Introduction aux Bases de Données

Master Bio Informatique 1ère année Patricia Serrano Alvarado

Plan

1. Introduction

2. Objectifs des SGBD

3. Architectures des SGBD

4. Applications traditionnelles des SGBD

1. Introduction

- Les entreprises gèrent des volumes de données très grands
 - Giga, Terra, Péta –octets
 - Numériques, Textuelles, Multi-média (images, films,...)
- II faut pouvoir facilement
 - Archiver les données sur mémoires secondaires permanentes
 - Retrouver les données pertinentes à un traitement
 - Mettre à jour les données variant dans le temps
- Les données sont structurées et identifiées
 - Données élémentaires ex: Votre salaire, Votre note en BD
 - Données composées ex: Votre CV, vos résultats de l'année
 - Identifiant humain ex: NSS ou machine: P26215
- Qu'est-ce qu'une BD ?
 - Collection de données structurées reliées par des relations
 - Interrogeable et modifiable par des langages de haut niveau

Un peu d'histoire

Années 60:

- Récipients logique de données

 fichiers sur disque
- Accès séquentiel puis sur clé
 - Lire (Nomf, Article), Ecrire (Nomf, Article)
 - Lire (Nomf, Article, Clé), Ecrire (Nomf, article, Clé)

Années 70:

- Avènement des Bases de Données Réseaux (BD)
- Ensemble de fichiers reliés par des pointeurs
- Langage d'interrogation par navigation

Années 80:

- Avènement des Bases de Données Relationnelles (BDR)
- Relations entre ensemble de données
- Langage d'interrogation par assertion logique

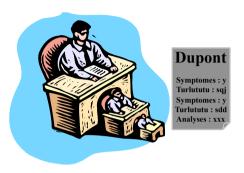
Systèmes de fichiers

Chirurgie

Caractéristiques

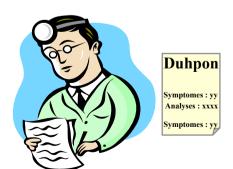
Problèmes

Consultations



Psychiatrie

Format des fichiers


Caractéristiques

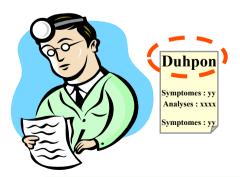
Plusieurs applications

- plusieurs formats
- plusieurs langages

Problèmes

→ Difficultés de gestion

Redondance (données)


Caractéristiques

Plusieurs applications

- plusieurs formats
- plusieurs langages

Redondance de données

- → Difficultés de gestion
- Incohérence des données

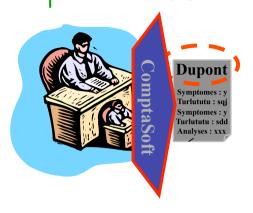
Interrogations

Caractéristiques

Plusieurs applications

- plusieurs formats
- plusieurs langages

Redondance de données Pas de facilité d'interrogation

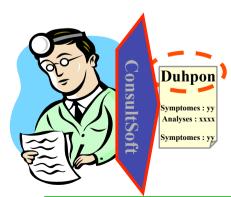

→ Question ⇒développement

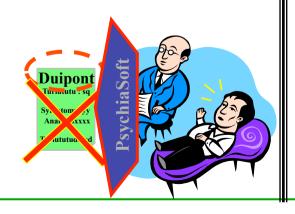
- → Difficultés de gestion
- → Incohérence des données
- Coûts élevés
- Maintenance difficile

Pannes

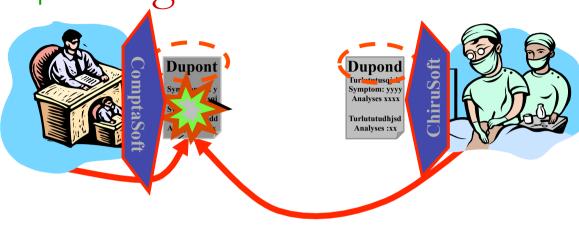
Caractéristiques

Plusieurs applications


- plusieurs formats
- plusieurs langages


Redondance de données Pas de facilité d'interrogation

→ Question ⇒développement


Redondance de code

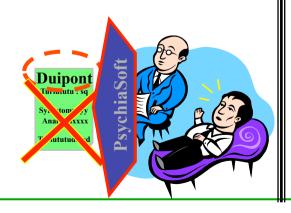
- → Difficultés de gestion
- → Incohérence des données
- Coûts élevés
- → Maintenance difficile
- → Gestion de pannes ???

Partage de données

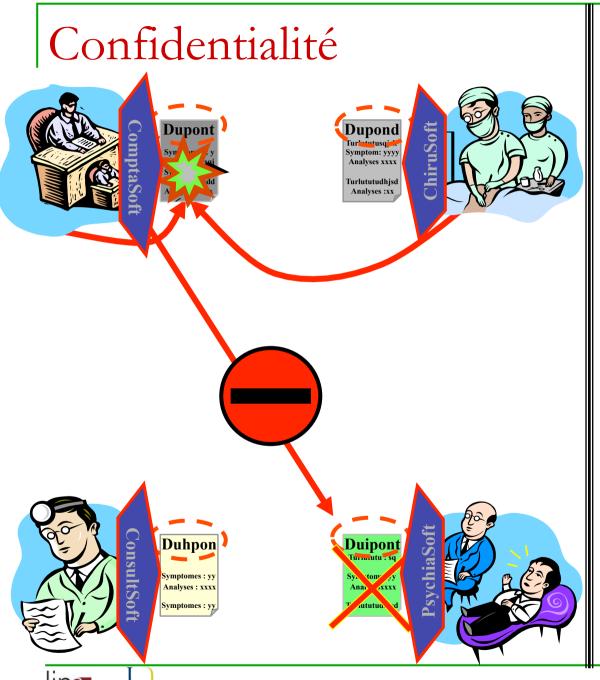
Caractéristiques

Plusieurs applications

- plusieurs formats
- plusieurs langages


Redondance de données Pas de facilité d'interrogation

Question ⇒développement


Redondance de code

- → Difficultés de gestion
- → Incohérence des données
- Coûts élevés
- → Maintenance difficile
- **→** Gestion de pannes ???
- → Partage des données ???

Caractéristiques

Plusieurs applications

- plusieurs formats
- plusieurs langages

Redondance de données Pas de facilité d'interrogation

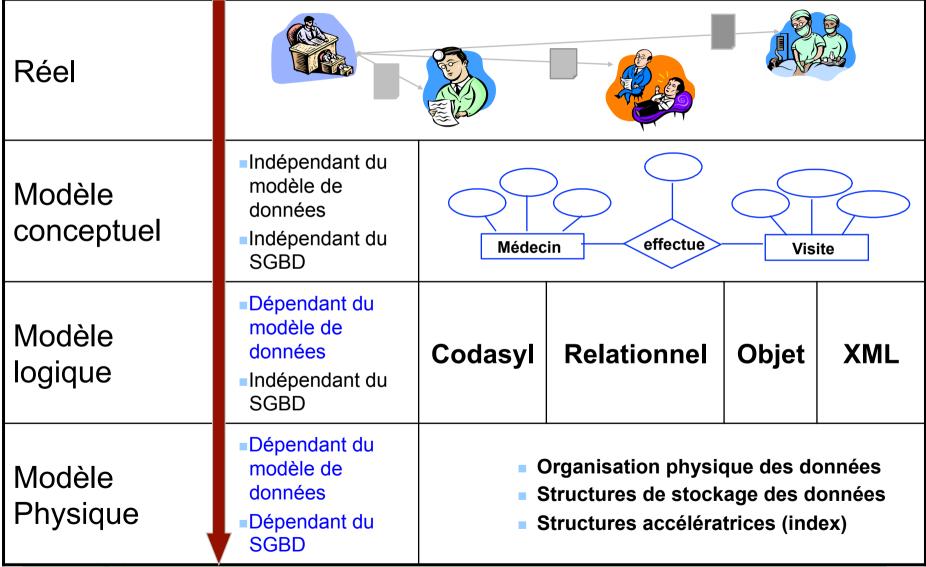
→ Question ⇒développement

Redondance de code

- → Difficultés de gestion
- → Incohérence des données
- Coûts élevés
- → Maintenance difficile
- → Gestion de pannes ???
- → Partage des données ???
- Confidentialité ???

L'approche "Bases de données"

Modélisation des données


- → Eliminer la redondance de données
- Centraliser et organiser correctement les données
- Plusieurs niveaux de modélisation
- Outils de conception

Logiciel «Système de Gestion de Bases de Données»

- Factorisation des modules de contrôle des applications
 - Interrogation, cohérence, partage, gestion de pannes, etc...
- Administration facilitées des données

Modélisation du réel

Modélisation Relationnelle (1)

Relation ou table

Champs, attributs, colonnes

ld-I	o	Nom	Prénom	
1		Dupont	Pierre	
2		Durand	Paul	
3		Masse	Jean	

Tuples, lignes ou n-uplets

Modélisation Relationnelle (2)

Docteurs

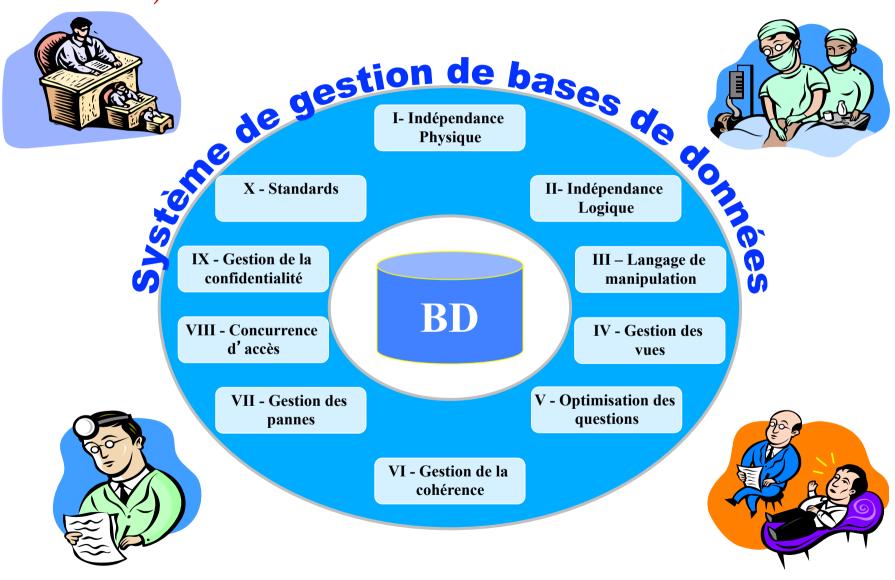
ld-D	Nom	Prénom
1	Dupont	Pierre
2	Durand	Paul
3	Masse	Jean

Visites

ld-D	ld-P	ld-V	Date	Prix
1	2	1	15 juin	250
1	1	2	12 août	180
2	2	3	13 juillet	350
2	3	4	1 mars	250
		-		

Prescriptions

ld-V	Ligne	ld-M	Posologie
1	1	12	1 par jour
1	2	5	10 gouttes
2	1	8	2 par jour
2	2	12	1 par jour
2	3	3	2 gouttes

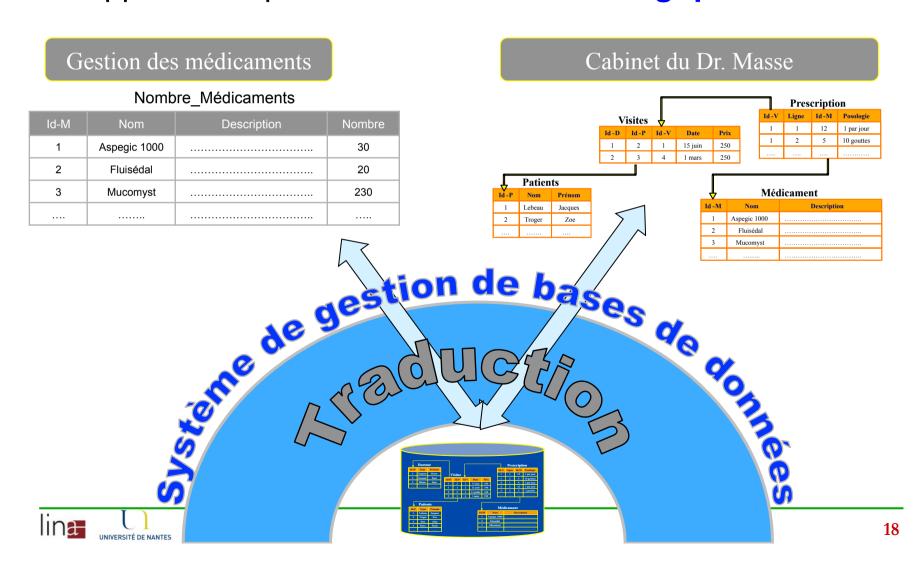

Patients

ld-P	Nom	Prénom	Ville
1	Lebeau	Jacques	Paris
2	Troger	Zoe	Evry
3	Doe	John	Paris
4	Perry	Paule	Valenton

Médicaments

ld-M	Nom	Description	
1	Aspegic 1000		
2	Fluisédal		
3	Mucomyst		

2. Objectifs des SGBD


I - Indépendance Physique

- Indépendance des programmes d'applications vis à vis du modèle physique :
 - Possibilité de modifier les structures de stockage (fichiers, index, chemins d'accès, ...) sans modifier les programmes;
 - Ecriture des applications par des non-spécialistes des fichiers et des structures de stockage;
 - Meilleure portabilité des applications et indépendance vis à vis du matériel.

II - Indépendance Logique

Les applications peuvent définir des vues logiques de la BD

Avantages de l'indépendance logique

- Possibilité pour chaque application d'ignorer les besoins des autres (bien que partageant la même BD).
- Possibilité d'évolution de la base de données sans réécriture des applications :
 - Ajout de champs, ajout de relation, renommage de champs.
- Possibilité d'intégrer des applications existantes sans modifier les autres.
- Possibilité de limiter les conséquences du partage :
 Données confidentielles.

III - Manipulation aisée

- La manipulation se fait via un langage déclaratif
 - La question déclare l'objectif sans décrire la méthode
 - Le langage suit une norme commune à tous les SGBD
 - SQL : Structured Query Langage
- Sémantique
 - Logique du 1er ordre ++
- Syntaxe (juste un aperçu…)
 - SELECT <structure des résultats>
 - FROM <relations>
 - WHERE <conditions>

IV – Des vues multiples des données

- Les vues permettent d'implémenter l'indépendance logique en permettant de créer des relations virtuelles
- Vue = Question/requête stockée
- Le SGBD stocke la définition et non le résultat
- Exemple :
 - La vue des patients parisiens
 - La vue des docteurs avec leurs patients
 - La vue des services statistiques
 - •

V – Exécution et Optimisation

- Traduction automatique des questions déclaratives en programmes procéduraux :
 - → Utilisation de l'algèbre relationnelle
- Optimisation automatique des questions
 - Utilisation de l'aspect déclaratif de SQL
 - Gestion centralisée des chemins d'accès (index, hachages, ...)
 - Techniques d'optimisation poussées
- Economie de l'astuce des programmeurs
 - Milliers d'heures d'écriture et de maintenance de logiciels.

VI - Intégrité Logique

- Objectif : Détecter les mises à jour erronées
- Contrôle sur les données élémentaires
 - Contrôle de types: ex: Nom alphabétique
 - Contrôle de valeurs: ex: Salaire mensuel entre 5 et 50kf
- Contrôle sur les relations entre les données
 - Relations entre données élémentaires:
 - Prix de vente > Prix d'achat
 - Relations entre objets:
 - Un électeur doit être inscrit sur une seule liste électorale

Contraintes d'intégrité des données

Avantages :

- Simplification du code des applications
- Sécurité renforcée par l'automatisation
- Mise en commun des contraintes

Nécessite :

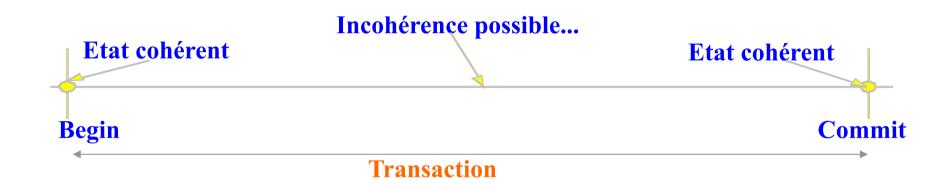
- Un langage de définition de contraintes d'intégrité
- La vérification automatique de ces contraintes

VII - Intégrité Physique

Motivations : Tolérance aux fautes

- Transaction Failure : Contraintes d'intégrité, Annulation
- System Failure : Panne de courant, Crash serveur ...
- Media Failure : Perte du disque
- Communication Failure : Défaillance du réseau

Objectifs:


- Assurer l'atomicité des transactions
- Garantir la durabilité des effets des transactions commises

Moyens:

- Journalisation : Mémorisation des états successifs des données
- Mécanismes de reprise

Transaction

Begin

CEpargne = CEpargne - 3000

CCourant = CCourant + 3000

Commit T1

Atomicité et Durabilité

ATOMICITE

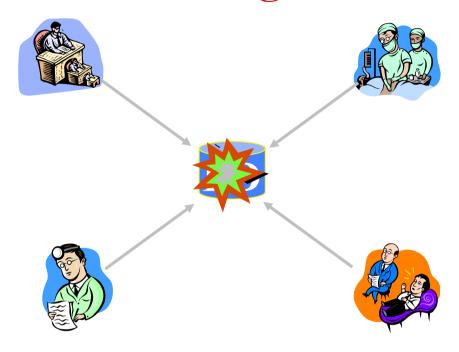
Begin

CEpargne = CEpargne - 3000

CCourant = CCourant + 3000

Commit T1

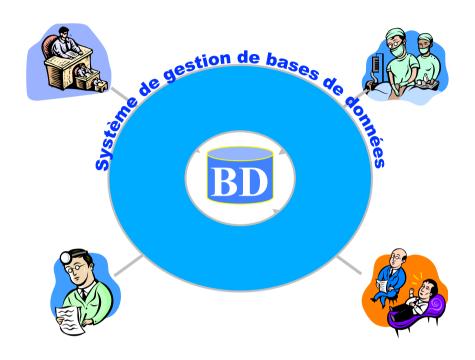
→ Annuler le débit !!


DURABILITE

Begin CEpargne = CEpargne - 3000 CCourant = CCourant + 3000

Commit T1

→ S' assurer que le virement a été fait !


VIII - Partage des données

- Accès concurrent aux mêmes données
- → Conflits d'accès concurrent!!

Isolation et Cohérence

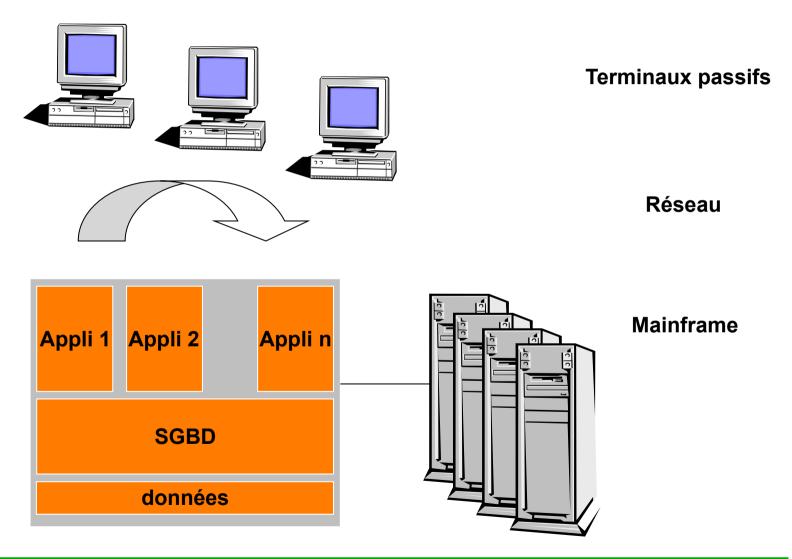
- Le SGBD gère les accès concurrents
- → Chacun à l'impression d'être seul (Isolation)
- → Cohérence conservée (Pas de *maj* conflictuelles)

IX – Confidentialité

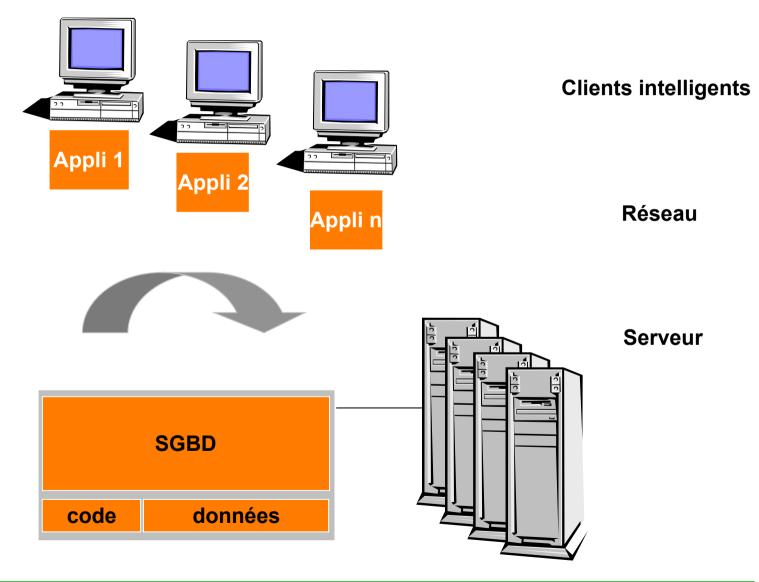
- Objectif : Protéger les données de la BD contre des accès non autorisés
- Deux niveaux :
 - Connexion restreinte aux usagers répertoriés (mot de passe)
 - Privilèges d'accès aux objets de la base
- Usagers : Usager ou groupe d'usagers
- Objets : Relation, Vue, autres objets (procédures, etc.)

X - Standardisation

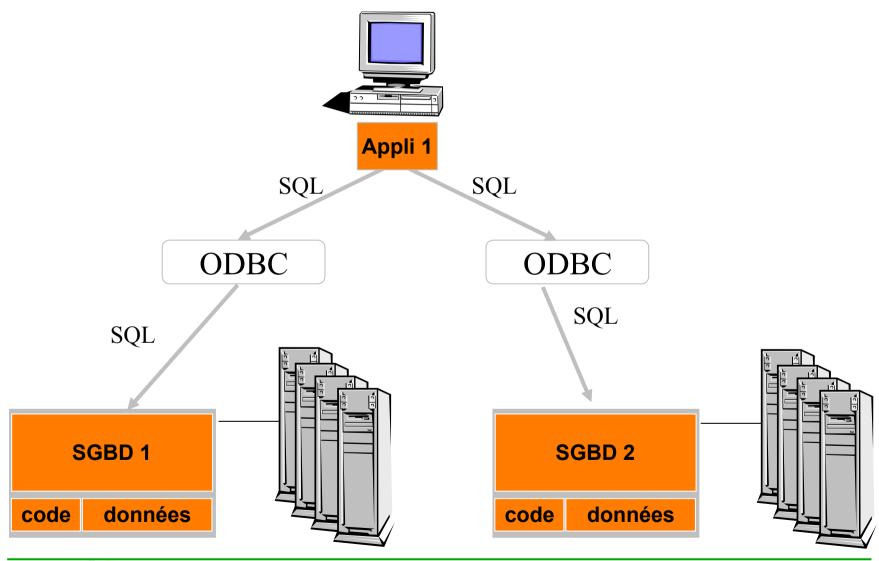
- L'approche bases de données est basée sur plusieurs standards
 - Langage SQL (SQL1, SQL2, SQL3)
 - Communication SQL CLI (ODBC / JDBC)
 - Transactions (X/Open DTP, OSI-TP)
- Force des standards
 - Portabilité
 - Interopérabilité
 - Applications multi sources...



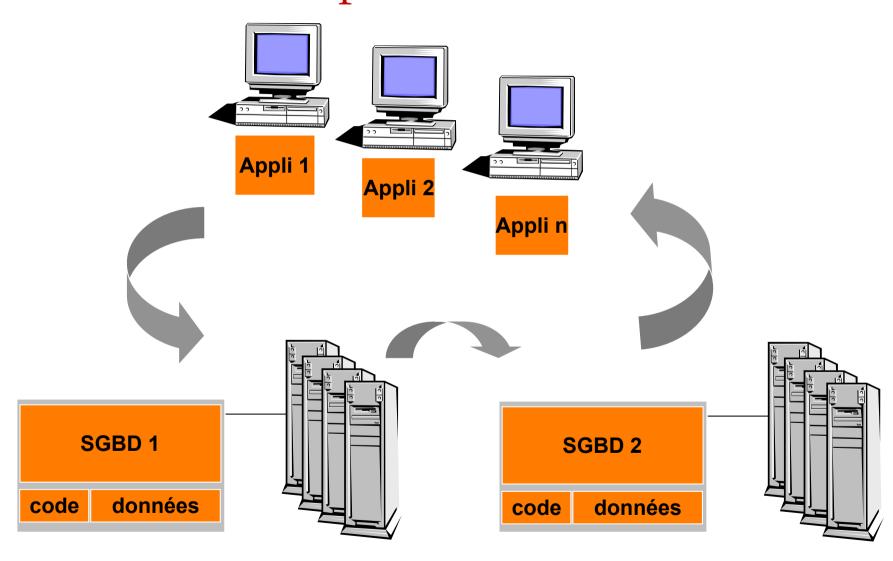
3. Architecture des SGBD


- Les architectures physiques de SGBD sont très liées au mode de répartition.
 - BD centralisée
 - BD client/serveur
 - BD client/multi serveurs
 - BD répartie
 - BD hétérogène
 - BD mobile
- **☞** Le challenge se déplace des Péta-bases aux Pico-bases.
 - Péta-bases => parallélisme et grandes mémoires
 - Pico-bases => faible empreinte et forte sécurité

Architecture centralisée



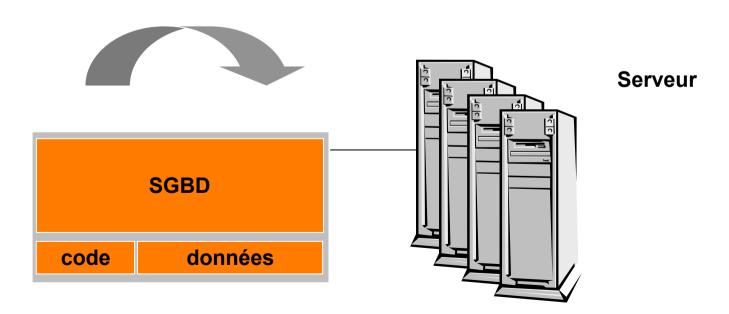
Architecture client-serveur



Architecture Client-Multiserveurs

Architecture répartie

Architecture mobile



Clients intelligents mobiles

Données répliquées et/ou personnelles

Réseau sans fil

4. Applications traditionnelles des SGBD

- OLTP (On Line Transaction Processing)
 - Cible des SGBD depuis leur existence
 - Banques, réservation en ligne ...
 - Très grand nombre de transactions en parallèle
 - Transactions simples
- OLAP (On Line Analytical Processing)
 - Données historisées et agrégées
 - Entrepôts de données, DataCube, Data Mining ...
 - Faible nombre de transactions
 - Transactions très complexes

Évolution des BD

	BD d'entreprise	BD personnelles	BD 'light' (PDA / Tél.)	PicoDBMS carte à puce
Capacité				
Prix				
Nombre				

Modélisation E/R des Données

- 1. Objectifs et principes
- 2. Le modèle Entité-Association (E/R)
- 3. Passage au relationnel
- 4. Conclusion

1. Objectifs de la Modélisation

- Permettre une meilleure compréhension
 - Le monde réel est trop complexe
 - Abstraction des aspects cruciaux du problème
 - Omission des détails
- Permettre une conception progressive
 - Abstractions et raffinements successifs
 - Possibilité de prototypage rapide
 - Découpage en modules ou packages
 - Génération des structures de données (et de traitements)

Élaborer un modèle conceptuel

- Isoler les concepts fondamentaux
 - Que vont représenter les données de la BD ?
 - Découvrir les concepts élémentaires du monde réel
 - Décrire les concepts agrégés et les sous-concepts
- Faciliter la visualisation du système
 - Diagrammes avec notations simple et précise
 - Compréhension visuelle et non seulement intellectuelle

Dériver le schéma de la BD

- Schéma
 - Définition de tous les types de données de la base et de leurs liens
- Agrégation de données
 - Type élémentaire (de base): Entier, Réel, String, ...
 - Type complexe (composé): Collection de types élémentaires
 - Tuple :
 - Exemple: Type Personne (nom: String, Prenom: String, age: Réel)
 - Instance ou occurrence Personne("Dupont", "Jules", 20)
 - Set:
 - Exemple : Voitures {id:String}; Voitures {"75AB75", "1200VV94"}
 - Bag, List, ...
- Possibilité d'intégrer des relations entre données (liens)
 - Exemple : Personne → Voitures; "Dupont" → "75AB75"

Générations de méthodes

- Méthodes d'analyse et de décomposition hiérarchiques
 - 1e génération basée sur des arbres fonctionnels
 - Diviser pour régner (Problème --> Sous-problème)
 - Warnier, SADT, Jackson, De Marco
- Méthodes d'analyse et de représentation systémiques
 - 2e génération basée sur entité-association
 - Séparation des données et traitements
 - Merise, Axial, SSADM
- Méthodes d'analyse et de conception orientées objets
 - 3e génération basée sur les objets
 - Réconciliation données et traitements
 - Réutilisation de composants

Objectifs des méthodes

- Réduire la distance sémantique entre le langage des utilisateurs et le langage des concepteurs
 - meilleure communication entre utilisateurs et concepteurs
 - abstraction du réel perçu en termes compréhensibles et visibles
- Regrouper l'analyse des données et des traitements
 - meilleure compréhension des choses
 - plus grande cohérence entre l'aspect statique et l'aspect dynamique
- Simplification des transformations entre niveau conceptuel et niveau interne
 - implémentation directe éventuelle du schéma conceptuel
 - établissement possible de règles de transformations automatisées

2. Le Modèle Entité – Association (E/R Model)

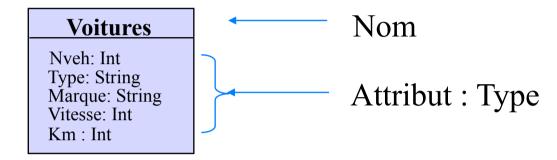
- Ensemble de concepts pour modéliser les données d'une application (d'une entreprise)
- Ensemble de symboles graphiques associés
- Formalisé en 1976 par P. Chen
- Etendu vers E/R généralisé puis vers l'objet

Entité

- Un objet du monde réel qui peut être identifié et que l'on souhaite représenter
 - La <u>classe d'entité</u> correspond à une collection d'entités décrites par leur type commun (le format)
 - L'<u>instance d'entité</u> correspond à un élément particulier de la classe d'entité (un objet)
 - Attention: on dit entité pour les deux! Comprendre selon le contexte.
- Représentée par un rectangle

Attribut

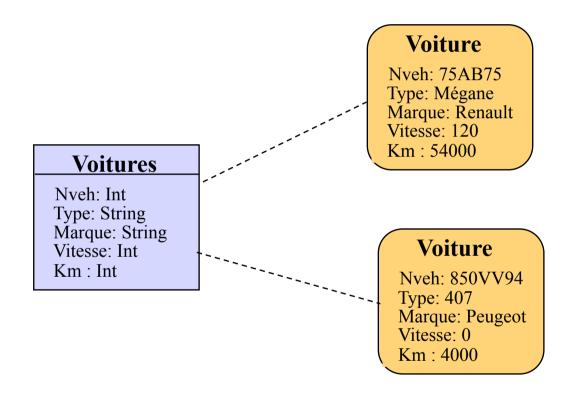
- Description des propriétés des entités
- Toutes les instances d'une entité ont les mêmes attributs
 - Attribut simple: caractérisé par un type de base
 - Attribut composé: caractérisé par un groupe d'attributs
 - Attribut multi-valué: caractérisé par plusieurs valeurs
- Avec le modèle E/R de base tout attribut est simple
- Avec le modèle E/R étendu, les attributs peuvent être complexes
 - Composés et multi-valués
- Représenté par un ovale



Domaines


- Ensemble nommé de valeurs
 - Un attribut peut prendre une valeur dans un domaine
 - Généralisation des types élémentaires
- Exemples
 - Liste de valeurs (1,2,3)
 - Type contraint (0< int <100)
 - Type simple (int, varchar, etc.)
- Permettent de préciser les valeurs possibles des attributs
- Réduisent les ambiguïtés

Représentation


Rectangle avec attributs (UML)

Rectangle avec attributs accrochés (E/R)

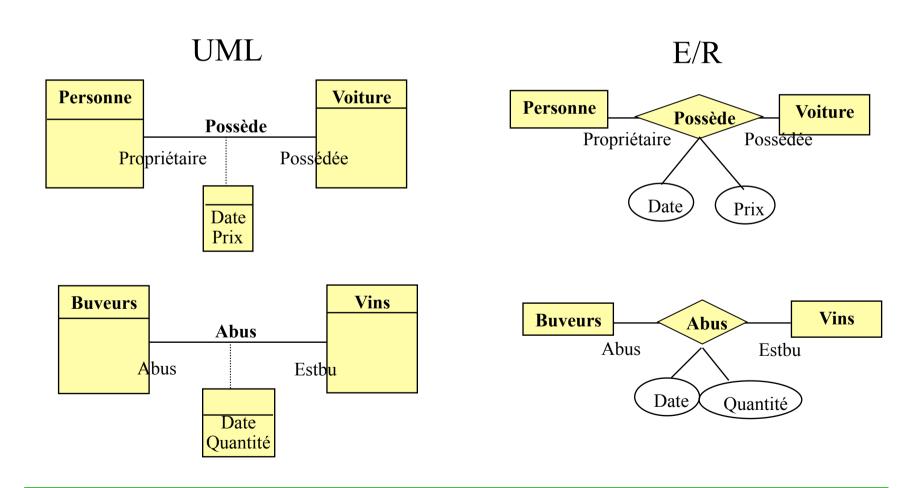
Exemple d'instance

Identifiant ou Clé

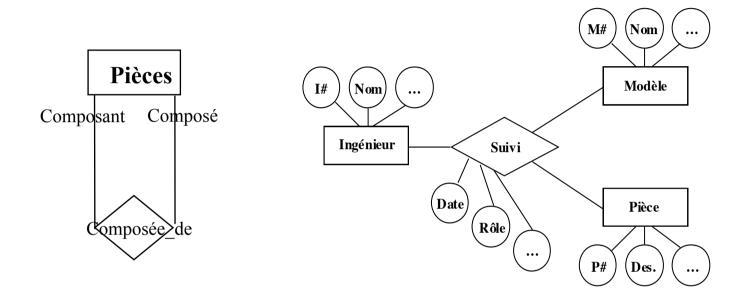
- Un identifiant aussi appelé clé est un attribut qui permet de retrouver une instance d'entité unique à tout instant parmi celles de la classe.
 - Exemple: NVeh dans Voitures, NSS dans Personnes
- Un identifiant peut être constitué de plusieurs attributs (clé composée)
 - Exemple:
 - [N°, Rue, Ville] pour Maisons
 - [Nom, Prénom] pour Personnes

Association

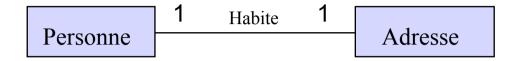
- Les entités sont reliées ensemble par des associations
 - Entre instances: par exemple 1 véhicule est associé à 1 personne
 - Entre classes: abstraction des associations entre instances
- Une association peut avoir des attributs (propriétés)
- Elle peut relier plusieurs entités ensemble
- Il est possible de distinguer le rôle d'une entité (elle peut en avoir plusieurs)



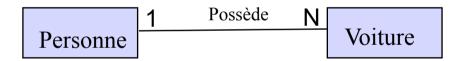
Association: quelques définitions


- Association (Association)
 - Une relation entre des instances de deux (ou plus) classes
- Lien (Link)
 - Une instance d'association
- Rôle (Role)
 - Une extrémité d'une association
- Attribut de lien (Link attribute)
 - Un attribut de l'association instancié pour chaque lien
- Cardinalité (Multiplicity)
 - Le nombre d'instance d'une entité pour chaque instance de l'autre

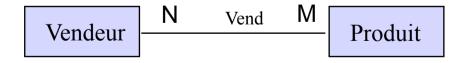
Exemples en UML et E/R



Degré d'une association

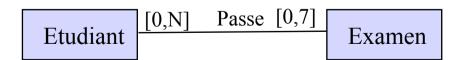


 La plûpart des associations sont de degré 2 (binaires)


Cardinalité d'une association

 1:1 -> Une personne habite à une adresse et à une adresse habite 1 personne

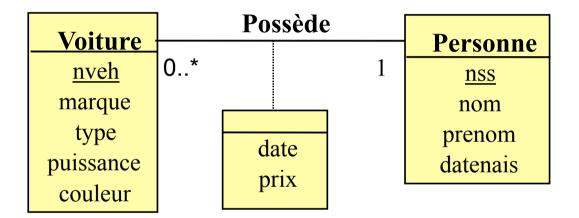
 1:N -> Une personne possède N voitures et une voiture est possèdée par 1 personne



N:M -> un vendeur peut vendre M produits
 et un produit peut être vendu par N vendeurs

Cardinalités min et max

- Cardinalité maximum
 - Indique le nombre maximum d'instances d'une classe d'entité participant à une association
- Cardinalité minimum
 - Indique le nombre minimum d'instances d'une classe d'entité participant à une association



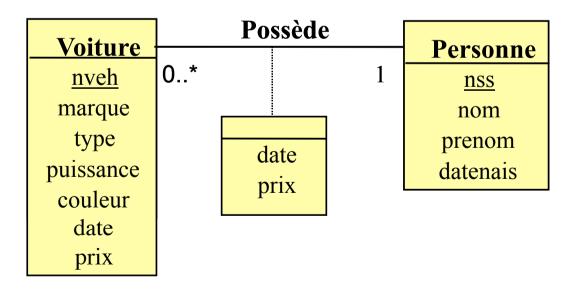
Cardinalités: notations UML

plusieurs (0 à N) 0..1 optionnel (0 ou 1) 1..* obligatoire (1 ou plus) **0..*** ordonné (0 à N) {ord} 3..5 limité (de 3 à 5)

Exemple

La pratique de la conception

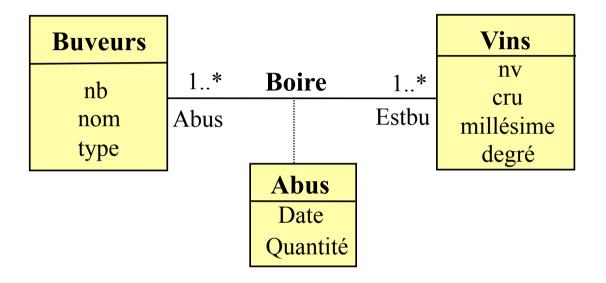
- Bien comprendre le problème à résoudre
- Essayer de conserver le modèle simple
- Bien choisir les noms
- Ne pas cacher les associations sous forme d'attributs
 - utiliser les associations
- Faire revoir le modèle par d'autres
 - définir en commun les objets de l'entreprise
- Documenter les significations et conventions
 - élaborer le dictionnaire


3. Passage au relationnel

- Implémentations des entités et associations sous forme de tables
 - Règle 1 : Une entité est représentée par une relation (table) de même nom ayant pour attributs la liste des attributs de l'entité.
 - Règle 2 : Une association est représentée par une relation de même nom ayant pour attributs la liste des clés des entités participants et les attributs propres de l'association.
 - Exemples :
 - POSSEDE (NSs, NVeh, Date, Prix)
 - ABUS (<u>NVeh</u>, <u>Nb</u>, Date, Quantité)

Cont.

- Amélioration possible si un tuple d'une table référence un ou 0..1 tuple de l'association.
- Règle 3 : Regrouper les associations 1:1 ou 1:0..1 avec l'entité d'origine
 - Exemple :
 - VOITURE et POSSEDE : regroupées en une seule table si toute voiture est possédée par un ou aucun propriétaire

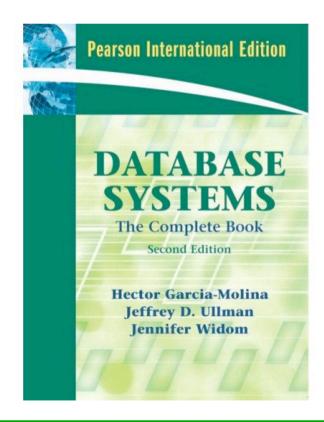


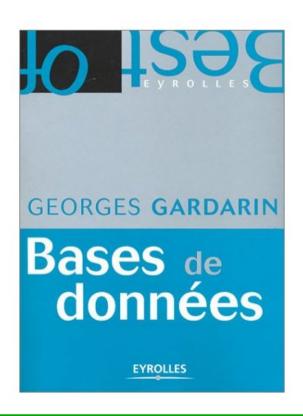
Contraintes référentielles

■ ...Règle 6 : Toute association E1→R→E2 représentée par une table R non intégrée à E1 ou E2 donne naissance à 2 contraintes référentielles (une pour chaque clé de E1 et E2).

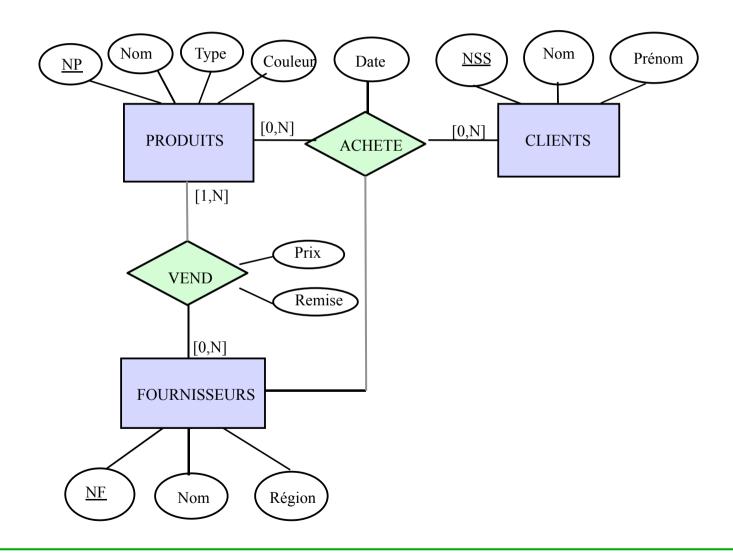
Exemple

Buveurs (nb, nom, type) **Vins** (nv, cru, millesime, degre) **Abus**(nb) REF buveurs, nv REF vins, date, quantite) *Régle 6 : À cause de l'association (obligatoire).*

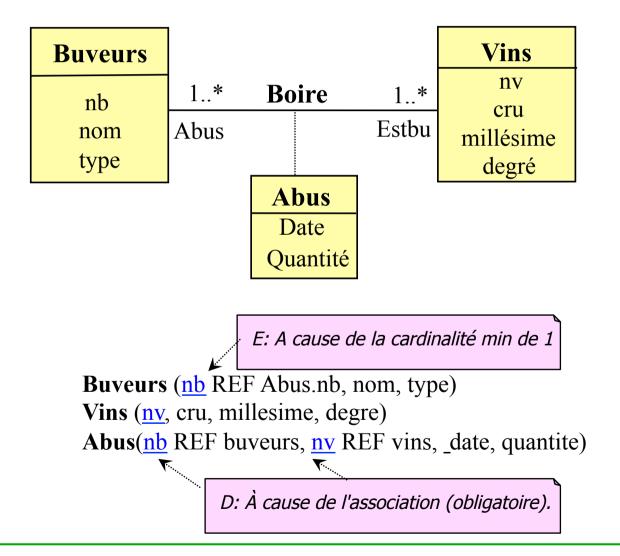

6. Conclusion


- Intérêt de l'utilisation d'une méthode de conception
 - proche du monde réel
 - démarche sémantique claire
 - diagramme standards
- Passage au relationnel semi-automatique
 - outils du commerce utilisables (Objecteering, Rose, etc.)
 - supporteront les extensions objet-relationnel à venir
- Extensions à venir avec la conception objet

Bibliographie


- Hector Garcia Molina, Jeffrey D. Ulman and Jennifer Widom.
 Database Systems. Second Edition, Pearson Prentice all,
 International Edition. 2009.
- Bases de données. George Gardarin, 5^e tirage, 2003.

Exemple de modèle E/R



Contraintes référentielles

- ...Règle 6 : Toute association E1→R→E2 représentée par une table R non intégrée à E1 ou E2 donne naissance à 2 contraintes référentielles (une pour chaque clé de E1 et E2).
- Règle 7 : Toute association E1→R→E2 de cardinalité minimale 1 sur E2 représentée par une table non intégrée à E1 donne naissance à une contrainte référentielle additionnelle (la clé de E1 référence son instance dans R).

Exemple

Cardinalité d'une association

1:1
Personne
1:N
Personne
Possède
Voiture
Vendeur
Vend
Produit