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eA set of verti
es S is 
alled a 
utset of a graph G = (V;E) if V � S indu
es in G adis
onne
ted graph. In perfe
t graph theory, the idea of breaking a graph into smaller (and,preferably, easier to deal with) parts is natural, and probably the �rst promising attemptis to break the graph (when this is possible) into at least two 
onne
ted 
omponents. Avery simple reasoning shows that a graph whi
h admits su
h a de
omposition, i.e. has anempty 
utset, 
annot be minimal imperfe
t. By Lov�asz's perfe
t graph theorem [38℄, agraph whose 
omplement admits su
h a de
omposition also 
annot be minimal imperfe
t.Consequently, our simple initial remark yields, on the one hand, a 
erti�
ate for a graphnot to be minimal imperfe
t and, on the other hand, a hereditary 
lass of perfe
t graphs(
ontaining those graphs in whi
h every indu
ed subgraph either is dis
onne
ted or hasdis
onne
ted 
omplement).This is only the �rst one of a series of results involving 
utsets. As suggested above,
utsets turned out to be interesting in perfe
t graph theory mainly with respe
t to twokinds of appli
ations.First, suÆ
ient 
onditions for a graph not to be minimal imperfe
t 
an be found,sometimes yielding easy (from a theoreti
al point of view) and/or eÆ
ient (from a pra
ti
alpoint of view) tests. The 
lassi
al follow-up to this type of results is to de�ne new (or
hara
terize old) 
lasses of perfe
t graphs by imposing the suÆ
ient 
ondition on everyindu
ed subgraph of a graph in the 
lass.Se
ondly, 
omposition/de
omposition operations may be des
ribed. They are a goodsupport for re
ursive reasonings and algorithms, as well as for de�ning new (or 
hara
te-rizing old) 
lasses of perfe
t graphs by starting with basi
 graphs and su

essively 
om-posing. In the end, it would be desirable to �nd su
h basi
 graphs and su
h 
ompositionoperations whi
h would 
hara
terize the 
lass of all perfe
t graphs.Our aim here is to present the various aspe
ts of 
utsets in perfe
t and minimal imper-fe
t graphs; this will be done a

ording to the following plan:1. How did it start?2. Main results on minimal imperfe
t graphs3. Appli
ations: star-
utsets4. Appli
ations: 
lique and multi-partite 
utsets5. Appli
ations: stable 
utsets6. Two (resolved) 
onje
tures7. The 
onne
tivity of minimal imperfe
t graphs8. Some (more) problemsFor de�nitions and notation not given here, the reader is referred to [4℄.1



1 How did it start?Let us 
onsider two graphs G1 = (V1; E1); G2 = (V2; E2), and assume that ea
h of them
ontains a given graph F as an indu
ed subgraph. Denote by W1 � V1, respe
tivelyW2 � V2 a set of verti
es in G1, respe
tively G2 whi
h indu
e F , and let f : W1 ! W2 bean isomorphism between the two indu
ed subgraphs. The F -bonding (or F -identi�
ation)of G1 and G2 is the identi�
ation of every x 2 W1 with f(x) (yielding a new vertexadja
ent to all the neighbours of x in G1 and of f(x) in G2). A new graph results, denotedG = G1�FG2. It is 
lear that the vertex set W obtained from identi�
ation of W1 and W2is a 
utset in G, provided that W1;W2 are proper subsets.It is an easy observation (see [22℄, [2℄) that 
lique bonding (in the de�nition above, F isindu
ed by a 
lique) preserves perfe
tion. That is, the graph G obtained by 
lique bondingof two perfe
t graphs G1; G2 is also perfe
t. As a by-produ
t, no minimal imperfe
t graph
an 
ontain a 
lique 
utset. Moreover, Tu
ker [58℄ proved that minimal imperfe
t graphsalso 
annot have 
utsets of type fxg[N(x), where x is a vertex and N(x) its neighbourhood,that is, the set of all its neighbours in the graph. Observe that this result does not implythat the 
orresponding bonding operation preserves perfe
tion.In fa
t, as shown in [13℄ a mu
h more general result holds: there is no graph F , ex
eptfor the 
liques, for whi
h F -bonding preserves perfe
tion. And it is easy to imagine why:given two non-adja
ent verti
es x; y of F , it is suÆ
ient to exhibit two graphs G1; G2
ontaining F as an indu
ed subgraph and su
h that x; y are joined by an odd (respe
tivelyeven) 
hordless path in G1 (respe
tively in G2) whose only verti
es in F are x; y. TheF -bonding of G1 and G2 would then give a graph 
ontaining at least one odd 
hordless
y
le, i.e. an imperfe
t graph. We 
an exhibit two graphs G1; G2 as follows:� the 
omplement graph G1 of G1 is obtained by identifying the two verti
esx; y in F with, respe
tively, the two verti
es a; b of the graph Ha;b in Fig. 1.As shown in [52℄, the new graph is perfe
t (and obviously a 
hordless path oflength three joins x to y).� G2 is obtained from F by adding a new universal vertex.

a bFigure 1: The graph Ha;b2



Fortunately, while the strong aÆrmation \F -bonding preserves perfe
tion" is false forevery non-
omplete graph F , the weaker aÆrmation \no minimal imperfe
t graph 
ontainsa 
utset whi
h indu
es F" 
an still be true for some F . Furthermore, there are somegraphs F whi
h 
an be indu
ed by a 
utset in the well known minimal-imperfe
t graphs(odd holes or odd anti-holes), but whi
h 
annot be indu
ed in any other minimal imperfe
tgraph (su
h graphs, if they exist, are 
alled monsters).2 Main results on minimal imperfe
t graphsFrom a stru
tural point of view, three types of 
utsets are known, whi
h 
annot appearin a minimal imperfe
t graph di�erent from a hole (for the numeri
al point of view seeSe
tion 7). The �rst one (in the order of their publi
ation) 
on
erns stable 
utsets, i.e.
utsets S su
h that the subgraph G[S℄ indu
ed by S in G is edgeless. The following wasproven in [57℄:Fa
t 1 (Tu
ker) No minimal imperfe
t graph has a stable 
utset, ex
ept for the oddholes.Furthermore, Chv�atal [6℄ de�ned a star-
utset to be a 
utset S 
ontaining some vertexx whi
h is adja
ent to every other vertex in S (x is then 
alled universal in G[S℄). Thenwe have the following statement, known as the Star-Cutset Lemma:Fa
t 2 (Chv�atal) No minimal imperfe
t graph has a star-
utset.The third result was proved by Cornu�ejols and Reed in [14℄. A 
omplete multi-partitegraph is a graph whose vertex set may be partitioned in k � 1 stable sets U1; U2; : : : ; Uk su
hthat all the edges exist between Ui; Uj for every i 6= j in f1; 2; : : : ; kg. Then, we 
an de�nea 
omplete multi-partite 
utset as a 
utset S for whi
h G[S℄ is a 
omplete multi-partitegraph.Fa
t 3 (Cornu�ejols & Reed) No minimal imperfe
t graph has a 
omplete multi-partite 
utset, unless the 
utset is a stable set and the graph is an odd hole.It is worth noti
ing that, although they are expressed similarly to ea
h other above,these three results have been proved in di�erent (and stronger, for the �rst two of them)forms. The approa
h (by 
ontradi
tion) is the same: given the 
utset S of G = (V;E)and a 
onne
ted 
omponent of G[V � S℄ (say it is indu
ed by the set of verti
es V1), thentwo graphs G1 = G[V1 [ S℄, G2 = G[V � V1℄ are de�ned, and they are both supposedto be k-
olourable (k � 1). Then, a stable set U is sear
hed for with the property thatG� U is (k � 1)-
olourable (if it is found, then G is k-
olourable). In the 
ase of a stable
utset, U is found even without imposing the 
ondition that G is minimal imperfe
t; G3



has only to be odd hole-free. For a star-
utset, the result is weaker: k is taken to be equalto !(G); but, on
e more, U is always found and the proof doesn't use other propertiesrelated to the minimal imperfe
tion of G (other then the !-
olourability of G1 and G2).Finally, for a multi-partite 
utset, k is taken equal to !(G), but U is not always found,even if the hypothesis that G is minimal imperfe
t is used. So, in the �rst two 
asesthe 
ontradi
tion is easy to obtain, even for a so-
alled partitionable graph (partitionablegraphs are a super-
lass of minimal imperfe
t graphs; see the de�nition in Se
tion 7). Inthe third one, additional properties of minimal imperfe
t graphs are needed to 
on
lude.Fa
t 2 and Fa
t 3 share another 
ommon property; they are parti
ular 
ases of theSkew Partition Conje
ture proposed in [6℄. We say that a graph G = (V;E) admits a skewpartition if its vertex set V 
an be partitioned into nonempty sets A;B; V1; V2 su
h that:� every vertex in A is 
ompletely adja
ent to every vertex in B (we say thatS = A [B is the 
omplete join of A;B);� V � S = V1 [ V2 su
h that no edge exists between V1 and V2.Then A [B is 
alled a skew 
utset of G, and the Skew Partition Conje
ture 
laims that:Conje
ture 1 (Chv�atal) No minimal imperfe
t graph admits a skew partition.Equivalently, no minimal imperfe
t graph admits a skew 
utset. The interest of su
h anaÆrmation (if proved) 
omes from the self-
omplementarity of a skew partition: G admitsa skew partition if and only if G admits a skew partition. If we re
all (on the one hand)that, by Lov�asz's perfe
t graph theorem, G is perfe
t if and only if G is, and (on the otherhand) that attempts are made to 
onstru
t the 
lass of perfe
t graphs from some basi
graphs using some 
omposition operations, we easily see that the skew partition ful�llsmore than one of the features a good operation should ful�ll. Moreover, skew partitions
an be found in polynomial time, as proved in [19℄.The most re
ent results on the Skew Partition Conje
ture may be found in [49℄ and[11℄. The �rst of them is a generalization of both Fa
t 2 and Fa
t 3:Fa
t 4 (Roussel & Rubio) No minimal imperfe
t graph admits a skew partition A;B;V1; V2 su
h that A indu
es a stable set.The se
ond one involves the notion of universal 2-join. A graph G = (V;E) has auniversal 2-join if V 
an be partitioned into subsets VA, VB and U , su
h that:� VA 
ontains sets A1; A2 su
h that A1 [ A2 is non-empty, VB 
ontains setsB1; B2 su
h that B1[B2 is non-empty, every vertex of A1 is adja
ent to everyvertex of B1, every vertex of A2 is adja
ent to every vertex of B2 and theseare the only adja
en
ies between VA and VB .
4



� Every vertex of U is adja
ent to A1 [ A2 [ B1 [ B2 and possibly to otherverti
es in V .� jU [ VAj � 2 and, if A1 6= A2, jU [ VAj � 3.jU [ VB j � 2 and, if B1 6= B2, jU [ VB j � 3.Now we have :Fa
t 5 (Conforti, Cornu�ejols, Gasparyan & Vu�skovi�
) Let G be a minimal im-perfe
t graph that 
ontains a universal 2-join. Then G or G is an odd hole.The reader will easily noti
e that when all three sets U; VA� (A1 [A2) and VB � (B1 [B2) are nonempty, a universal 2-join is a spe
ial 
ase of a skew partition (where U andA1 [A2 [B1 [B2 play the roles of A and B in the de�nition of a skew partition).We 
onsider now two generalizations of the star-
utset lemma, introdu
ed and provedby respe
tively Olariu [42℄ and Ho�ang [31℄. For a graph G = (V;E) with 
utset S, letV1 indu
e a 
onne
ted 
omponent of G[V � S℄ and let V2 stand for the set of verti
esV � S � V1. Denote G1 = G[V1 [ S℄, G2 = G[V2 [ S℄ and, for a 
oloring C of G and everyU � V , let C(U) be the set of 
olours in U .Fa
t 6 (Olariu) No minimal imperfe
t graph 
ontains a 
utset S = A [ B with theproperties(O1) A \B = ;; A 6= ;;(O2) there exist optimal 
olourings C1; C2 of G1; G2 respe
tively, su
h thatCi(A) \ Ci(B) = ;, i = 1; 2jC1(A)j = jC2(A)j < !(G)A 
utset with properties (O1), (O2) is 
alled a partitionable 
utset. It is easy to seethat the Star-
utset Lemma is a parti
ular 
ase of Fa
t 6 (just take A = fxg, where x isthe universal vertex of S). Moreover, the most na��ve attempt to prove perfe
tion resultsusing Fa
t 6 yields an interesting 
onne
tion with another 
oloring problem.To see this, 
onsider a graph G whose proper indu
ed subgraphs are all perfe
t, andfor whi
h we want to prove the perfe
tion using Fa
t 6. We denote S a 
utset of G, andG1; G2 as before. As G1 is a perfe
t graph, we 
an �nd an !-
olouring C1 of G1. Then,we 
an try to apply Olariu's result by 
onsidering a subset A of 
olours in C1 su
h thatjAj < !, and the set A � S of those verti
es in S whose 
olour is in A. Now, we have to
olour G2 with ! 
olours su
h that the verti
es in A (respe
tively B = S�A) have 
oloursin A (respe
tively not in A). Noti
e that it is not requested that every vertex has the same
olour in G1 and G2, but only that the 
olour belongs or not to A.On the 
ontrary, we 
an even request that at least one vertex in S 
hanges its 
olour.Otherwise, the resulting 
olouring (if found) is an !-
olouring of G and Olariu [42℄ shows5



that in this 
ase S 
an be seen as a partitioned 
utset S = A0 [ B0 su
h that A0 
ontainsthe verti
es of one �xed 
olour; this 
ase 
an then be in
luded in the 
ase jAj = 1 above.And, in fa
t, in the 
ase jAj = 1 we know to solve the problem, i.e. to answer the questionwhether G2 
an be 
oloured with ! 
olours su
h that the verti
es in A have 
olours in Aand the verti
es in B have 
olours not in A. This 
an be done using the theorem and thepolynomial algorithm in [37℄.In the general 
ase where jAj is arbitrary, the problem is a parti
ular 
ase of thefollowing one:The list 
olouring problem. Let G be a graph and assume that ea
h vertex v inG has assigned a list L(v) of possible 
olours. Is there a 
olouring of G su
h that everyvertex v has a 
olour in L(v)?Proposed independently in [17℄ and [60℄, this problem is NP-
omplete (see [59℄ for asurvey).We give now Ho�ang's partial result [31℄ on the Skew Partition Conje
ture, whi
h isanother generalization of the Star-
utset lemma (
ase A = fxg, where x is the universalvertex of S):Fa
t 7 (Ho�ang) No minimal imperfe
t graph admits a skew partition A;B; V1; V2 withthe property(H) there exist optimal 
olourings C1; C2 of G1, G2 respe
tively, su
h thatjC1(A)j � jC2(A)jjC1(B)j � jC2(B)j(as before, if S = A [B, then G1 = G[V1 [ S℄, while G2 = G[V2 [ S℄)This statement is used to prove two other parti
ular 
ases of the Skew Partition Con-je
ture. In the graph G with the skew partition A;B; V1; V2, the set S = A[B is a U-
utsetif there are distin
t verti
es u1; u2 2 V1 su
h that N(u1) � A and N(u2) � B. The setS is a T-
utset if there exist distin
t verti
es u1 2 V1; u2 2 V2 su
h that N(u1) � A andN(u2) � A.Fa
t 8 (Ho�ang) No minimal imperfe
t graph has a skew partition A;B; V1; V2 su
hthat S = A [B is a U-
utset (respe
tively, a T-
utset).As an appli
ation, Ho�ang shows that a graph G whose odd 
y
les of length at least�ve have two or more 
hords (also 
alled a Meyniel graph) either is bipartite, or G has astar- or U-
utset, thereby providing an alternate proof that these graphs are perfe
t. Also,Roussel and Rubio [49℄ use Fa
t 8 to prove Fa
t 4.6



3 Appli
ations: star-
utsetsSin
e they were de�ned by Chv�atal, the star-
utsets are probably the tool the most fre-quently used to prove perfe
tion. In his paper, Chv�atal [6℄ already noti
es some of theseappli
ations: 
lique bonding preserves perfe
tion; substitution (i.e. repla
ing a vertex v ofG with a graph H whose verti
es have in G the same neighbours as v) preserves perfe
tion;amalgam (see [5℄) preserves perfe
tion. Even the (very) parti
ular 
ase of 
lique 
utsetshas so many appli
ations that we have to treat it in a parti
ular se
tion (Se
tion 4).Given a 
lass G of graphs and P a predi
ate, de�ne the 
losure of G under P (denotedGP ) re
ursively by the rules:(i) if G 2 G then G 2 GP ;(ii) if G satis�es P , and if G� v 2 GP for every vertex v in G, then G 2 GP .It is easy to see (by indu
tion) that, whenever P is a property a minimal imperfe
tgraph 
annot have, the perfe
tion of every graph in G implies the perfe
tion of every graphin GP . Chv�atal 
onsidered this de�nition in the parti
ular 
ase of the predi
ate (denoted�): \G or G has a star-
utset". He denoted by TRIV the 
lass of graphs with at most twoverti
es and by BIP the 
lass of all bipartite graphs, and noti
ed that both TRIV� andBIP� are involved in ni
e properties of perfe
t graphs. For instan
e, Hayward [26℄ provedthat a graph is in TRIV� if and only if it is a weakly triangulated graph, i.e. a graph
ontaining no 
y
le of length at least �ve (denoted Ck, k � 5) and no 
omplement of su
h
y
le. Some years later [24℄, he improved the \if" part of this statement by showing thisimportant (when thinking to the strong perfe
t graph 
onje
ture) property of unbreakablegraphs (a graph G is breakable if either G or G has a star-
utset, and unbreakable in the
ontrary 
ase).Fa
t 9 (Hayward) In an unbreakable graph, every vertex is 
ontained in a Ck or Ck,k � 5.The identity between TRIV� and the 
lass of weakly triangulated graphs is the onlyequality result proved so far. Many other theorems have been found whi
h give in
lusionrelations, as indi
ated in the table below.Class Rel. Class� Proved by Ref.weakly triangulated = TRIV� Hayward [26℄Meyniel � BIP� Chv�atal [6℄perfe
tly orderable � BIP� Chv�atal [6℄opposition � BIP� Olariu [43℄alternately orientable � BIP� Ho�ang [29℄2-
oloured, odd P4 � (BIP [BIP)� Ho�ang [30℄2-
oloured, even P4 � (Berge K1;3-free)� Chv�atal, Ho�ang [8℄2-
oloured, partners � (BIP [BIP)�[(Berge K1;3-free)� Chv�atal [9℄Berge, P (G) K3-free � (BIP [BIP)� Hayward, Lenhart [27℄(bull; P5; P5)-free, � 6 � (BIP [BIP)� Fouquet [20℄pan-free � (K1;3-free)� Olariu [44℄(P5;K2;3)-free � (K1;3-free)� de Simone, Gallu

io [15℄slim � (stri
t quasi-parity)� Hertz [28℄7



The de�nitions not given here and the proofs 
an be found respe
tively in the papersindi
ated in the last 
olumn. The 
lass BIP 
ontains all the 
omplements of bipartitegraphs.We leave for a moment the star-
utset domain in order to make a remark on partition-able 
utsets. With the predi
ate �: \G is either a 
lique, or a stable set, or else G has apartitionable 
utset" we obtain (see [42℄) the following 
hara
terization of perfe
t graphs:Fa
t 10 (Olariu) The 
lass of perfe
t graphs is exa
tly the 
lass TRIV�.The proof of this 
laim is easy and relies on the fa
t that if G is a perfe
t graph (not a
lique, not a stable, of at least three verti
es) with 
utset S and a given 
oloring, then theverti
es of S of a �xed 
olour 
an be 
hosen to form the set A. Thus, every 
utset of Ghas the properties (O1) and (O2), while in a minimal imperfe
t graph no 
utset has thisproperty. Perfe
t graphs and minimal imperfe
t graphs 
an, therefore, be seen as extreme
lasses with respe
t to Olariu's property.Let us 
ome ba
k to star-
utsets and in parti
ular to their algorithmi
 aspe
ts. Thesame paper of Chv�atal [6℄ provides us with an algorithm to test whether a graph G has ornot a star-
utset. It 
an be easily dedu
ed from the following statement (a vertex v is saidto dominate a vertex w if fvg [N(v) 
ontains N(w)):Fa
t 11 (Chv�atal) A graph G = (V;E) has a star-
utset if and only if it has at leastone of the properties:a) there exists w 2 V su
h that fwg [N(w) is a 
utset;b) G is not a 
lique and there exist adja
ent verti
es v; w 2 V su
h that v dominatesw. Then a graph G is breakable if and only if either G or G has the property a) or b).In fa
t, Chv�atal (see Hayward [25℄) proved a stronger property for graphs with more thanfour verti
es:Fa
t 12 (Chv�atal) Let G be a graph with at least �ve verti
es. Then G is breakableif and only if G or G has property a).Now, though we 
an test in polynomial time whether G has a star-
utset, we 
annotdedu
e a polynomial algorithm to test whether a graph G belongs to a 
lass G� (where Gis assumed to be re
ognizable in polynomial time). If G is hereditary, then the followingalgorithm presented in [6℄ realizes (not ne
essarily in polynomial time) the indi
ated test.With the notation F = H (if H has a star-
utset in step 4) or F = H (ifH has a star-
utsetin step 4), the sets V1; V2 in step 4 are as usual: V1 is indu
es a 
onne
ted 
omponent ofF � S while V2 is F � S � V1. 8



1. L := fGg.2. If L = ;, then return \G 2 G�"; else remove some H from L.3. If H 2 G then goto 2.4. If H or H has a star-
utset S = fvg [ V0, thenL := L [ fH � v;H � V1;H � V2g; goto 25. return \G 62 G�".For a graph 
ontaining a lot of 
hordless 
y
les (take for instan
e the graph obtainedfrom a 
hordless 
y
le on p verti
es by substituting every vertex with a 
lique on twoverti
es), the number of operations needed in the exe
ution of this algorithm 
an be verylarge if every 
hordless 
y
le is examined in step 3.4 Appli
ations: 
lique and multi-partite 
utsetsThis 
hapter is dedi
ated to the study of three 
lasses of graphs, all of them 
ontained(stri
tly or not) in some 
lass G
, where 
 is the predi
ate \G has a 
lique 
utset" and G
is the 
losure of G under 
. They are 
alled triangulated graphs, i-triangulated graphs,
lique separable graphs. They all have spe
ial verti
es yielding elimination s
hemes, andfor at least two of them the spe
ial verti
es 
an be found using lexi
ographi
 breadth �rstsear
h (abbreviated LexBFS), an algorithm proposed in [48℄ as a stronger version of the
lassi
al breadth-�rst sear
h algorithm.To des
ribe LexBFS, assume that ea
h vertex has a (initially empty) label whi
h 
on-sists in a set of integers listed in de
reasing order. The labels may be 
ompared usingdi
tionary (or lexi
ographi
) order.Algorithm LexBFSInput: An arbitrary graph G = (V;E).Output: A one-to-one fun
tion � : f1; 2; : : : ; ng ! V (an order[�(1); �(2); : : : ; �(n)℄ on V).beginassign the label ; to ea
h vertex;for i := n downto 1 dopi
k an unnumbered vertex v with largest label (in lexi
ographi
 order);�(i) := v; f
omment: this assigns to v the number igfor ea
h unnumbered vertex w 2 N(v) doadd i to the label of w (at the end)endConsider �rst the 
lass of triangulated graphs. A graph is triangulated if it 
ontainsno 
hordless 
y
le Ck, k � 4. In a triangulated graph every minimal 
utset is a 
lique.Moreover, using results in [16℄, [21℄ we have the following (a vertex is said simpli
ial in asubgraph H if its neighbours in H indu
e a 
lique):9



Fa
t 13 (Dira
; Fulkerson & Gross) The following three statements are equivalentfor a graph G = (V;E) with n verti
es:1. G is triangulated;2. every minimal 
utset indu
es a 
lique;3. G has a perfe
t elimination s
heme, i.e. an order [v1; v2; : : : ; vn℄ of its verti
essu
h that vi is simpli
ial in G[vi; vi+1; : : : ; vn℄. Moreover, if G is not a 
lique,then it 
ontains two non-adja
ent simpli
ial verti
es.Using the equivalen
e between statements 1, 2 and the de�nition of G
 (re
all that 
 isthe predi
ate \G has a 
lique 
utset"), it is easy to dedu
e that if K is the set of all 
liques,then the 
lass of triangulated graphs is exa
tly K
. The algorithm LexBFS is an eÆ
ienttool for �nding the perfe
t elimination s
heme in statement 3: starting with an arbitraryunnumbered vertex v, a perfe
t elimination order [�(1); �(2); : : : ; �(n)℄ is found (see [48℄).Then v1 = �(1) is a simpli
ial vertex in G and a new exe
ution of LexBFS, this timestarting with v1, will obtain another perfe
t elimination order [�0(1); �0(2); : : : ; �0(n) = v1℄whose vertex w1 = �0(1) is again a simpli
ial vertex (non-adja
ent to v1 as long as v1 isnon-universal). LexBFS is used on the one hand for giving a linear re
ognition algorithmfor triangulated graphs (see [48℄), and on the other hand to obtain a 
oloring algorithm forthese graphs (by performing a greedy 
oloring with the order �(n); �(n� 1); : : : ; �(1)).This last property is still true for a larger 
lass of graphs, the i-triangulated graphs. Agraph is 
alled i-triangulated if every odd 
y
le with �ve verti
es or more has at least twonon-
rossing 
hords. Their perfe
tion was proved very early in [22℄ using 
lique 
utsets,but multi-partite 
utsets also play an important role in their stru
ture, as shown in [50℄.To see this, say that a graph is of type 1 if it is the 
omplete join between a 
onne
tedbipartite graph and a 
lique, and of type 2 if it is a 
omplete multi-partite graph. Also, 
alla vertex m-simpli
ial in a subgraph H if its neighbours in H form a 
omplete multi-partitegraph.Fa
t 14 (Gallai; Roussel & Rusu) The following statements hold for every i-trian-gulated graph G = (V;E) with n verti
es:1. either G has a 
lique 
utset, or is of type 1, or else is of type 2;2. G has an m-perfe
t elimination s
heme, i.e. an order [v1; v2; : : : ; vn℄ of its verti
essu
h that vi is m-simpli
ial in G[vi; vi+1; : : : ; vn℄. Moreover, if G is not a 
lique,then it 
ontains two non-adja
ent m-simpli
ial verti
es.Statement 1 immediately implies that i-triangulated graphs are in the 
lass T 
, whereT is the set of graphs of type 1 or 2. However, this is not a 
hara
terization of i-triangulatedgraphs. The existen
e of an m-perfe
t elimination s
heme is not a 
hara
terization either,thus it doesn't allow us to �nd a linear re
ognition algorithm, as it was the 
ase for thepre
eding 
lass (an O(mn) re
ognition algorithm is proposed in [51℄). However, LexBFSis still the eÆ
ient tool for �nding in linear time an m-perfe
t elimination s
heme, andthe order �(n); �(n � 1); : : : ; �(1) 
an be used to perform a greedy 
oloring (see [50℄). It10



is worth noti
ing that in every su
h 
olouring, at the pre
ise moment when a vertex �(i)is 
oloured, its already 
oloured neighbourhood (whi
h is a 
omplete multi-partite graph)has all the verti
es in a stable set of the same 
olour. This strengthens the similarity withtriangulated graphs, where every su
h stable set has a unique vertex (obviously 
olouredwith only one 
olour).The graphs in T 
 are 
alled 
lique separable graphs. Gavril [23℄ de�ned them andgave the �rst polynomial re
ognition algorithm (the best one 
urrently known was givenby Tarjan [56℄). These graphs have an elimination s
heme too, de�ned in [39℄ using thenotion of pretty vertex, whi
h is a vertex whose neighbourhood in the graph indu
es a(P4; 2K2)-free graph. It 
an be shown that:Fa
t 15 (Ma�ray & Porto & Preissmann) Every 
lique separable graph G with nverti
es has a pretty elimination s
heme, i.e. an order [v1; v2; : : : ; vn℄ of its verti
es su
hthat vi is pretty in G[vi; vi+1; : : : ; vn℄. Moreover, if G is not a 
lique, then it 
ontains twonon-adja
ent pretty verti
es.Triangulated and 
lique separable graphs 
an be re
ognized in polynomial time usingWhitesides' O(mn) algorithm [61℄ for �nding 
lique 
utsets in arbitrary graphs (but lesseÆ
iently than the best known algorithm). As Gavril [23℄ showed that the tree built bysu

essively breaking the graph G using 
lique 
utsets (
alled a 
lique 
utset tree) has O(n2)verti
es, the inde
omposable subgraphs of G 
an be found in O(mn3). Then it remains totest whether the inde
omposable subgraphs are in K (for triangulated graphs), respe
tivelyin T (for 
lique separable graphs). Thus the eÆ
ien
y of re
ognition algorithm dependson the eÆ
ien
y of building the 
lique 
utset tree, and on the eÆ
ien
y to test whether agraph belongs or not to one of the two 
lasses. As shown by Tarjan [56℄, the former 
an berealized in O(mn) (while the latter needs less than that), thus re
ognizing 
lique separablegraphs takes only O(mn) time.An important di�eren
e appears between multi-partite 
utsets and star- or 
lique 
ut-sets: testing whether a graph has a multi-partite 
utset is NP-
omplete [36℄. And the sameholds for stable 
utsets (see [36℄), whi
h are the subje
t of the next se
tion.5 Appli
ations: stable 
utsetsStable 
utsets are mu
h less en
ountered in proofs of perfe
tion, or in the design of algo-rithms than 
lique 
utsets. The predi
ate s: \G has a stable 
utset" seems to be mu
hmore un
omfortable to use than \G has a 
lique 
utset", and the only su
h appli
ationsthat have 
ome to our attention are either extremely easy or too intimately related to somespe
i�
 properties of the graph.In the �rst 
ategory enters the observation that the 
lass of triangle-free graphs isexa
tly TRIVs: indeed, every triangle-free graph with at least three verti
es has a non-universal vertex, and its neighbourhood is a stable 
utset of the graph (by indu
tion weobtain the desired 
on
lusion); 
onversely, if we assume by 
ontradi
tion that a graph11




ontaining a triangle belongs to TRIVs, then be
ause of 
ondition ii) in the de�nition ofTRIVs we dedu
e that the triangle has a stable 
utset, a 
ontradi
tion. Moreover, triangle-free graphs are exa
tly the 
lass of graphs possessing a stable elimination order, i.e. anorder [v1; v2; : : : ; vn℄ of verti
es su
h that the neighbourhood of vi in G[vi; vi+1; : : : ; vn℄ isa stable set.To illustrate the se
ond 
ategory, we present some results that have been obtained byCorneil, Fonlupt [12℄ on stable bonding. As we indi
ated in Se
tion 1, only 
lique bondingpreserves perfe
tion, for the other graphs F , examples exist of perfe
t graphs whose F -bonding does not yield a perfe
t graph. In the 
ase where the verti
es of F form a stableset, Fa
t 1 insures that only odd holes 
an be generated, not odd anti-holes. The examplewe gave in Se
tion 1 to prove that F -bonding does not preserve perfe
tion suggests thatperfe
tion 
ould however be preserved for graphs with parti
ular properties related to pathparity.Therefore, in [12℄, a dire
t 
hain (for some stable 
utset S) in G = (V;E) is de�ned tobe a 
hordless path whose internal verti
es are in V �S. Then a graph G is said to satisfythe strong 
hain 
ondition (SCC) on the stable 
utset S if:1. G is 
onne
ted and for every pair of verti
es v; w 2 S there exists at least one
hordless dire
t 
hain.2. for every pair of verti
es v; w 2 S all 
hordless 
hains with endpoints v; w have thesame parity (denoted sign(v; w;G), equal to 1 if the 
hain is odd and to 0 otherwise).Then 
onsider two graphs G1; G2 with stable sets S1, respe
tively S2 su
h that jS1j =jS2j. Perform a one-to-one identi�
ation of the verti
es in S1 with the verti
es in S2 and
all S the unique stable set (of size identi
al to jS1j and jS2j) obtained in this way. Thenwe have:Fa
t 16 (Corneil & Fonlupt) If Gi (i = 1; 2) are perfe
t graphs that satisfy SCCon S and for every pair of verti
es v; w 2 S we have sign(v; w;G1) = sign(v; w;G2), thenthe graph G obtained by S-bonding of G1 and G2 is also perfe
t.It is natural to relax 
ondition 2 by 
onsidering only 
hordless dire
t 
hains instead of
hordless 
hains. The example in Fig. 2 (given in [12℄) shows that this 
annot be done(the set S = fs1; s2; s3g satis�es the hypothesis of Fa
t 16 with 
ondition 2 relaxed, butthe resulting graph is not perfe
t sin
e as1b
des3fs2a is an odd hole).Noti
e that testing 
ondition 2 for an arbitrary graph G is a 
o-NP-
omplete problem.The 
omplementary problem, i.e. given G;S test whether S 
ontains two verti
es joined by
hordless 
hains of di�erent parities, has as a parti
ular 
ase (when jSj = 2) the so-
alledPath parity problem:Path parity problem. Given G = (V;E) and two verti
es x; y, determine if thereexist 
hordless paths (or 
hains) of di�erent parities 
onne
ting them.This problem is NP-
omplete [3℄ for arbitrary graphs, but for perfe
t graphs (this is the
ase we are interested in) its 
omplexity is not known (partial answers may be found in [1℄,12
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fFigure 2: An exemple[35℄, [54℄). However, it is known that this problem is polynomial if testing the perfe
tnessof a graph G is polynomial (see [12℄).As long as this question is not answered, it is tempting to �nd suÆ
ient 
onditions for
ondition 2 to be true, as follows. Let G1; G2 have stable 
utsets S1; S2 respe
tively, andassume that ea
h Gi � Si 
ontains a 
onne
ted 
omponent Ki whi
h is a 
lique, su
h thatjK1j = jK2j. Moreover, suppose that every vertex s 2 Si has exa
tly one neighbour in Ki(i = 1; 2) and that an isomorphism f exists between G1[K1 [ S1℄ and G2[K2 [ S2℄. Then(see [12℄) the graph resulting by stable bonding of G1 �K1 and G2 �K2 using S1; S2 andthe isomorphism f is perfe
t. The only 
ondition here whi
h might be diÆ
ult to verifyis the isomorphism 
ondition on G1[K1 [ S℄ and G2[K2 [ S℄, but the graphs are simpleenough to allow us a polynomial veri�
ation (in fa
t, it is suÆ
ient to 
ompare the lists ofdegrees of the two graphs).6 Two (already solved) 
onje
turesIn the pre
eding se
tions, we evoked some attempts to prove the strong perfe
t graph
onje
ture using 
omposition/de
omposition operations. This is one of the reasons whi
hmake the skew partition 
onje
ture interesting, whi
h motivate the de�nition of the 
lassesGP , whi
h pushes resear
hers to dis
over new properties that minimal imperfe
t graph
annot have. All these properties, old or new, 
ould possibly be put together in a strongunique predi
ate P su
h that GP would 
ontain all Berge graphs, for some suitable 
hosenset of perfe
t basi
 graphs G. (A graph is 
alled Berge if it has no odd hole and no oddanti-hole).Unfortunately, the properties of minimal imperfe
t graphs we know nowadays are notsuÆ
ient to dedu
e su
h a result, or else the 
lass of basi
 perfe
t graphs we need touse has not yet been identi�ed. The two 
onje
tures below have both been invalidated,and the 
ounter-examples are small enough to make us believe that the properties thatare brought together are not suÆ
iently strong. We preferred to formulate them without
learly spe
ifying G and P , but the reader will have no diÆ
ulty to identify the predi
ateand the basi
 graphs. The �rst one was proposed by Reed [46℄ (an even pair is a pairof verti
es su
h that every 
hordless path joining them has even number of edges; thelinegraph of a graph H = (X;U) has a vertex for every edge in U and two verti
es are13



adja
ent if and only if the 
orresponding edges share a vertex).Conje
ture 2 Let G be a Berge graph su
h that1. neither G nor G has a star-
utset;2. neither G nor G has an even pair.Then G or G is the linegraph of a bipartite graph.Hougardy [33℄ gave a 
ounter-example on 20 verti
es, and noti
ed that even if G isC4-free the 
onje
ture remains false.The se
ond 
onje
ture (proposed by Ho�ang, see [33℄) has a stronger hypothesis and aweaker 
on
lusion, but is still false, as proved in [53℄.Conje
ture 3 Let G be a Berge graph su
h that1. neither G nor G has a star-
utset;2. neither G nor G has a stable 
utset;3. neither G nor G has an even pair.Then G or G is diamond-free.It 
an be shown (see [53℄) that the 
ounter-example to Conje
ture 3 may be grown togive 
ounter-examples to ea
h weaker 
onje
ture obtained by repla
ing the diamond withthe 
omplete join of a 
lique and a stable set. Moreover, it remains a 
ounter-example evenif we add the following hypothesis (dedu
ed from the Odd Pair Conje
ture [41℄, whi
h isneither proved nor invalidated):4. neither G nor G has an odd pair,where an odd pair is a pair of verti
es su
h that every 
hordless path joining them hasodd number of edges. And, in fa
t, the 
ounter-example above has another dis
ouragingproperty: even if the hypothesis5. neither G nor G has a skew partitionis added to the 
onje
ture, the same graph is still a 
ounter-example. Modifying the
onje
ture su
h that the same graph is no longer a 
ounter-example seems therefore to askfor other properties of minimal imperfe
t graphs. One of them 
ould be that 
onje
tured in[7℄, whi
h involves dis
onne
ted 
utsets (su
h 
utsets 
an be found in the 
ounter-exampleabove):Conje
ture 4 No minimal imperfe
t graph, whi
h is not a hole, has a dis
onne
ted
utset.The versions of this 
onje
ture where the 
utset is P4-free, or even P3-free are opentoo. The latter 
ase is equivalent to saying that the 
utset is a union of vertex-disjoint
liques, and may be simpli�ed by taking the 
ase of only two 
liques, whi
h is also stillopen. Ex
ept for this last 
ase, in all these problems the 
utset may be asked to be theneighbourhood of some vertex, still yielding an unsolved statement.14



7 The 
onne
tivity of minimal imperfe
t graphsThroughout the paper we were interested in the graphs F su
h that no minimal imperfe
tgraph (ex
ept for odd holes and odd anti-holes) has a 
utset whi
h indu
es F , and so farwe have approa
hed this question with respe
t to the stru
ture of F , paying no attentionto the 
ardinality of F . This di�erent aspe
t of the question was �rst treated by Olaru[45℄:Fa
t 17 (Olaru) The minimum degree of a minimal imperfe
t graph is at least 2!�2.This result remained the only numeri
al estimation of (
ertain) 
utsets in minimalimperfe
t graphs, until Hougardy [34℄ proved the following statement whi
h involves allthe 
utsets of the graph:Fa
t 18 (Hougardy) The 
onne
tivity number of a minimal imperfe
t graph is atleast !.The best lower bound known today is due to Seb�o [55℄, who had the intuition that thegap between the high 
lique rank of the minimal imperfe
t graph G and the low 
liqueranks of its perfe
t subgraphs G1; G2 (de�ned as in Se
tion 2, with respe
t to some 
utsetS) should be the 
onsequen
e of a big interse
tion of G1 and G2. Then a simple 
al
ulationyields the �rst part of the result below. This result is valid not only for a minimal imperfe
tgraph but, more generally, for a partitionable graph, i.e. a graph G = (V;E) su
h that:(i) integers � � 2; ! � 2 exist with the property jV j = �! + 1;(ii) for ea
h v 2 V , G� v 
an be partitioned both into !-
liques and into �-stable sets.In this 
ase, !; � are the 
lassi
al parameters 
lique number and stability number for thepartitionable graph G.Fa
t 19 (Seb�o) If G is partitionable, then the 
onne
tivity number of G is at least2! � 2. Furthermore, if S � V is a 
utset of 
ardinality 2! � 2, then:1. !(S) < ! � 1;2. G� S has exa
tly two 
onne
ted 
omponents (indu
ed by V1; V2);3. V1 [ S; V2 [ S indu
e uniquely 
olourable graphs.This theorem is tight for arbitrary ! � 2 and � � 2. To see this, 
all an (�; !)-web agraph on �!+1 verti
es so that !(G) = !; �(G) = � and the verti
es of V may be arrangedin a 
y
li
al order su
h that every set of ! 
onse
utive verti
es is an !-
lique. Now, 
onsidera normalized (�; !)-web, that is, an (�; !)-web in whi
h every edge is 
ontained in some!-
lique. It is easy to see that two sets of !� 1 
onse
utive verti
es ea
h form a 
utset i�the two sets are disjoint and not next to ea
h other in the 
y
li
 order. Every su
h 
utsethas 2! � 2 verti
es, and the neighbourhood of every vertex has this form.15



Obviously, both in odd holes and in odd anti-holes the verti
es have the degree 2!� 2;
onsequently, as far as we know every minimal imperfe
t graph has this property. Thus, ifthe strong perfe
t graph 
onje
ture is true, then the following statement also holds:Conje
ture 5 (Seb�o) In a minimal imperfe
t graph, the neighbourhood of every ver-tex is a 
utset of 
ardinality 2! � 2.Conversely, to dedu
e the strong perfe
t graph 
onje
ture from this 
onje
ture, it 
anbe noti
ed that properties spe
i�
 to minimal imperfe
t graphs and not always true forpartitionable graphs should be used, sin
e in a normalized (�; !)-web (whi
h is partition-able, but not minimal imperfe
t for ! > 2 and � > 2) the neighbourhood of every vertexhas, as noti
ed before, 
ardinality 2! � 2 and still this graph is not an odd hole or oddanti-hole. Seb�o [55℄ proposes to make use of the property (see [10℄) that minimal imperfe
tgraphs have no small transversal, i.e. no set of at most �+!� 1 whi
h hits every !-
liqueand every �-stable in the graph. To this, it 
an be added that, by Lov�asz's perfe
t graphtheorem, a graph is minimal imperfe
t i� its 
omplement is, therefore the pre
eding 
on-je
ture may be applied to both G and G (and this is suÆ
ient to eliminate the (�; !)-webswith � > 2; ! > 2).Conje
ture 6 (Seb�o) Let G be partitionable so that G (respe
tively G) has a 
utsetof 
ardinality 2!�2 (respe
tively 2��2). Then G is either an odd hole, or an odd anti-hole,or else it 
ontains a small transversal.Now, if Conje
ture 5 and Conje
ture 6 hold, then the strong perfe
t graph 
onje
tureholds.8 Some (more) problemsWe 
lose this survey of results on 
utsets in perfe
t and minimal imperfe
t graphs by a listof open problems that do not in
lude the 
onje
tures dis
ussed in the pre
eding se
tions.For some of them, referen
es to partial results are given.Problem 1 (Corneil & Fonlupt [12℄) Design a polynomial algorithm to test for theexisten
e of a stable 
utset in a perfe
t graph, or prove that the problem is NP-
omplete(and similarly for multi-partite 
utsets).Problem 2 (Chv�atal [7℄) Prove that graphs in BIP� are stri
t quasi-parity graphs,i.e. ea
h subgraph whi
h is not a 
lique 
ontains an even pair. (partial results in [40℄)
16



Problem 3 (Hertz [28℄) A graph is 
alled slim if it is obtained from a Meyniel graphby removing all the edges of a given indu
ed subgraph. Is every slim graph in the 
lassBIP�? (partial result in [32℄).Problem 4 (de Figueiredo & Ho�ang [18℄) Call quasi-triangulated graph a graphG su
h that, for every indu
ed subgraph H of G, either H or H has a simpli
ial vertex.Chara
terize quasi-triangulated graphs by minimal forbidden indu
ed subgraphs.Problem 5 (Ravindra [7℄) Show that, in a minimal imperfe
t graph, the neighbour-hood of a vertex of degree 2! � 2 
ontains no stable set of 
ardinality 3.Problem 6 (Seb�o [55℄) The determined degree of a vertex v is de�ned as the numberof edges in
ident to v whi
h are 
ontained in !-
liques. Let G be a partitionable graphsu
h that G (respe
tively G) has a vertex of determined degree 2!�2 (respe
tively 2��2).Prove that G is an odd hole, or an odd antihole, or else it has a small transversal (i.e. aset of at most � + ! � 1 verti
es whi
h meets ea
h maximum 
lique and ea
h maximumstable set).Referen
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