s.d. in a small simulation study (Astle & B, Statist
Sci 2010).

I Negative values are considered unpalatable by some but bias
less important here than variance.

I Allelic correlation is natural to model phenotypic correlation.

We consider here only the 1-parameter kinships, defined in terms
of IBD of alleles drawn at random, one from each individual.

Can also consider 2-parameter kinships that estimate probabilities
of 1 and 2 IBD alleles — required to model dominant polygenic
effects.



Principal components of K̂

The allelic-correlation estimator K̂ is the same matrix from
which principal components are derived.

PC adjustment uses only the leading eigenvectors of K
I implies a prior that is diffuse for the first k eigenvector

regression coefficients and concentrated at zero for remaining
n−k ;

I gives more flexibility e.g. to adjust for SNP-specific selection
effects correlated with a leading eigenvector

I but truncation at k eigenvectors is unsatisfactory, can miss
important structure;

I mixed model approach uses all the eigenvectors, with prior
variance proportional to eigenvalues;

I better approaches possible: less shrinkage for leading
e’vectors, truncation of trailing e’vectors to minimise noise.

See Astle & B (2010), also McVean paper in recent PLoS Genetics.



The current position

I The population is one big family but the pedigree is unknown.
I We can infer its principal features, and adjust association

analyses for confounding, via kinship coefficients estimated
from GWAS data using

I principal components;
I or linear mixed models

I studies of isolated populations are likely to be valuable to
investigate variants that are globally rare

I studies of model can play a similar role (e.g. dogs)

I little remaining rationale for recruiting nuclear families
I except to look for parent-of-origin or maternal effects.



The near future

Even better analyses are now thinkable:

I The pedigree only gives expected genome-wide patterns of
inheritance under Mendelian assumptions.

I Resequencing data provides the possibility to infer actual
shared inheritance of genomic regions in two individuals
separated by, say, up to 10 meioses.

I ∼ 103 maternal and ∼ 103 paternal relatives within 10 meioses.
I May share no genomic material with a 10-meiosis relative, but
I if there is a shared haplotype, it is likely to be > 100Kb in

length — detectable with confidence from resequencing data.

Some points to note:

I 10 meiosis is an arbitrary cut-off: in practice we look for
sharing of extended haplotypes significantly beyond what is
expected for “unrelateds” (random draw from an allele pool).

I We are all inbred: everyone is related to everyone else both
paternally and maternally.



Population linkage analysis

I Given the genomic sequences of a 1% population sample (e.g.
UK Biobank), expect ∼ 10 maternal and ∼ 10 paternal
sequenced relatives of an individual. This permits

I long-range phasing of much of the genomes (Kong 2008);
I with some pedigree information, or mtDNA and Y data, can

also distinguish maternal and paternal haplotypes (e.g. Iceland;
Kong et al. 2010).

I Detailed analysis of migration and demographic history.
I Population linkage analysis.

I Purcell et al. (2007) propose a precursor method, using GWAS
data and looking for excess shared ancestry (typically > 1Mb).

I with resequencing data much finer analyses are possible:
I can test linkage at a locus while controlling for (inferred)

shared ancestry at all other loci genome-wide;
I can accommodate allelic heterogeneity, as in linkage;
I can even test for parent-of-origin effects in population data.



Multiple testing and genome-wide significance

I Even if a single test has a small probability to generate a false
positive association result, the expected number of false
positives increases linearly with the number of tests.

I When many SNPs are tested, we can get multiple false +ves.

I This is called the problem of multiple testing.

The usual solution to the problem is to employ the Bonferroni
correction:

I Decide what expected number of false positives you are
prepared to tolerate for the whole study assuming no true
association anywhere in the genome;

I divide it by the number of tests to obtain αGW .

I Example: we accept a 5% chance of a false positive under H0

and 106 SNPs each undergo a single test, then
αGW = 0.05/106 = 5× 10−8.



False Discovery Rate

The Bonferroni correction remains popular, but it has drawbacks:

I the genome-wide H0 is completely implausible;

I αGW varies greatly with SNP density and distribution of MAF,
LD (choice of population), sample size, and choice of test;

I correlation between the tests makes the resulting αGW

conservative;

I we should consider all SNPs, even if not genotyped;

An alternative is to control False Discovery Rate (FDR):
I FDR estimates the ratio: false +ves / all +ves;

I doesn’t assume H0; based on an empirical estimate of the
numbers of SNPs following H0 and H1, respectively;

I an FDR of 5% is less stringent than αGW = 5%;

I FDR has been successful for gene expression experiments but
few, weak true +ves in GWAS, together with substantial LD,
make FDR difficult to estimate.



Problems with p-values

I A small p-value is less convincing of a true association if the
power of the test is low.

I The solution to this problem within the classical paradigm is
to try to “ban” low-powered tests.

I But for association studies power is uneven across SNPs, as it
can depend on

I MAF I imputation quality (more later)

I Bayesian Posterior Probability of Association (PPA):
I directly comparable across studies and across SNPs;
I avoids multiple testing problem;
I allows more quantitative and rational incorporation of

background information, decision analysis, and meta-analysis;
I Bayes vs frequentist can be viewed as “imperfect answer to the

right question” vs “precise answer to the wrong question”.
I But there can be costs in terms of more sophisticated

modelling and harder computations.



Computing the posterior probability of association (PPA)

Bayesian methods were not widely used for genetic association
analyses until the WTCCC reported the Bayes Factor (BF):

BF =
P(data|H1)

P(data|H0)

under both strictly additive model and a general model that gives
most weight to near-additive models. Then, to compute the PPA:

PPA =
πBF

1−π + πBF
where π =

P(H1)

P(H0)
.

π may vary across SNPs, depending on MAF, proximity to genes of
interest, conservation across species,.... Typically π ≈ 10−4 (so a
priori about 0.3 Mb of the genome has some true association).

The Bayesian solution to the problem of choosing the genetic
model is to average the BF, weighted according to the plausibilities
of different models.



Weighting additive and non-additive models in BF

Some results from WTCCC 07:
p-value BF PPA

Trait SNP Trend General (log10) π = 10−4 π = 10−5

BD rs420259 2.2× 10−4 6.3× 10−8 4.1 0.56 0.11
CD rs9858542 7.7× 10−7 3.6× 10−8 4.7 0.83 0.33

T2D rs9939609 5.2× 10−8 1.9× 10−7 5.3 0.95 0.67
CD rs17221417 9.4× 10−12 4.0× 10−11 8.9 0.99999 0.99987

T1D rs17696736 2.2× 10−15 1.5× 10−14 12.5 1.00000 1.00000

Here, BF is computed as a 4:1 weighting of additive and general
models (as defined by WTCCC).

I 1st row: log10(BF) = 2.0 (additive model); taking π = 10−4,
PPA = 0.01; likely to be ignored.

I Under general mode, log10(BF) = 4.8 and PPA = 0.86.
I But, general model often not tested – additive tests preferred.
I With 4:1 weighting, log10(BF) = 4.1, and PPA=0.56.
I Only 20% weight given to general model, but BF captures

strong non-additive signal while still emphasising additivity.
I Don’t calculate PPA for many models and pick the largest!



Effect sizes under an additive model

I Under the additive model, WTCCC assumed a N(0, 0.2) prior
on effect size (log odds).

I A drawback of this is rapid decay in the tails.

Example: effect of prior.

I the SEARCH collaborative group (08) reporting that variants
in SLC01B1 are associated with statin-induced myopathy.

I most significant SNP is rs4363657, with p = 4.1× 10−9.

I Using WTCCC prior, PPA ≈ 0.02

I Other Bayesian analyses with more plausible priors give (e.g.
mixture of Gaussians, see also next slide) PPA ≈ 0.4.

I Big influence of prior, because data suggest very large effect
size for a rare allele: WTCCC says this is a priori implausible.

I p < 10−8 is conventionally regarded as highly significant, but
Bayesian analysis says we should be far from convinced.



Do we need a null hypothesis?

I Division of SNPs into null
or non-null is artificial;

I reality is a distribution of
effect sizes that puts much
weight near zero;

I can be modelled using
Normal-Exponential-
Gamma (NEG) prior, and
posterior density obtained
numerically;

I no BF in this approach, but
posterior P(|θ| > 0.1) =
0.47, 0.39 and 0.35.

I See Stephens & Balding
09.



Rare alleles: the dark matter of heritability?

Haplotype

D�’ = 1

85 %

= 3 %AF = 15 %AF

Genotyped

non functional

common SNP

Underlying

functional

rare SNP

12%

3 %

Fractions

I Observed common genetic associations explain relatively little
of the burden of disease even for highly-heritable disorders.

I Some may be due to a highly-penetrant, rare causal variant.

I Because rare haplotypes tend to be recent and therefore long,
the rare causal may be very far from the observed association.



Rare alleles: the return of the family?

I Problem: rare alleles are hard to find.

I Currently much interest in exome resequencing to detect rare
alleles of functional significance (e.g. Nickerson, Nature
Genetics 2010).

I Widespread view that families will become important again
because of concentration of rare alleles,

I e.g. use sibs with concordant phenotypic extremes.
I Better solution: isolated populations with high prevalence

I role of pedigree (whether known or not) now even more
important, but can be tackled e.g. using K̂ .



Rare causals change QT mean and variance

Fractions

QT mean = 0.2, s.d. = 1.4
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Need to extract signal from both mean and variance when testing
for association at a QT.



Bayes Factor for changes in QT mean and variance

I Typical QT association analysis is to test for zero slope in
linear regression on genotype (coded e.g. as 0, 1, 2). If
phenotypes yi are standardised, then standard Gaussian
assumptions:

I H0: the yi are i.i.d. N(0, 1)
I H1: the genotypes gi are centred (mean = 0) and each yi is

N(βgi , 1/γ), for β ∼ N(0, σ2) and γ ∼ Gamma(α, α), where
σ2 and α are known constants.

I An alternative approach is to assume under H1 that for
genotype j the y are i.i.d. N(µj , 1/γi ) for µj ∼ N(0, 1/τ) and
γj ∼ Gamma(α, α), where τ and α are known constants.

Each BF has a simple, exact formula. We tried out these two BFs
in a small simulation study, in which the causal variants have
fraction ≈ 4% and the genotyped SNPs have D ′ = 1 with the
causal variant and minor allele fraction between 10% and 25%.



Additive model at causal SNP

First we compare the BF that allows different variances (BFdv)
with the linear model (BFlm) when the effect is additive at the
causal variant ⇒ at genotyped marker, the mean effect is linear in
allele dose but with unequal variances:
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Near-recessive model at causal SNP
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BFdv doesn’t improve over BFlm; the sparse linear model (2
parameters) has an advantage over the full 6 parameter model
even when it is strictly false.
However, BFdv does give a big advantage if the causal variant
alters variance as well as the mean, and seems to find some
interesting associations in real data.



T1D associations against effect size estimate
(odds ratio, additive model)
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Tail decays very slowly:
perhaps a huge number of
true, weak associations?



T1D associations against effect size estimate
(odds ratio, additive model)

E
s
ti
m

a
te

d
 o

d
d

s
 r

a
ti
o

1
1

.3
1

.6
1

.9
2

.2

IN
S−r

s6
89

PTP
N22

−r
s2

47
66

01

IL
2R

A−r
s1

27
22

49
5

CO
BL−

rs
49

48
08

8

CTR
B2−

rs
72

02
87

7

SH2B
3−

rs
31

84
50

4

PTP
N2−

rs
45

45
07

98

ERBB3−
rs
22

92
23

9

IL
2R

A−r
s2

10
42

86

CTL
A4−

rs
30

87
24

3

CLE
C16

A−r
s1

27
08

71
6

IL
10

−r
s3

02
45

05

IL
18

RAP−r
s9

17
99

7

PTP
N2−

rs
47

85
82

C10
or

f5
9−

rs
10

50
95

40

IF
IH

1−
rs
19

90
76

0

LO
C72

99
80

−r
s5

75
30

37

CCR5−
rs
33

3

PG
M
1−

rs
22

69
24

1

PRKD2−
rs
42

51
05

IL
27

−r
s4

78
80

84

CTS
H−r

s3
82

59
32

IL
2R

A−r
s1

15
94

65
6

PRKCQ
−r

s9
47

47
4

CD22
6−

rs
76

33
61

UBASH3A
−r

s3
78

80
13

SIR
PG

−r
s2

28
18

08

SKAP2−
rs
78

04
35

6

C6o
rf1

73
−r

s9
38

84
89

IL
2−

rs
20

69
76

3

BACH2−
rs
11

75
55

27

G
LI
S3−

rs
70

20
67

3

C14
or

f1
81

−r
s1

46
57

88

UM
O
D−r

s1
24

44
26

8

IL
2−

rs
20

69
76

2

C1Q
TN

F6
−r

s2
29

54
1

NA−r
s4

90
03

84

NA−r
s1

53
44

22

STA
T4

−r
s7

57
48

65

RG
S1−

rs
28

16
31

6

O
RM

DL3
−r

s2
29

04
00

NA−r
s1

05
17

08
6

IL
7R

A−r
s6

89
79

32

TA
G
AP−r

s1
73

80
74

TN
FA

IP
3−

rs
10

49
91

94

TN
FA

IP
3−

rs
69

20
22

0

CD69
−r

s4
76

38
79

G
AB3−

rs
26

64
17

0
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perhaps a huge number of
true, weak associations?



Prediction of Case-control status

Prediction of case-control status from confirmed variants is poor,
but

I Prediction from many thousands of top SNPs from GWAS can
achieve reasonably good prediction, even though many of the
SNPs used in the prediction are false positives.

I Provides further evidence that many, common, low-effect-size
SNPs may explain much of heritable variation.

I Goldstein 2009: 93,000 SNPs required to explain 80% of the
population variation in height

I Low marginal effects could reflect stronger underlying effects:
I rarer untyped variants, including CNVs



Shrinkage

I Standard of “significance” should be different for prediction
than when identifying causal loci; your prior distribution of
effect size may be the same but utility differs:

I no-one wants to invest a lot of money in functional studies
only to find that the locus isn’t causal after all;

I a few false +ves in a prediction model may do little harm, and
the lower significance threshold can allow in true +ves that fail
to reach genome-wide significance;

I given some genotyping, cost of some extra SNPs is small.

I shrinkage (or penalised) regression is useful to minimise their
false +ves and automatically select among SNPs in high LD.

How to shrink?

I Ridge regression: Gaussian (normal) distribution;

I LASSO: Exponential distribution;

I NEG distribution (Hoggart et al. PLoS Genet 2008).



Shrinkage priors
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Prediction of WTCCC autoimmune diseases

The number of genes associated through GWAS with CD, T1D
and RA has been increasing progressively through the use of meta-
analysis. In order to place the findings of our pathway-based
approach in the context of what has been found using
conventional single SNP analysis in the original WTCCC study,
in previous studies or in more recent meta-analysis, we have
tabulated in web-based additional material Tables 17–19, the
previously reported associations for CD, RA, and T1D and related
these to the genes implicated in our analysis. These tables show

that several genes, which were not significant in the initial
WTCCC analysis, but were identified by our approach, have now
been confirmed in subsequent meta-analysis or candidate gene
studies. One obvious concern of the pathway approach is that it
can only evaluate the genetic contribution of genes known to act
within pathways. As shown in web-based additional material
Tables 17–19 several of the previously reported associations are
genes not present in our inflammatory pathways, and thus are
‘‘missed’’ by our approach. However, there are many other genes

Figure 3. ROC curves showing the average predictive performance for T1D, RA and CD. True positive rate and false positive rate for
predicting case/control status for A) type 1 diabetes, B) rheumatoid arthritis, C) Crohn’s disease on the WTCCC dataset and D) ROC showing the
average predictive performance of the T1D models built on the UK WTCCC dataset and applied to the 4,763 subjects in the Northern Finland 1966
Birth Cohort. Each colored line is the average ROC of the 10 models fitted during CV. The green curves show the performance of the models, as built
by the variable selection algorithm. Blue curves show the performance of the same models with all significant hits (individual trend test P,561027)
and SNPs in LD (r2§0:3) removed. Red curves show the predictive performance of the models formed only by the previously excluded SNPs
(significant hits and SNPs in LD). In T1D (A) the area under the average ROC curves is 91%, 71% and 84%, in RA (B) it is 85%, 81%, 70% and in CD (C)
60%, 56%, 58% for the pathway-derived models (green-curves), the pathway-derived models excluding the significant hits (blue curves) and the
significant-hit models (red-curves) respectively. In (D) the AUC of the green, blue and red ROC is 0.79, 0.71 and 0.76 respectively.
doi:10.1371/journal.pone.0008068.g003

Pathway Analysis of GWAS

PLoS ONE | www.plosone.org 7 November 2009 | Volume 4 | Issue 11 | e8068

From Eleftherohorinou et al. PLoS1, 2009.



Prediction: some conclusions

I There is room for optimism about prediction, despite generally
gloomy viewpoint of some authors (e.g. Clayton 09)

I Best prospects are for common phenotypes.
I Heterogeneous drug response can be reduced with even

modest predictive accuracy.

I In addition to conventional risk factors, it may be effective to
use tens or hundreds of markers, many unconfirmed as causal.

I Some success from prediction based on genome-wide markers
(Wray et al. 08, Purcell et al. 09)

I Further modelling developments feasible
I some effects are non-additive; should allow for these in models;
I further work to improve shrinkage priors;
I plant and animal breeders are currently leading the way with

sophisticated statistical modelling.
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