
CUTSETS IN PERFECT AND MINIMAL IMPERFECT GRAPHSIRENA RUSUUniversit�e d'Orl�eans, LIFO,B.P. 6759, 45067 Orl�eans Cedex 2, FraneA set of verties S is alled a utset of a graph G = (V;E) if V � S indues in G adisonneted graph. In perfet graph theory, the idea of breaking a graph into smaller (and,preferably, easier to deal with) parts is natural, and probably the �rst promising attemptis to break the graph (when this is possible) into at least two onneted omponents. Avery simple reasoning shows that a graph whih admits suh a deomposition, i.e. has anempty utset, annot be minimal imperfet. By Lov�asz's perfet graph theorem [38℄, agraph whose omplement admits suh a deomposition also annot be minimal imperfet.Consequently, our simple initial remark yields, on the one hand, a erti�ate for a graphnot to be minimal imperfet and, on the other hand, a hereditary lass of perfet graphs(ontaining those graphs in whih every indued subgraph either is disonneted or hasdisonneted omplement).This is only the �rst one of a series of results involving utsets. As suggested above,utsets turned out to be interesting in perfet graph theory mainly with respet to twokinds of appliations.First, suÆient onditions for a graph not to be minimal imperfet an be found,sometimes yielding easy (from a theoretial point of view) and/or eÆient (from a pratialpoint of view) tests. The lassial follow-up to this type of results is to de�ne new (orharaterize old) lasses of perfet graphs by imposing the suÆient ondition on everyindued subgraph of a graph in the lass.Seondly, omposition/deomposition operations may be desribed. They are a goodsupport for reursive reasonings and algorithms, as well as for de�ning new (or harate-rizing old) lasses of perfet graphs by starting with basi graphs and suessively om-posing. In the end, it would be desirable to �nd suh basi graphs and suh ompositionoperations whih would haraterize the lass of all perfet graphs.Our aim here is to present the various aspets of utsets in perfet and minimal imper-fet graphs; this will be done aording to the following plan:1. How did it start?2. Main results on minimal imperfet graphs3. Appliations: star-utsets4. Appliations: lique and multi-partite utsets5. Appliations: stable utsets6. Two (resolved) onjetures7. The onnetivity of minimal imperfet graphs8. Some (more) problemsFor de�nitions and notation not given here, the reader is referred to [4℄.1



1 How did it start?Let us onsider two graphs G1 = (V1; E1); G2 = (V2; E2), and assume that eah of themontains a given graph F as an indued subgraph. Denote by W1 � V1, respetivelyW2 � V2 a set of verties in G1, respetively G2 whih indue F , and let f : W1 ! W2 bean isomorphism between the two indued subgraphs. The F -bonding (or F -identi�ation)of G1 and G2 is the identi�ation of every x 2 W1 with f(x) (yielding a new vertexadjaent to all the neighbours of x in G1 and of f(x) in G2). A new graph results, denotedG = G1�FG2. It is lear that the vertex set W obtained from identi�ation of W1 and W2is a utset in G, provided that W1;W2 are proper subsets.It is an easy observation (see [22℄, [2℄) that lique bonding (in the de�nition above, F isindued by a lique) preserves perfetion. That is, the graph G obtained by lique bondingof two perfet graphs G1; G2 is also perfet. As a by-produt, no minimal imperfet graphan ontain a lique utset. Moreover, Tuker [58℄ proved that minimal imperfet graphsalso annot have utsets of type fxg[N(x), where x is a vertex and N(x) its neighbourhood,that is, the set of all its neighbours in the graph. Observe that this result does not implythat the orresponding bonding operation preserves perfetion.In fat, as shown in [13℄ a muh more general result holds: there is no graph F , exeptfor the liques, for whih F -bonding preserves perfetion. And it is easy to imagine why:given two non-adjaent verties x; y of F , it is suÆient to exhibit two graphs G1; G2ontaining F as an indued subgraph and suh that x; y are joined by an odd (respetivelyeven) hordless path in G1 (respetively in G2) whose only verties in F are x; y. TheF -bonding of G1 and G2 would then give a graph ontaining at least one odd hordlessyle, i.e. an imperfet graph. We an exhibit two graphs G1; G2 as follows:� the omplement graph G1 of G1 is obtained by identifying the two vertiesx; y in F with, respetively, the two verties a; b of the graph Ha;b in Fig. 1.As shown in [52℄, the new graph is perfet (and obviously a hordless path oflength three joins x to y).� G2 is obtained from F by adding a new universal vertex.

a bFigure 1: The graph Ha;b2



Fortunately, while the strong aÆrmation \F -bonding preserves perfetion" is false forevery non-omplete graph F , the weaker aÆrmation \no minimal imperfet graph ontainsa utset whih indues F" an still be true for some F . Furthermore, there are somegraphs F whih an be indued by a utset in the well known minimal-imperfet graphs(odd holes or odd anti-holes), but whih annot be indued in any other minimal imperfetgraph (suh graphs, if they exist, are alled monsters).2 Main results on minimal imperfet graphsFrom a strutural point of view, three types of utsets are known, whih annot appearin a minimal imperfet graph di�erent from a hole (for the numerial point of view seeSetion 7). The �rst one (in the order of their publiation) onerns stable utsets, i.e.utsets S suh that the subgraph G[S℄ indued by S in G is edgeless. The following wasproven in [57℄:Fat 1 (Tuker) No minimal imperfet graph has a stable utset, exept for the oddholes.Furthermore, Chv�atal [6℄ de�ned a star-utset to be a utset S ontaining some vertexx whih is adjaent to every other vertex in S (x is then alled universal in G[S℄). Thenwe have the following statement, known as the Star-Cutset Lemma:Fat 2 (Chv�atal) No minimal imperfet graph has a star-utset.The third result was proved by Cornu�ejols and Reed in [14℄. A omplete multi-partitegraph is a graph whose vertex set may be partitioned in k � 1 stable sets U1; U2; : : : ; Uk suhthat all the edges exist between Ui; Uj for every i 6= j in f1; 2; : : : ; kg. Then, we an de�nea omplete multi-partite utset as a utset S for whih G[S℄ is a omplete multi-partitegraph.Fat 3 (Cornu�ejols & Reed) No minimal imperfet graph has a omplete multi-partite utset, unless the utset is a stable set and the graph is an odd hole.It is worth notiing that, although they are expressed similarly to eah other above,these three results have been proved in di�erent (and stronger, for the �rst two of them)forms. The approah (by ontradition) is the same: given the utset S of G = (V;E)and a onneted omponent of G[V � S℄ (say it is indued by the set of verties V1), thentwo graphs G1 = G[V1 [ S℄, G2 = G[V � V1℄ are de�ned, and they are both supposedto be k-olourable (k � 1). Then, a stable set U is searhed for with the property thatG� U is (k � 1)-olourable (if it is found, then G is k-olourable). In the ase of a stableutset, U is found even without imposing the ondition that G is minimal imperfet; G3



has only to be odd hole-free. For a star-utset, the result is weaker: k is taken to be equalto !(G); but, one more, U is always found and the proof doesn't use other propertiesrelated to the minimal imperfetion of G (other then the !-olourability of G1 and G2).Finally, for a multi-partite utset, k is taken equal to !(G), but U is not always found,even if the hypothesis that G is minimal imperfet is used. So, in the �rst two asesthe ontradition is easy to obtain, even for a so-alled partitionable graph (partitionablegraphs are a super-lass of minimal imperfet graphs; see the de�nition in Setion 7). Inthe third one, additional properties of minimal imperfet graphs are needed to onlude.Fat 2 and Fat 3 share another ommon property; they are partiular ases of theSkew Partition Conjeture proposed in [6℄. We say that a graph G = (V;E) admits a skewpartition if its vertex set V an be partitioned into nonempty sets A;B; V1; V2 suh that:� every vertex in A is ompletely adjaent to every vertex in B (we say thatS = A [B is the omplete join of A;B);� V � S = V1 [ V2 suh that no edge exists between V1 and V2.Then A [B is alled a skew utset of G, and the Skew Partition Conjeture laims that:Conjeture 1 (Chv�atal) No minimal imperfet graph admits a skew partition.Equivalently, no minimal imperfet graph admits a skew utset. The interest of suh anaÆrmation (if proved) omes from the self-omplementarity of a skew partition: G admitsa skew partition if and only if G admits a skew partition. If we reall (on the one hand)that, by Lov�asz's perfet graph theorem, G is perfet if and only if G is, and (on the otherhand) that attempts are made to onstrut the lass of perfet graphs from some basigraphs using some omposition operations, we easily see that the skew partition ful�llsmore than one of the features a good operation should ful�ll. Moreover, skew partitionsan be found in polynomial time, as proved in [19℄.The most reent results on the Skew Partition Conjeture may be found in [49℄ and[11℄. The �rst of them is a generalization of both Fat 2 and Fat 3:Fat 4 (Roussel & Rubio) No minimal imperfet graph admits a skew partition A;B;V1; V2 suh that A indues a stable set.The seond one involves the notion of universal 2-join. A graph G = (V;E) has auniversal 2-join if V an be partitioned into subsets VA, VB and U , suh that:� VA ontains sets A1; A2 suh that A1 [ A2 is non-empty, VB ontains setsB1; B2 suh that B1[B2 is non-empty, every vertex of A1 is adjaent to everyvertex of B1, every vertex of A2 is adjaent to every vertex of B2 and theseare the only adjaenies between VA and VB .
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� Every vertex of U is adjaent to A1 [ A2 [ B1 [ B2 and possibly to otherverties in V .� jU [ VAj � 2 and, if A1 6= A2, jU [ VAj � 3.jU [ VB j � 2 and, if B1 6= B2, jU [ VB j � 3.Now we have :Fat 5 (Conforti, Cornu�ejols, Gasparyan & Vu�skovi�) Let G be a minimal im-perfet graph that ontains a universal 2-join. Then G or G is an odd hole.The reader will easily notie that when all three sets U; VA� (A1 [A2) and VB � (B1 [B2) are nonempty, a universal 2-join is a speial ase of a skew partition (where U andA1 [A2 [B1 [B2 play the roles of A and B in the de�nition of a skew partition).We onsider now two generalizations of the star-utset lemma, introdued and provedby respetively Olariu [42℄ and Ho�ang [31℄. For a graph G = (V;E) with utset S, letV1 indue a onneted omponent of G[V � S℄ and let V2 stand for the set of vertiesV � S � V1. Denote G1 = G[V1 [ S℄, G2 = G[V2 [ S℄ and, for a oloring C of G and everyU � V , let C(U) be the set of olours in U .Fat 6 (Olariu) No minimal imperfet graph ontains a utset S = A [ B with theproperties(O1) A \B = ;; A 6= ;;(O2) there exist optimal olourings C1; C2 of G1; G2 respetively, suh thatCi(A) \ Ci(B) = ;, i = 1; 2jC1(A)j = jC2(A)j < !(G)A utset with properties (O1), (O2) is alled a partitionable utset. It is easy to seethat the Star-utset Lemma is a partiular ase of Fat 6 (just take A = fxg, where x isthe universal vertex of S). Moreover, the most na��ve attempt to prove perfetion resultsusing Fat 6 yields an interesting onnetion with another oloring problem.To see this, onsider a graph G whose proper indued subgraphs are all perfet, andfor whih we want to prove the perfetion using Fat 6. We denote S a utset of G, andG1; G2 as before. As G1 is a perfet graph, we an �nd an !-olouring C1 of G1. Then,we an try to apply Olariu's result by onsidering a subset A of olours in C1 suh thatjAj < !, and the set A � S of those verties in S whose olour is in A. Now, we have toolour G2 with ! olours suh that the verties in A (respetively B = S�A) have oloursin A (respetively not in A). Notie that it is not requested that every vertex has the sameolour in G1 and G2, but only that the olour belongs or not to A.On the ontrary, we an even request that at least one vertex in S hanges its olour.Otherwise, the resulting olouring (if found) is an !-olouring of G and Olariu [42℄ shows5



that in this ase S an be seen as a partitioned utset S = A0 [ B0 suh that A0 ontainsthe verties of one �xed olour; this ase an then be inluded in the ase jAj = 1 above.And, in fat, in the ase jAj = 1 we know to solve the problem, i.e. to answer the questionwhether G2 an be oloured with ! olours suh that the verties in A have olours in Aand the verties in B have olours not in A. This an be done using the theorem and thepolynomial algorithm in [37℄.In the general ase where jAj is arbitrary, the problem is a partiular ase of thefollowing one:The list olouring problem. Let G be a graph and assume that eah vertex v inG has assigned a list L(v) of possible olours. Is there a olouring of G suh that everyvertex v has a olour in L(v)?Proposed independently in [17℄ and [60℄, this problem is NP-omplete (see [59℄ for asurvey).We give now Ho�ang's partial result [31℄ on the Skew Partition Conjeture, whih isanother generalization of the Star-utset lemma (ase A = fxg, where x is the universalvertex of S):Fat 7 (Ho�ang) No minimal imperfet graph admits a skew partition A;B; V1; V2 withthe property(H) there exist optimal olourings C1; C2 of G1, G2 respetively, suh thatjC1(A)j � jC2(A)jjC1(B)j � jC2(B)j(as before, if S = A [B, then G1 = G[V1 [ S℄, while G2 = G[V2 [ S℄)This statement is used to prove two other partiular ases of the Skew Partition Con-jeture. In the graph G with the skew partition A;B; V1; V2, the set S = A[B is a U-utsetif there are distint verties u1; u2 2 V1 suh that N(u1) � A and N(u2) � B. The setS is a T-utset if there exist distint verties u1 2 V1; u2 2 V2 suh that N(u1) � A andN(u2) � A.Fat 8 (Ho�ang) No minimal imperfet graph has a skew partition A;B; V1; V2 suhthat S = A [B is a U-utset (respetively, a T-utset).As an appliation, Ho�ang shows that a graph G whose odd yles of length at least�ve have two or more hords (also alled a Meyniel graph) either is bipartite, or G has astar- or U-utset, thereby providing an alternate proof that these graphs are perfet. Also,Roussel and Rubio [49℄ use Fat 8 to prove Fat 4.6



3 Appliations: star-utsetsSine they were de�ned by Chv�atal, the star-utsets are probably the tool the most fre-quently used to prove perfetion. In his paper, Chv�atal [6℄ already noties some of theseappliations: lique bonding preserves perfetion; substitution (i.e. replaing a vertex v ofG with a graph H whose verties have in G the same neighbours as v) preserves perfetion;amalgam (see [5℄) preserves perfetion. Even the (very) partiular ase of lique utsetshas so many appliations that we have to treat it in a partiular setion (Setion 4).Given a lass G of graphs and P a prediate, de�ne the losure of G under P (denotedGP ) reursively by the rules:(i) if G 2 G then G 2 GP ;(ii) if G satis�es P , and if G� v 2 GP for every vertex v in G, then G 2 GP .It is easy to see (by indution) that, whenever P is a property a minimal imperfetgraph annot have, the perfetion of every graph in G implies the perfetion of every graphin GP . Chv�atal onsidered this de�nition in the partiular ase of the prediate (denoted�): \G or G has a star-utset". He denoted by TRIV the lass of graphs with at most twoverties and by BIP the lass of all bipartite graphs, and notied that both TRIV� andBIP� are involved in nie properties of perfet graphs. For instane, Hayward [26℄ provedthat a graph is in TRIV� if and only if it is a weakly triangulated graph, i.e. a graphontaining no yle of length at least �ve (denoted Ck, k � 5) and no omplement of suhyle. Some years later [24℄, he improved the \if" part of this statement by showing thisimportant (when thinking to the strong perfet graph onjeture) property of unbreakablegraphs (a graph G is breakable if either G or G has a star-utset, and unbreakable in theontrary ase).Fat 9 (Hayward) In an unbreakable graph, every vertex is ontained in a Ck or Ck,k � 5.The identity between TRIV� and the lass of weakly triangulated graphs is the onlyequality result proved so far. Many other theorems have been found whih give inlusionrelations, as indiated in the table below.Class Rel. Class� Proved by Ref.weakly triangulated = TRIV� Hayward [26℄Meyniel � BIP� Chv�atal [6℄perfetly orderable � BIP� Chv�atal [6℄opposition � BIP� Olariu [43℄alternately orientable � BIP� Ho�ang [29℄2-oloured, odd P4 � (BIP [BIP)� Ho�ang [30℄2-oloured, even P4 � (Berge K1;3-free)� Chv�atal, Ho�ang [8℄2-oloured, partners � (BIP [BIP)�[(Berge K1;3-free)� Chv�atal [9℄Berge, P (G) K3-free � (BIP [BIP)� Hayward, Lenhart [27℄(bull; P5; P5)-free, � 6 � (BIP [BIP)� Fouquet [20℄pan-free � (K1;3-free)� Olariu [44℄(P5;K2;3)-free � (K1;3-free)� de Simone, Galluio [15℄slim � (strit quasi-parity)� Hertz [28℄7



The de�nitions not given here and the proofs an be found respetively in the papersindiated in the last olumn. The lass BIP ontains all the omplements of bipartitegraphs.We leave for a moment the star-utset domain in order to make a remark on partition-able utsets. With the prediate �: \G is either a lique, or a stable set, or else G has apartitionable utset" we obtain (see [42℄) the following haraterization of perfet graphs:Fat 10 (Olariu) The lass of perfet graphs is exatly the lass TRIV�.The proof of this laim is easy and relies on the fat that if G is a perfet graph (not alique, not a stable, of at least three verties) with utset S and a given oloring, then theverties of S of a �xed olour an be hosen to form the set A. Thus, every utset of Ghas the properties (O1) and (O2), while in a minimal imperfet graph no utset has thisproperty. Perfet graphs and minimal imperfet graphs an, therefore, be seen as extremelasses with respet to Olariu's property.Let us ome bak to star-utsets and in partiular to their algorithmi aspets. Thesame paper of Chv�atal [6℄ provides us with an algorithm to test whether a graph G has ornot a star-utset. It an be easily dedued from the following statement (a vertex v is saidto dominate a vertex w if fvg [N(v) ontains N(w)):Fat 11 (Chv�atal) A graph G = (V;E) has a star-utset if and only if it has at leastone of the properties:a) there exists w 2 V suh that fwg [N(w) is a utset;b) G is not a lique and there exist adjaent verties v; w 2 V suh that v dominatesw. Then a graph G is breakable if and only if either G or G has the property a) or b).In fat, Chv�atal (see Hayward [25℄) proved a stronger property for graphs with more thanfour verties:Fat 12 (Chv�atal) Let G be a graph with at least �ve verties. Then G is breakableif and only if G or G has property a).Now, though we an test in polynomial time whether G has a star-utset, we annotdedue a polynomial algorithm to test whether a graph G belongs to a lass G� (where Gis assumed to be reognizable in polynomial time). If G is hereditary, then the followingalgorithm presented in [6℄ realizes (not neessarily in polynomial time) the indiated test.With the notation F = H (if H has a star-utset in step 4) or F = H (ifH has a star-utsetin step 4), the sets V1; V2 in step 4 are as usual: V1 is indues a onneted omponent ofF � S while V2 is F � S � V1. 8



1. L := fGg.2. If L = ;, then return \G 2 G�"; else remove some H from L.3. If H 2 G then goto 2.4. If H or H has a star-utset S = fvg [ V0, thenL := L [ fH � v;H � V1;H � V2g; goto 25. return \G 62 G�".For a graph ontaining a lot of hordless yles (take for instane the graph obtainedfrom a hordless yle on p verties by substituting every vertex with a lique on twoverties), the number of operations needed in the exeution of this algorithm an be verylarge if every hordless yle is examined in step 3.4 Appliations: lique and multi-partite utsetsThis hapter is dediated to the study of three lasses of graphs, all of them ontained(stritly or not) in some lass G, where  is the prediate \G has a lique utset" and Gis the losure of G under . They are alled triangulated graphs, i-triangulated graphs,lique separable graphs. They all have speial verties yielding elimination shemes, andfor at least two of them the speial verties an be found using lexiographi breadth �rstsearh (abbreviated LexBFS), an algorithm proposed in [48℄ as a stronger version of thelassial breadth-�rst searh algorithm.To desribe LexBFS, assume that eah vertex has a (initially empty) label whih on-sists in a set of integers listed in dereasing order. The labels may be ompared usingditionary (or lexiographi) order.Algorithm LexBFSInput: An arbitrary graph G = (V;E).Output: A one-to-one funtion � : f1; 2; : : : ; ng ! V (an order[�(1); �(2); : : : ; �(n)℄ on V).beginassign the label ; to eah vertex;for i := n downto 1 dopik an unnumbered vertex v with largest label (in lexiographi order);�(i) := v; fomment: this assigns to v the number igfor eah unnumbered vertex w 2 N(v) doadd i to the label of w (at the end)endConsider �rst the lass of triangulated graphs. A graph is triangulated if it ontainsno hordless yle Ck, k � 4. In a triangulated graph every minimal utset is a lique.Moreover, using results in [16℄, [21℄ we have the following (a vertex is said simpliial in asubgraph H if its neighbours in H indue a lique):9



Fat 13 (Dira; Fulkerson & Gross) The following three statements are equivalentfor a graph G = (V;E) with n verties:1. G is triangulated;2. every minimal utset indues a lique;3. G has a perfet elimination sheme, i.e. an order [v1; v2; : : : ; vn℄ of its vertiessuh that vi is simpliial in G[vi; vi+1; : : : ; vn℄. Moreover, if G is not a lique,then it ontains two non-adjaent simpliial verties.Using the equivalene between statements 1, 2 and the de�nition of G (reall that  isthe prediate \G has a lique utset"), it is easy to dedue that if K is the set of all liques,then the lass of triangulated graphs is exatly K. The algorithm LexBFS is an eÆienttool for �nding the perfet elimination sheme in statement 3: starting with an arbitraryunnumbered vertex v, a perfet elimination order [�(1); �(2); : : : ; �(n)℄ is found (see [48℄).Then v1 = �(1) is a simpliial vertex in G and a new exeution of LexBFS, this timestarting with v1, will obtain another perfet elimination order [�0(1); �0(2); : : : ; �0(n) = v1℄whose vertex w1 = �0(1) is again a simpliial vertex (non-adjaent to v1 as long as v1 isnon-universal). LexBFS is used on the one hand for giving a linear reognition algorithmfor triangulated graphs (see [48℄), and on the other hand to obtain a oloring algorithm forthese graphs (by performing a greedy oloring with the order �(n); �(n� 1); : : : ; �(1)).This last property is still true for a larger lass of graphs, the i-triangulated graphs. Agraph is alled i-triangulated if every odd yle with �ve verties or more has at least twonon-rossing hords. Their perfetion was proved very early in [22℄ using lique utsets,but multi-partite utsets also play an important role in their struture, as shown in [50℄.To see this, say that a graph is of type 1 if it is the omplete join between a onnetedbipartite graph and a lique, and of type 2 if it is a omplete multi-partite graph. Also, alla vertex m-simpliial in a subgraph H if its neighbours in H form a omplete multi-partitegraph.Fat 14 (Gallai; Roussel & Rusu) The following statements hold for every i-trian-gulated graph G = (V;E) with n verties:1. either G has a lique utset, or is of type 1, or else is of type 2;2. G has an m-perfet elimination sheme, i.e. an order [v1; v2; : : : ; vn℄ of its vertiessuh that vi is m-simpliial in G[vi; vi+1; : : : ; vn℄. Moreover, if G is not a lique,then it ontains two non-adjaent m-simpliial verties.Statement 1 immediately implies that i-triangulated graphs are in the lass T , whereT is the set of graphs of type 1 or 2. However, this is not a haraterization of i-triangulatedgraphs. The existene of an m-perfet elimination sheme is not a haraterization either,thus it doesn't allow us to �nd a linear reognition algorithm, as it was the ase for thepreeding lass (an O(mn) reognition algorithm is proposed in [51℄). However, LexBFSis still the eÆient tool for �nding in linear time an m-perfet elimination sheme, andthe order �(n); �(n � 1); : : : ; �(1) an be used to perform a greedy oloring (see [50℄). It10



is worth notiing that in every suh olouring, at the preise moment when a vertex �(i)is oloured, its already oloured neighbourhood (whih is a omplete multi-partite graph)has all the verties in a stable set of the same olour. This strengthens the similarity withtriangulated graphs, where every suh stable set has a unique vertex (obviously olouredwith only one olour).The graphs in T  are alled lique separable graphs. Gavril [23℄ de�ned them andgave the �rst polynomial reognition algorithm (the best one urrently known was givenby Tarjan [56℄). These graphs have an elimination sheme too, de�ned in [39℄ using thenotion of pretty vertex, whih is a vertex whose neighbourhood in the graph indues a(P4; 2K2)-free graph. It an be shown that:Fat 15 (Ma�ray & Porto & Preissmann) Every lique separable graph G with nverties has a pretty elimination sheme, i.e. an order [v1; v2; : : : ; vn℄ of its verties suhthat vi is pretty in G[vi; vi+1; : : : ; vn℄. Moreover, if G is not a lique, then it ontains twonon-adjaent pretty verties.Triangulated and lique separable graphs an be reognized in polynomial time usingWhitesides' O(mn) algorithm [61℄ for �nding lique utsets in arbitrary graphs (but lesseÆiently than the best known algorithm). As Gavril [23℄ showed that the tree built bysuessively breaking the graph G using lique utsets (alled a lique utset tree) has O(n2)verties, the indeomposable subgraphs of G an be found in O(mn3). Then it remains totest whether the indeomposable subgraphs are in K (for triangulated graphs), respetivelyin T (for lique separable graphs). Thus the eÆieny of reognition algorithm dependson the eÆieny of building the lique utset tree, and on the eÆieny to test whether agraph belongs or not to one of the two lasses. As shown by Tarjan [56℄, the former an berealized in O(mn) (while the latter needs less than that), thus reognizing lique separablegraphs takes only O(mn) time.An important di�erene appears between multi-partite utsets and star- or lique ut-sets: testing whether a graph has a multi-partite utset is NP-omplete [36℄. And the sameholds for stable utsets (see [36℄), whih are the subjet of the next setion.5 Appliations: stable utsetsStable utsets are muh less enountered in proofs of perfetion, or in the design of algo-rithms than lique utsets. The prediate s: \G has a stable utset" seems to be muhmore unomfortable to use than \G has a lique utset", and the only suh appliationsthat have ome to our attention are either extremely easy or too intimately related to somespei� properties of the graph.In the �rst ategory enters the observation that the lass of triangle-free graphs isexatly TRIVs: indeed, every triangle-free graph with at least three verties has a non-universal vertex, and its neighbourhood is a stable utset of the graph (by indution weobtain the desired onlusion); onversely, if we assume by ontradition that a graph11



ontaining a triangle belongs to TRIVs, then beause of ondition ii) in the de�nition ofTRIVs we dedue that the triangle has a stable utset, a ontradition. Moreover, triangle-free graphs are exatly the lass of graphs possessing a stable elimination order, i.e. anorder [v1; v2; : : : ; vn℄ of verties suh that the neighbourhood of vi in G[vi; vi+1; : : : ; vn℄ isa stable set.To illustrate the seond ategory, we present some results that have been obtained byCorneil, Fonlupt [12℄ on stable bonding. As we indiated in Setion 1, only lique bondingpreserves perfetion, for the other graphs F , examples exist of perfet graphs whose F -bonding does not yield a perfet graph. In the ase where the verties of F form a stableset, Fat 1 insures that only odd holes an be generated, not odd anti-holes. The examplewe gave in Setion 1 to prove that F -bonding does not preserve perfetion suggests thatperfetion ould however be preserved for graphs with partiular properties related to pathparity.Therefore, in [12℄, a diret hain (for some stable utset S) in G = (V;E) is de�ned tobe a hordless path whose internal verties are in V �S. Then a graph G is said to satisfythe strong hain ondition (SCC) on the stable utset S if:1. G is onneted and for every pair of verties v; w 2 S there exists at least onehordless diret hain.2. for every pair of verties v; w 2 S all hordless hains with endpoints v; w have thesame parity (denoted sign(v; w;G), equal to 1 if the hain is odd and to 0 otherwise).Then onsider two graphs G1; G2 with stable sets S1, respetively S2 suh that jS1j =jS2j. Perform a one-to-one identi�ation of the verties in S1 with the verties in S2 andall S the unique stable set (of size idential to jS1j and jS2j) obtained in this way. Thenwe have:Fat 16 (Corneil & Fonlupt) If Gi (i = 1; 2) are perfet graphs that satisfy SCCon S and for every pair of verties v; w 2 S we have sign(v; w;G1) = sign(v; w;G2), thenthe graph G obtained by S-bonding of G1 and G2 is also perfet.It is natural to relax ondition 2 by onsidering only hordless diret hains instead ofhordless hains. The example in Fig. 2 (given in [12℄) shows that this annot be done(the set S = fs1; s2; s3g satis�es the hypothesis of Fat 16 with ondition 2 relaxed, butthe resulting graph is not perfet sine as1bdes3fs2a is an odd hole).Notie that testing ondition 2 for an arbitrary graph G is a o-NP-omplete problem.The omplementary problem, i.e. given G;S test whether S ontains two verties joined byhordless hains of di�erent parities, has as a partiular ase (when jSj = 2) the so-alledPath parity problem:Path parity problem. Given G = (V;E) and two verties x; y, determine if thereexist hordless paths (or hains) of di�erent parities onneting them.This problem is NP-omplete [3℄ for arbitrary graphs, but for perfet graphs (this is thease we are interested in) its omplexity is not known (partial answers may be found in [1℄,12
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fFigure 2: An exemple[35℄, [54℄). However, it is known that this problem is polynomial if testing the perfetnessof a graph G is polynomial (see [12℄).As long as this question is not answered, it is tempting to �nd suÆient onditions forondition 2 to be true, as follows. Let G1; G2 have stable utsets S1; S2 respetively, andassume that eah Gi � Si ontains a onneted omponent Ki whih is a lique, suh thatjK1j = jK2j. Moreover, suppose that every vertex s 2 Si has exatly one neighbour in Ki(i = 1; 2) and that an isomorphism f exists between G1[K1 [ S1℄ and G2[K2 [ S2℄. Then(see [12℄) the graph resulting by stable bonding of G1 �K1 and G2 �K2 using S1; S2 andthe isomorphism f is perfet. The only ondition here whih might be diÆult to verifyis the isomorphism ondition on G1[K1 [ S℄ and G2[K2 [ S℄, but the graphs are simpleenough to allow us a polynomial veri�ation (in fat, it is suÆient to ompare the lists ofdegrees of the two graphs).6 Two (already solved) onjeturesIn the preeding setions, we evoked some attempts to prove the strong perfet graphonjeture using omposition/deomposition operations. This is one of the reasons whihmake the skew partition onjeture interesting, whih motivate the de�nition of the lassesGP , whih pushes researhers to disover new properties that minimal imperfet graphannot have. All these properties, old or new, ould possibly be put together in a strongunique prediate P suh that GP would ontain all Berge graphs, for some suitable hosenset of perfet basi graphs G. (A graph is alled Berge if it has no odd hole and no oddanti-hole).Unfortunately, the properties of minimal imperfet graphs we know nowadays are notsuÆient to dedue suh a result, or else the lass of basi perfet graphs we need touse has not yet been identi�ed. The two onjetures below have both been invalidated,and the ounter-examples are small enough to make us believe that the properties thatare brought together are not suÆiently strong. We preferred to formulate them withoutlearly speifying G and P , but the reader will have no diÆulty to identify the prediateand the basi graphs. The �rst one was proposed by Reed [46℄ (an even pair is a pairof verties suh that every hordless path joining them has even number of edges; thelinegraph of a graph H = (X;U) has a vertex for every edge in U and two verties are13



adjaent if and only if the orresponding edges share a vertex).Conjeture 2 Let G be a Berge graph suh that1. neither G nor G has a star-utset;2. neither G nor G has an even pair.Then G or G is the linegraph of a bipartite graph.Hougardy [33℄ gave a ounter-example on 20 verties, and notied that even if G isC4-free the onjeture remains false.The seond onjeture (proposed by Ho�ang, see [33℄) has a stronger hypothesis and aweaker onlusion, but is still false, as proved in [53℄.Conjeture 3 Let G be a Berge graph suh that1. neither G nor G has a star-utset;2. neither G nor G has a stable utset;3. neither G nor G has an even pair.Then G or G is diamond-free.It an be shown (see [53℄) that the ounter-example to Conjeture 3 may be grown togive ounter-examples to eah weaker onjeture obtained by replaing the diamond withthe omplete join of a lique and a stable set. Moreover, it remains a ounter-example evenif we add the following hypothesis (dedued from the Odd Pair Conjeture [41℄, whih isneither proved nor invalidated):4. neither G nor G has an odd pair,where an odd pair is a pair of verties suh that every hordless path joining them hasodd number of edges. And, in fat, the ounter-example above has another disouragingproperty: even if the hypothesis5. neither G nor G has a skew partitionis added to the onjeture, the same graph is still a ounter-example. Modifying theonjeture suh that the same graph is no longer a ounter-example seems therefore to askfor other properties of minimal imperfet graphs. One of them ould be that onjetured in[7℄, whih involves disonneted utsets (suh utsets an be found in the ounter-exampleabove):Conjeture 4 No minimal imperfet graph, whih is not a hole, has a disonnetedutset.The versions of this onjeture where the utset is P4-free, or even P3-free are opentoo. The latter ase is equivalent to saying that the utset is a union of vertex-disjointliques, and may be simpli�ed by taking the ase of only two liques, whih is also stillopen. Exept for this last ase, in all these problems the utset may be asked to be theneighbourhood of some vertex, still yielding an unsolved statement.14



7 The onnetivity of minimal imperfet graphsThroughout the paper we were interested in the graphs F suh that no minimal imperfetgraph (exept for odd holes and odd anti-holes) has a utset whih indues F , and so farwe have approahed this question with respet to the struture of F , paying no attentionto the ardinality of F . This di�erent aspet of the question was �rst treated by Olaru[45℄:Fat 17 (Olaru) The minimum degree of a minimal imperfet graph is at least 2!�2.This result remained the only numerial estimation of (ertain) utsets in minimalimperfet graphs, until Hougardy [34℄ proved the following statement whih involves allthe utsets of the graph:Fat 18 (Hougardy) The onnetivity number of a minimal imperfet graph is atleast !.The best lower bound known today is due to Seb�o [55℄, who had the intuition that thegap between the high lique rank of the minimal imperfet graph G and the low liqueranks of its perfet subgraphs G1; G2 (de�ned as in Setion 2, with respet to some utsetS) should be the onsequene of a big intersetion of G1 and G2. Then a simple alulationyields the �rst part of the result below. This result is valid not only for a minimal imperfetgraph but, more generally, for a partitionable graph, i.e. a graph G = (V;E) suh that:(i) integers � � 2; ! � 2 exist with the property jV j = �! + 1;(ii) for eah v 2 V , G� v an be partitioned both into !-liques and into �-stable sets.In this ase, !; � are the lassial parameters lique number and stability number for thepartitionable graph G.Fat 19 (Seb�o) If G is partitionable, then the onnetivity number of G is at least2! � 2. Furthermore, if S � V is a utset of ardinality 2! � 2, then:1. !(S) < ! � 1;2. G� S has exatly two onneted omponents (indued by V1; V2);3. V1 [ S; V2 [ S indue uniquely olourable graphs.This theorem is tight for arbitrary ! � 2 and � � 2. To see this, all an (�; !)-web agraph on �!+1 verties so that !(G) = !; �(G) = � and the verties of V may be arrangedin a ylial order suh that every set of ! onseutive verties is an !-lique. Now, onsidera normalized (�; !)-web, that is, an (�; !)-web in whih every edge is ontained in some!-lique. It is easy to see that two sets of !� 1 onseutive verties eah form a utset i�the two sets are disjoint and not next to eah other in the yli order. Every suh utsethas 2! � 2 verties, and the neighbourhood of every vertex has this form.15



Obviously, both in odd holes and in odd anti-holes the verties have the degree 2!� 2;onsequently, as far as we know every minimal imperfet graph has this property. Thus, ifthe strong perfet graph onjeture is true, then the following statement also holds:Conjeture 5 (Seb�o) In a minimal imperfet graph, the neighbourhood of every ver-tex is a utset of ardinality 2! � 2.Conversely, to dedue the strong perfet graph onjeture from this onjeture, it anbe notied that properties spei� to minimal imperfet graphs and not always true forpartitionable graphs should be used, sine in a normalized (�; !)-web (whih is partition-able, but not minimal imperfet for ! > 2 and � > 2) the neighbourhood of every vertexhas, as notied before, ardinality 2! � 2 and still this graph is not an odd hole or oddanti-hole. Seb�o [55℄ proposes to make use of the property (see [10℄) that minimal imperfetgraphs have no small transversal, i.e. no set of at most �+!� 1 whih hits every !-liqueand every �-stable in the graph. To this, it an be added that, by Lov�asz's perfet graphtheorem, a graph is minimal imperfet i� its omplement is, therefore the preeding on-jeture may be applied to both G and G (and this is suÆient to eliminate the (�; !)-webswith � > 2; ! > 2).Conjeture 6 (Seb�o) Let G be partitionable so that G (respetively G) has a utsetof ardinality 2!�2 (respetively 2��2). Then G is either an odd hole, or an odd anti-hole,or else it ontains a small transversal.Now, if Conjeture 5 and Conjeture 6 hold, then the strong perfet graph onjetureholds.8 Some (more) problemsWe lose this survey of results on utsets in perfet and minimal imperfet graphs by a listof open problems that do not inlude the onjetures disussed in the preeding setions.For some of them, referenes to partial results are given.Problem 1 (Corneil & Fonlupt [12℄) Design a polynomial algorithm to test for theexistene of a stable utset in a perfet graph, or prove that the problem is NP-omplete(and similarly for multi-partite utsets).Problem 2 (Chv�atal [7℄) Prove that graphs in BIP� are strit quasi-parity graphs,i.e. eah subgraph whih is not a lique ontains an even pair. (partial results in [40℄)
16
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