The Microbiogenomics warehouse: extraction and integration of relevant information from heterogeneous data provided by genomic comparisons

J-F. Gibrat

Unité Mathématique, Informatique et Génome, INRA, Jouy-en-Josas

Thematic day on Integrative Genomics, Nantes, October 21, 2010

• Huge amount of data stored in biological collections

- Biological data are characterized by their heterogeneity (different formats/viewpoints)
- Biological data tend to be organized around a given type of experiment
- Many questions in biology need to be addressed by combining data from multiple sources
- Database integration problem has been recognized for many years : "achieving coordination and interoperability among genome DBs and other informatics systems must be of the highest priority... We must think of the computational infrastructure of genome research as a federated information infrastructure of interlocking pieces..."
- Advances in biology are hindered not by lack of data but by the diversity of technologies used to store the data

- Huge amount of data stored in biological collections
- Biological data are characterized by their heterogeneity (different formats/viewpoints)
- Biological data tend to be organized around a given type of experiment
- Many questions in biology need to be addressed by combining data from multiple sources
- Database integration problem has been recognized for many years : "achieving coordination and interoperability among genome DBs and other informatics systems must be of the highest priority... We must think of the computational infrastructure of genome research as a federated information infrastructure of interlocking pieces..."
- Advances in biology are hindered not by lack of data but by the diversity of technologies used to store the data

- Huge amount of data stored in biological collections
- Biological data are characterized by their heterogeneity (different formats/viewpoints)
- Biological data tend to be organized around a given type of experiment
- Many questions in biology need to be addressed by combining data from multiple sources
- Database integration problem has been recognized for many years : "achieving coordination and interoperability among genome DBs and other informatics systems must be of the highest priority... We must think of the computational infrastructure of genome research as a federated information infrastructure of interlocking pieces..."
- Advances in biology are hindered not by lack of data but by the diversity of technologies used to store the data

- Huge amount of data stored in biological collections
- Biological data are characterized by their heterogeneity (different formats/viewpoints)
- Biological data tend to be organized around a given type of experiment
- Many questions in biology need to be addressed by combining data from multiple sources
- Database integration problem has been recognized for many years : "achieving coordination and interoperability among genome DBs and other informatics systems must be of the highest priority... We must think of the computational infrastructure of genome research as a federated information infrastructure of interlocking pieces..."
- Advances in biology are hindered not by lack of data but by the diversity of technologies used to store the data

Data heterogeneity

• Syntactic heterogeneity :

representation formats are different, e.g., flat files, XML format, relational format, etc.

- Semantic heterogeneity :
 - At the level of the general *organization of the information* (schema) : different viewpoint about the entities and different attributes, e.g., metabolic pathways in KEGG and UNIPROT.
 - At the level of *instances* (data) : a biological entity can have different attribute values, e.g., for *H. ducreyi* gene names

UNIPROT	KEGG
tusA	sirA
tilS	mesJ
oxaA	yidC
glmM	mrsA

Objective : to make data distributed over a number of distinct, heterogeneous databases accessible via a single interface

- Data model transformation : resolving syntactic heterogeneity
- Semantic schema¹ matching : establishing correspondences among concepts with semantic overlap
- Schema integration : creation of a global schema (from simple union of all underlying schemas to conception of a new schema)
- Data transformation and semantic data matching : establishing data correspondences in all the sources This is a critical step in practice !

¹As in the previous slide schema means the way of organizing the information

Objective : to make data distributed over a number of distinct, heterogeneous databases accessible via a single interface

- Data model transformation : resolving syntactic heterogeneity
- Semantic schema¹ matching : establishing correspondences among concepts with semantic overlap
- Schema integration : creation of a global schema (from simple union of all underlying schemas to conception of a new schema)
- Data transformation and semantic data matching : establishing data correspondences in all the sources This is a critical step in practice !

¹As in the previous slide schema means the way of organizing the information

Numerous integration solutions have been proposed during the last 20 years. Integration of databases can be classified according to 2 axes :

Loose vs tight integration :

- how many of the tasks of DB integration have been performed?
- in how much detail?
- Instantiation vs virtual (view) :
 - local physical copy of the DBs
 - access to distant sources (e.g., using mediators)

Examples of solutions

Microbiogenomics warehouse

Overview and motivations

Microbiogenomics project

- Project funded by the French national science fundation (ANR)
- Teams involved :
 - Evolution Moléculaire et Bioinformatique des Génomes, Institut de Génétique Microbienne, Paris XI Univ., Orsay
 - Mathématique, Informatique et Génome, INRA, Jouy
 - Laboratoire Recherche en Informatique, Paris XI Univ., Orsay

Development of a resource center for microbial genomics

- that gathers together pertinent data required for :
 - genome annotation/re-annotation
 - comparative genomics
 - gene/genome molecular evolution studies
- that combines heterogeneous data from different sources
- that allows the implementation of (intensive) data mining techniques

Focus on protein-related data

Overview and motivations

Microbiogenomics project

- Project funded by the French national science fundation (ANR)
- Teams involved :
 - Evolution Moléculaire et Bioinformatique des Génomes, Institut de Génétique Microbienne, Paris XI Univ., Orsay
 - Mathématique, Informatique et Génome, INRA, Jouy
 - Laboratoire Recherche en Informatique, Paris XI Univ., Orsay

Development of a resource center for microbial genomics

- that gathers together pertinent data required for :
 - genome annotation/re-annotation
 - comparative genomics
 - gene/genome molecular evolution studies
- that combines heterogeneous data from different sources
- that allows the implementation of (intensive) data mining techniques

Focus on protein-related data

Microbiogenomics warehouse : data sources

Primary data (public collections) :

- GenomeReview/MICADO : microbial genome nucleic sequences
- UniProtKB/PROSE : protein sequences, features and annotations
- Pdb/PDB : macromolecules 3D structures
- Kegg/PAREO : metabolic/functional pathways
- NCBI Taxonomy/TAXO

Secondary data : genomic comparisons at the protein level :

 ORIGAMI : homology relations between proteins comparisons of all proteins of all microbial genomes with BLAST

Tertiary data : derived from secondary data

- orthologs and paralogs
- genomic context : synteny, phylogenetic profiles, gene fusion/fission
- GENOPAGE : protein domains/modules, protein/domain family phylogenetic trees

• The warehouse is built as a relational database (postgreSQL)

- > allows syntactic integration (entity/relation framework)
- powerful query langage (SQL)
- can cope efficiently with large datasets
- > allows query optimizations and thus intensive data mining

• Each source has its own schema

- advantage : they can be updated individually
- advantage : it is easy to add a new source of data
- drawback : data are not reconciled...
 but redundancy helps in discovering complementarities and divergences between sources (DB cross-checking)

- ▷ semantic data matching : link table
- semantic schema matching : (multiple layer architecture)

• The warehouse is built as a relational database (postgreSQL)

- allows syntactic integration (entity/relation framework)
- powerful query langage (SQL)
- ▷ can cope efficiently with large datasets
- > allows query optimizations and thus intensive data mining

Each source has its own schema

- > advantage : they can be updated individually
- advantage : it is easy to add a new source of data
- ▷ drawback : data are not reconciled...

but redundancy helps in discovering complementarities and divergences between sources (DB cross-checking)

- > semantic data matching : link table
- semantic schema matching : (multiple layer architecture)

• The warehouse is built as a relational database (postgreSQL)

- allows syntactic integration (entity/relation framework)
- powerful query langage (SQL)
- ▷ can cope efficiently with large datasets
- > allows query optimizations and thus intensive data mining

Each source has its own schema

- > advantage : they can be updated individually
- advantage : it is easy to add a new source of data
- drawback : data are not reconciled...
 but redundancy helps in discovering complementarities and divergences between sources (DB cross-checking)

- ▷ semantic data matching : link table
- semantic schema matching : (multiple layer architecture)

• The warehouse is built as a relational database (postgreSQL)

- > allows syntactic integration (entity/relation framework)
- powerful query langage (SQL)
- can cope efficiently with large datasets
- > allows query optimizations and thus intensive data mining

Each source has its own schema

- > advantage : they can be updated individually
- advantage : it is easy to add a new source of data
- drawback : data are not reconciled...
 but redundancy helps in discovering complementarities and divergences between sources (DB cross-checking)

- ▷ semantic *data* matching : link table
- ▷ semantic *schema* matching : (multiple layer architecture)

Microbiogenomics warehouse : data processing

• Primary data

- Parsing of ASCII flat files to create a relational model for each genomic collection
- Computation of the LinkTable between corresponding entities in the schemas

Secondary data

- Search for homology relationships between proteins from all genomes with BLAST
- Extremely computer intensive (cross comparisons of millions proteins)
- Development of an incremental and parallel computation pipeline

Tertiary data

• Developement of specific programs to derive tertiary data from secondary data

Semantic integration Querying the warehouse

Querying the warehouse

Querying/vizualizing individual source

- Most databases have their own Web querying/visualization interface
- Primary data, e.g., PAREO (KEGG metabolic pathways)
- Secondary data, e.g., INSYGT/ORIGAMI (multiple-gene – multiple-genome navigator)

Querying the warehouse

- Microbiogenomics warehouse \sim 200 tables
- Sources with different schemas \Longrightarrow complex relational schema
- Different entities (potentially in different sources) are involved in complex queries
- Formulating SQL queries on the warehouse is a difficult task for users

Querying the warehouse

Querying/vizualizing individual source

- Most databases have their own Web querying/visualization interface
- Primary data, e.g., PAREO (KEGG metabolic pathways)
- Secondary data, e.g., INSYGT/ORIGAMI (multiple-gene – multiple-genome navigator)

Querying the warehouse

- Microbiogenomics warehouse \sim 200 tables
- Sources with different schemas \Longrightarrow complex relational schema
- Different entities (potentially in different sources) are involved in complex queries
- Formulating SQL queries on the warehouse is a difficult task for users

Semantic schema integration : conceptual framework

Graphs of entities

• Graph of abstract entities

- Two types of vertices :
 - biological entities, e.g., Protein, MetabolicPathway, Organism
 - properties, e.g., Sequence, EC number, name
- Three types of edges :
 - isa, e.g., Chromosome ↔ GeneticElement
 - biological links, e.g., CodeFor, Protein ↔ Transcript
 - Has-For-Property, e.g., Protein ↔ Sequence
- Graph of concrete entities (views in the databases)
 - Three types of vertices :
 - biological entities in the sources, e.g., KEGGprotein, KEGGorganism
 - properties of the concrete entities, e.g., Sequence
 - link entity (1 vertex : ProteinLink)
 - Three types of edges :
 - biological links, e.g., ExistIn, KEGGprotein \leftrightarrow KEGGorganism
 - Has-For-Property, e.g., KEGGprotein ↔ Sequence
 - Direct-Links, e.g., inter source connections between concrete entities
- Mapping between the level

Conceptual framework : mapping

Conceptual framework : mapping

One can pose queries involving :

- abstract entities : abstract queries
 - ▷ Ex : What are the enzymes of the organism Buchnera aphidicola?
- concrete entities : concrete queries
 - Ex : What are the enzymes in KEGG of the organism *B. aphidicola* in KEGG
- both : mixed queries
 - Ex : What are the proteins of the organism *B. aphidicola* in KEGG, and their homologs (paralogs) in the same organism ?

Querying process

Step 1 : abstraction

Find proteins of the species *Buchnera Aphidicola* that are in **PAREO** (Kegg) and have homologs in the same species :

Step 2 : linking abstract entities of the query

Output : high-level intermediate queries Input : abstract query xname, ec (name) id Protein Protein (name) (name) ec ec Homoloa to Protein Protein Transcript Transcript CDS Organism CDS ame= « Bucai »> Genetic element Genetic element *** Organism oname= « Bucai »>

Step 3 : generation of low-level queries

Step 4 : automatic translation into SQL

Evaluation on the databases by means of the mappings between the concrete entity layer and the database level

GenoQuery : graphically querying the system

What are the enzyme activities (EC numbers) in **KEGG** catalyzed by proteins of the species *Mycobacterium tuberculosis*?

GenoQuery : graphically querying the system

What are the enzyme activities (EC numbers) in **KEGG** catalyzed by proteins of the species *Mycobacterium tuberculosis*?

Microbiogenomics warehouse : summary

• A *tightly integrated* and *materialized* solution for the integration of data sources required for microbial genome annotation, comparative genomics and gene evolutionary studies

• The warehouse is built as a relational data base made of independent schemas

- Syntactic integration : entity/relation framework
- Semantic integration :
 - data level : link table
 - schema level : a multi-layer architecture
 - A formalism based on graphs
 - A querying mechanism allowing the user to :
 - \hookrightarrow Graphically query the system (user-friendly interface)
 - \hookrightarrow Define mixed queries
 - \hookrightarrow Efficiently get answers from alternative queries

Acknowledgements

⊳ LRI

- C. Froidevaux
- F. Lemoine

⊳ IGM

- B. Labedan
- S. Descorps-Declere
- ⊳ MIG
 - V. Loux
 - A. Gendrault
 - T. Lacroix
 - F. Papazian

Link table

1row = 1 protein = association of accession numbers (source IDs)

warehouse ID Source 1 ID	Source 2 ID	Source 3 ID	
--------------------------	-------------	-------------	--

Procedure for computing the link table :

- sequence hash keys
- Blast comparisons
- database cross references

PAREO (KEGG) interface

PAREO

INSYGT (synteny viewer)

Abstract entity graph

Concrete entity graph

Mediators

Peer to peer

