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A set of vertices S is called a cutset of a graph G = (V, E) if V — S induces in G a
disconnected graph. In perfect graph theory, the idea of breaking a graph into smaller (and,
preferably, easier to deal with) parts is natural, and probably the first promising attempt
is to break the graph (when this is possible) into at least two connected components. A
very simple reasoning shows that a graph which admits such a decomposition, i.e. has an
empty cutset, cannot be minimal imperfect. By Lovész’s perfect graph theorem [38], a
graph whose complement admits such a decomposition also cannot be minimal imperfect.
Consequently, our simple initial remark yields, on the one hand, a certificate for a graph
not to be minimal imperfect and, on the other hand, a hereditary class of perfect graphs
(containing those graphs in which every induced subgraph either is disconnected or has
disconnected complement).

This is only the first one of a series of results involving cutsets. As suggested above,
cutsets turned out to be interesting in perfect graph theory mainly with respect to two
kinds of applications.

First, sufficient conditions for a graph not to be minimal imperfect can be found,
sometimes yielding easy (from a theoretical point of view) and/or efficient (from a practical
point of view) tests. The classical follow-up to this type of results is to define new (or
characterize old) classes of perfect graphs by imposing the sufficient condition on every
induced subgraph of a graph in the class.

Secondly, composition/decomposition operations may be described. They are a good
support for recursive reasonings and algorithms, as well as for defining new (or characte-
rizing old) classes of perfect graphs by starting with basic graphs and successively com-
posing. In the end, it would be desirable to find such basic graphs and such composition
operations which would characterize the class of all perfect graphs.

Our aim here is to present the various aspects of cutsets in perfect and minimal imper-
fect graphs; this will be done according to the following plan:

How did it start?

Main results on minimal imperfect graphs

Applications: star-cutsets

Applications: clique and multi-partite cutsets

Applications: stable cutsets

Two (resolved) conjectures

The connectivity of minimal imperfect graphs

. Some (more) problems

For definitions and notation not given here, the reader is referred to [4].
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1 How did it start?

Let us consider two graphs Gy = (V4, E1), Gy = (Va, E5), and assume that each of them
contains a given graph F' as an induced subgraph. Denote by W; C Vi, respectively
Wy C Vs a set of vertices in GGy, respectively Go which induce F, and let f : W7 — W5 be
an isomorphism between the two induced subgraphs. The F-bonding (or F-identification)
of G; and Gy is the identification of every z € W, with f(z) (yielding a new vertex
adjacent to all the neighbours of z in G and of f(z) in G3). A new graph results, denoted
G = G1PrG,. It is clear that the vertex set W obtained from identification of W and Wy
is a cutset in GG, provided that Wy, Wy are proper subsets.

It is an easy observation (see [22], [2]) that clique bonding (in the definition above, F' is
induced by a clique) preserves perfection. That is, the graph G obtained by clique bonding
of two perfect graphs G1, G4 is also perfect. As a by-product, no minimal imperfect graph
can contain a clique cutset. Moreover, Tucker [58] proved that minimal imperfect graphs
also cannot have cutsets of type {x}UN(z), where z is a vertex and N (x) its neighbourhood,
that is, the set of all its neighbours in the graph. Observe that this result does not imply
that the corresponding bonding operation preserves perfection.

In fact, as shown in [13] a much more general result holds: there is no graph F', except
for the cliques, for which F-bonding preserves perfection. And it is easy to imagine why:
given two non-adjacent vertices z,y of F', it is sufficient to exhibit two graphs G, G,
containing F' as an induced subgraph and such that z,y are joined by an odd (respectively
even) chordless path in Gy (respectively in G3) whose only vertices in F' are z,y. The
F-bonding of G and G5 would then give a graph containing at least one odd chordless
cycle, i.e. an imperfect graph. We can exhibit two graphs G, Gs as follows:

e the complement graph Gy of G is obtained by identifying the two vertices
z,y in F with, respectively, the two vertices a, b of the graph H,p in Fig. 1.
As shown in [52], the new graph is perfect (and obviously a chordless path of
length three joins z to y).

e (G5 is obtained from F' by adding a new universal vertex.

a b

Figure 1: The graph H,



Fortunately, while the strong affirmation “F-bonding preserves perfection” is false for
every non-complete graph F', the weaker affirmation “no minimal imperfect graph contains
a cutset which induces F” can still be true for some F. Furthermore, there are some
graphs F' which can be induced by a cutset in the well known minimal-imperfect graphs
(odd holes or odd anti-holes), but which cannot be induced in any other minimal imperfect
graph (such graphs, if they exist, are called monsters).

2 Main results on minimal imperfect graphs

From a structural point of view, three types of cutsets are known, which cannot appear
in a minimal imperfect graph different from a hole (for the numerical point of view see
Section 7). The first one (in the order of their publication) concerns stable cutsets, i.e.
cutsets S such that the subgraph G[S] induced by S in G is edgeless. The following was
proven in [57]:

Fact 1 (Tucker) No minimal imperfect graph has a stable cutset, except for the odd
holes.

Furthermore, Chvatal [6] defined a star-cutset to be a cutset S containing some vertex
z which is adjacent to every other vertex in S (z is then called universal in G[S]). Then
we have the following statement, known as the Star-Cutset Lemma;:

Fact 2 (Chvéatal) No minimal imperfect graph has a star-cutset.

The third result was proved by Cornuéjols and Reed in [14]. A complete multi-partite
graph is a graph whose vertex set may be partitioned in k£ > 1 stable sets Uy, Us, . . ., Uy such
that all the edges exist between U;, U; for every i # j in {1,2,...,k}. Then, we can define
a complete multi-partite cutset as a cutset S for which G[S] is a complete multi-partite
graph.

Fact 3 (Cornuéjols & Reed) No minimal imperfect graph has a complete multi-
partite cutset, unless the cutset is a stable set and the graph is an odd hole.

It is worth noticing that, although they are expressed similarly to each other above,
these three results have been proved in different (and stronger, for the first two of them)
forms. The approach (by contradiction) is the same: given the cutset S of G = (V, E)
and a connected component of G[V — S| (say it is induced by the set of vertices Vi), then
two graphs G; = G[V; US], Go = G[V — Vj| are defined, and they are both supposed
to be k-colourable (k > 1). Then, a stable set U is searched for with the property that
G — U is (k — 1)-colourable (if it is found, then G is k-colourable). In the case of a stable
cutset, U is found even without imposing the condition that G is minimal imperfect; G



has only to be odd hole-free. For a star-cutset, the result is weaker: k is taken to be equal
to w(G); but, once more, U is always found and the proof doesn’t use other properties
related to the minimal imperfection of G (other then the w-colourability of G and Gj).
Finally, for a multi-partite cutset, k is taken equal to w(G), but U is not always found,
even if the hypothesis that G is minimal imperfect is used. So, in the first two cases
the contradiction is easy to obtain, even for a so-called partitionable graph (partitionable
graphs are a super-class of minimal imperfect graphs; see the definition in Section 7). In
the third one, additional properties of minimal imperfect graphs are needed to conclude.
Fact 2 and Fact 3 share another common property; they are particular cases of the
Skew Partition Conjecture proposed in [6]. We say that a graph G = (V, E) admits a skew
partition if its vertex set V can be partitioned into nonempty sets A, B, Vi, V5 such that:

e every vertex in A is completely adjacent to every vertex in B (we say that
S = AU B is the complete join of A, B);

e V — S5 =1V; UV, such that no edge exists between Vi and V5.
Then AU B is called a skew cutset of G, and the Skew Partition Conjecture claims that:

Conjecture 1 (Chvatal) No minimal imperfect graph admits a skew partition.

Equivalently, no minimal imperfect graph admits a skew cutset. The interest of such an
affirmation (if proved) comes from the self-complementarity of a skew partition: G admits
a skew partition if and only if G admits a skew partition. If we recall (on the one hand)
that, by Lovész’s perfect graph theorem, G is perfect if and only if G is, and (on the other
hand) that attempts are made to construct the class of perfect graphs from some basic
graphs using some composition operations, we easily see that the skew partition fulfills
more than one of the features a good operation should fulfill. Moreover, skew partitions
can be found in polynomial time, as proved in [19].

The most recent results on the Skew Partition Conjecture may be found in [49] and
[11]. The first of them is a generalization of both Fact 2 and Fact 3:

Fact 4 (Roussel & Rubio) No minimal imperfect graph admits a skew partition A, B,
Vi, Vs such that A induces a stable set.

The second one involves the notion of universal 2-join. A graph G = (V,E) has a
universal 2-join if V can be partitioned into subsets V4, Vp and U, such that:

e V4 contains sets Aj, Ay such that A; U Ay is non-empty, Vp contains sets
By, Bs such that By U By is non-empty, every vertex of Ay is adjacent to every
vertex of By, every vertex of Ay is adjacent to every vertex of By and these
are the only adjacencies between V4 and Vp.



e Every vertex of U is adjacent to A; U Ay U By U By and possibly to other
vertices in V.

o [UUVy| >2and, if Ay # Ay, [UU V4| > 3.
|UUVB| > 2 and, if By # B, ‘UUVB‘ > 3.

Now we have :

Fact 5 (Conforti, Cornuéjols, Gasparyan & Vuskovié) Let G be a minimal im-
perfect graph that contains a universal 2-join. Then G or G is an odd hole.

The reader will easily notice that when all three sets U, V4 — (A1 U Ay) and Vg — (B U
Bsy) are nonempty, a universal 2-join is a special case of a skew partition (where U and
A1 U Ay U By U By play the roles of A and B in the definition of a skew partition).

We consider now two generalizations of the star-cutset lemma, introduced and proved
by respectively Olariu [42] and Hoang [31]. For a graph G = (V, E) with cutset S, let
V1 induce a connected component of G[V — S] and let V, stand for the set of vertices
V — S — V. Denote G1 = G[V1 US|, Gy = G[V, U S] and, for a coloring C of G and every
U CV,let C(U) be the set of colours in U.

Fact 6 (Olariu) No minimal imperfect graph contains a cutset S = AU B with the
properties

(01) ANB=10,A#0;
(02) there exist optimal colourings Ci,Co of G1,Go respectively, such that

Ci(A)NCi(B)=0,i=1,2
IC1(A)] = [C2(A)] < w(G)

A cutset with properties (O1), (02) is called a partitionable cutset. It is easy to see
that the Star-cutset Lemma is a particular case of Fact 6 (just take A = {z}, where z is
the universal vertex of S). Moreover, the most naive attempt to prove perfection results
using Fact 6 yields an interesting connection with another coloring problem.

To see this, consider a graph G whose proper induced subgraphs are all perfect, and
for which we want to prove the perfection using Fact 6. We denote S a cutset of G, and
G1,G9 as before. As Gy is a perfect graph, we can find an w-colouring Cy of G1. Then,
we can try to apply Olariu’s result by considering a subset A of colours in C; such that
\A| < w, and the set A C S of those vertices in S whose colour is in A. Now, we have to
colour G with w colours such that the vertices in A (respectively B = S — A) have colours
in A (respectively not in 4). Notice that it is not requested that every vertex has the same
colour in G; and G, but only that the colour belongs or not to A.

On the contrary, we can even request that af least one vertex in S changes its colour.
Otherwise, the resulting colouring (if found) is an w-colouring of G and Olariu [42] shows



that in this case S can be seen as a partitioned cutset S = A’ U B’ such that A’ contains
the vertices of one fixed colour; this case can then be included in the case |A| = 1 above.
And, in fact, in the case |A| = 1 we know to solve the problem, i.e. to answer the question
whether G5 can be coloured with w colours such that the vertices in A have colours in A
and the vertices in B have colours not in A. This can be done using the theorem and the
polynomial algorithm in [37].

In the general case where |A| is arbitrary, the problem is a particular case of the
following one:

The list colouring problem. Let G be a graph and assume that each vertex v in
G has assigned a list L(v) of possible colours. Is there a colouring of G such that every
vertex v has a colour in L(v)?

Proposed independently in [17] and [60], this problem is NP-complete (see [59] for a
survey).

We give now Hoang’s partial result [31] on the Skew Partition Conjecture, which is
another generalization of the Star-cutset lemma (case A = {z}, where z is the universal
vertex of S):

Fact 7 (Hoang) No minimal imperfect graph admits a skew partition A, B, Vi, Vy with
the property

(H) there exist optimal colourings C1,Co of G1, Go respectively, such that

(as before, if S = AU B, then G1 = G[V; U S], while Gy = G[V, U S])

This statement is used to prove two other particular cases of the Skew Partition Con-
jecture. In the graph G with the skew partition A, B, Vi, Vs, the set S = AUB is a U-cutset
if there are distinct vertices uy,us € Vi such that N(u;) O A and N(uy) O B. The set
S is a T-cutset if there exist distinct vertices u; € Vi, uy € Vo such that N(u;) DO A and

Fact 8 (Hoang) No minimal imperfect graph has a skew partition A, B,Vy, Vs such
that S = AU B is a U-cutset (respectively, a T-cutset).

As an application, Hoang shows that a graph G whose odd cycles of length at least
five have two or more chords (also called a Meyniel graph) either is bipartite, or G has a
star- or U-cutset, thereby providing an alternate proof that these graphs are perfect. Also,
Roussel and Rubio [49] use Fact 8 to prove Fact 4.



3 Applications: star-cutsets

Since they were defined by Chvétal, the star-cutsets are probably the tool the most fre-
quently used to prove perfection. In his paper, Chviatal [6] already notices some of these
applications: clique bonding preserves perfection; substitution (i.e. replacing a vertex v of
G with a graph H whose vertices have in G the same neighbours as v) preserves perfection;
amalgam (see [5]) preserves perfection. Even the (very) particular case of clique cutsets
has so many applications that we have to treat it in a particular section (Section 4).

Given a class G of graphs and P a predicate, define the closure of G under P (denoted
GP) recursively by the rules:

(i) if G € G then G € G

(ii) if G satisfies P, and if G — v € GF for every vertex v in G, then G € GgPr.

It is easy to see (by induction) that, whenever P is a property a minimal imperfect
graph cannot have, the perfection of every graph in G implies the perfection of every graph
in GF. Chvétal considered this definition in the particular case of the predicate (denoted
¥): “G or G has a star-cutset”. He denoted by TRIV the class of graphs with at most two
vertices and by BIP the class of all bipartite graphs, and noticed that both TRIV* and
BIP* are involved in nice properties of perfect graphs. For instance, Hayward [26] proved
that a graph is in TRIV* if and only if it is a weakly triangulated graph, i.e. a graph
containing no cycle of length at least five (denoted Cj, k > 5) and no complement of such
cycle. Some years later [24], he improved the “if” part of this statement by showing this
important (when thinking to the strong perfect graph conjecture) property of unbreakable
graphs (a graph G is breakable if either G or G has a star-cutset, and unbreakable in the
contrary case).

Fact 9 (Hayward) In an unbreakable graph, every vertex is contained in a Cy, or C,
k> 5.

The identity between TRIV* and the class of weakly triangulated graphs is the only
equality result proved so far. Many other theorems have been found which give inclusion
relations, as indicated in the table below.

Class Rel. | Class* Proved by Ref.
weakly triangulated = | TRIV* Hayward [26]
Meyniel C | BIP* Chvétal [6]
perfectly orderable C | BIP* Chvétal [6]
opposition C | BIP* Olariu [43]
alternately orientable C | BIP* Hoang [29]
2-coloured, odd Py C | (BIP UBIP)* Hoang [30]
2-coloured, even Py C | (Berge K 3-free)* Chvétal, Hoang 18]
2-coloured, partners C | (BIP UBIP)*U(Berge K 3-free)* | Chvétal [9]
Berge, P(G) K3-free C | (BIP UBIP)* Hayward, Lenhart [27]
(bull, Ps, Ps)-free, > 6 | C | (BIP UBIP)* Fouquet [20]
pan-free C | (Ky3-free)* Olariu [44]
(Ps, K5 3)-free C | (Ky3-free)* de Simone, Galluccio | [15]
slim C | (strict quasi-parity)* Hertz [28]




The definitions not given here and the proofs can be found respectively in the papers
indicated in the last column. The class BIP contains all the complements of bipartite
graphs.

We leave for a moment the star-cutset domain in order to make a remark on partition-
able cutsets. With the predicate m: “G is either a clique, or a stable set, or else G has a
partitionable cutset” we obtain (see [42]) the following characterization of perfect graphs:

Fact 10 (Olariu) The class of perfect graphs is exactly the class TRIV™.

The proof of this claim is easy and relies on the fact that if G is a perfect graph (not a
clique, not a stable, of at least three vertices) with cutset S and a given coloring, then the
vertices of S of a fixed colour can be chosen to form the set A. Thus, every cutset of G
has the properties (O1) and (O2), while in a minimal imperfect graph no cutset has this
property. Perfect graphs and minimal imperfect graphs can, therefore, be seen as extreme
classes with respect to Olariu’s property.

Let us come back to star-cutsets and in particular to their algorithmic aspects. The
same paper of Chvétal [6] provides us with an algorithm to test whether a graph G has or
not a star-cutset. It can be easily deduced from the following statement (a vertex v is said
to dominate a vertex w if {v} U N(v) contains N (w)):

Fact 11 (Chvétal) A graph G = (V, E) has a star-cutset if and only if it has at least
one of the properties:

a) there exists w € V such that {w} U N(w) is a cutset;

b) G is not a clique and there exist adjacent vertices v,w € V such that v dominates

Then a graph G is breakable if and only if either G or G has the property a) or b).
In fact, Chvatal (see Hayward [25]) proved a stronger property for graphs with more than
four vertices:

Fact 12 (Chvatal) Let G be a graph with at least five vertices. Then G is breakable
if and only if G or G has property a).

Now, though we can test in polynomial time whether G has a star-cutset, we cannot
deduce a polynomial algorithm to test whether a graph G belongs to a class G* (where G
is assumed to be recognizable in polynomial time). If G is hereditary, then the following
algorithm presented in [6] realizes (not necessarily in polynomial time) the indicated test.
With the notation F = H (if H has a star-cutset in step 4) or F = H (if H has a star-cutset
in step 4), the sets V1, V5 in step 4 are as usual: V; is induces a connected component of
F—SWhﬂeVQ iSF—S—Vl.



. L:={G}.
. If L =0, then return “G € G*”; else remove some H from L.
. If H € G then goto 2.
. If H or H has a star-cutset S = {v} U Vp, then
L:=LU{H —v,H — Vi, H— V3}; goto 2
return “G ¢ G*”.

=W N =

ot

For a graph containing a lot of chordless cycles (take for instance the graph obtained
from a chordless cycle on p vertices by substituting every vertex with a clique on two
vertices), the number of operations needed in the execution of this algorithm can be very
large if every chordless cycle is examined in step 3.

4 Applications: clique and multi-partite cutsets

This chapter is dedicated to the study of three classes of graphs, all of them contained
(strictly or not) in some class G, where ¢ is the predicate “G has a clique cutset” and G°
is the closure of G under ¢. They are called triangulated graphs, i-triangulated graphs,
clique separable graphs. They all have special vertices yielding elimination schemes, and
for at least two of them the special vertices can be found using lexzicographic breadth first
search (abbreviated LexBFS), an algorithm proposed in [48] as a stronger version of the
classical breadth-first search algorithm.

To describe LexBFS, assume that each vertex has a (initially empty) label which con-
sists in a set of integers listed in decreasing order. The labels may be compared using
dictionary (or lexicographic) order.

Algorithm LexBFS

Input: An arbitrary graph G = (V, E).
Output: A one-to-one function o : {1,2,...,n} — V (an order
[0(1),0(2),...,0(n)] on V).

begin
assign the label } to each vertex;
for ¢ :== n downto 1 do
pick an unnumbered vertex v with largest label (in lexicographic order);
o(i) := v; {comment: this assigns to v the number i}
for each unnumbered vertex w € N(v) do
add i to the label of w (at the end)
end

Consider first the class of triangulated graphs. A graph is triangulated if it contains
no chordless cycle Ci, £ > 4. In a triangulated graph every minimal cutset is a clique.
Moreover, using results in [16], [21] we have the following (a vertex is said simplicial in a
subgraph H if its neighbours in H induce a clique):



Fact 13 (Dirac; Fulkerson & Gross) The following three statements are equivalent
for a graph G = (V, E) with n vertices:
1. G is triangulated;
2. every minimal cutset induces a clique;
3. G has a perfect elimination scheme, i.e. an order [vi,va,...,v,] of its vertices
such that v; is simplicial in Glvi,vi11,...,v,]. Moreover, if G is not a clique,
then it contains two non-adjacent simplicial vertices.

Using the equivalence between statements 1, 2 and the definition of G¢ (recall that c is
the predicate “G has a clique cutset”), it is easy to deduce that if K is the set of all cliques,
then the class of triangulated graphs is exactly €. The algorithm LexBFS is an efficient
tool for finding the perfect elimination scheme in statement 3: starting with an arbitrary
unnumbered vertex v, a perfect elimination order [0(1),0(2),...,0(n)] is found (see [48]).
Then v; = o(1) is a simplicial vertex in G and a new execution of LexBFS, this time
starting with vy, will obtain another perfect elimination order [0'(1),0'(2),...,0'(n) = v4]
whose vertex w; = ¢'(1) is again a simplicial vertex (non-adjacent to v; as long as vy is
non-universal). LexBFS is used on the one hand for giving a linear recognition algorithm
for triangulated graphs (see [48]), and on the other hand to obtain a coloring algorithm for
these graphs (by performing a greedy coloring with the order o(n),o(n —1),...,0(1)).

This last property is still true for a larger class of graphs, the i-triangulated graphs. A
graph is called i-triangulated if every odd cycle with five vertices or more has at least two
non-crossing chords. Their perfection was proved very early in [22] using clique cutsets,
but multi-partite cutsets also play an important role in their structure, as shown in [50].
To see this, say that a graph is of type 1 if it is the complete join between a connected
bipartite graph and a clique, and of type 2 if it is a complete multi-partite graph. Also, call
a vertex m-simplicial in a subgraph H if its neighbours in H form a complete multi-partite
graph.

Fact 14 (Gallai; Roussel & Rusu) The following statements hold for every i-trian-
gulated graph G = (V, E) with n vertices:
1. either G has a clique cutset, or is of type 1, or else is of type 2;
2. G has an m-perfect elimination scheme, i.e. an order [vi,va,...,vy] of its vertices
such that v; is m-simplicial in Gv;,Vit1,...,v,]|. Moreover, if G is not a clique,
then it contains two non-adjacent m-simplicial vertices.

Statement 1 immediately implies that i-triangulated graphs are in the class 7¢, where
T is the set of graphs of type 1 or 2. However, this is not a characterization of i-triangulated
graphs. The existence of an m-perfect elimination scheme is not a characterization either,
thus it doesn’t allow us to find a linear recognition algorithm, as it was the case for the
preceding class (an O(mn) recognition algorithm is proposed in [51]). However, LexBFS
is still the efficient tool for finding in linear time an m-perfect elimination scheme, and
the order o(n),o(n —1),...,0(1) can be used to perform a greedy coloring (see [50]). It
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is worth noticing that in every such colouring, at the precise moment when a vertex o(i)
is coloured, its already coloured neighbourhood (which is a complete multi-partite graph)
has all the vertices in a stable set of the same colour. This strengthens the similarity with
triangulated graphs, where every such stable set has a unique vertex (obviously coloured
with only one colour).

The graphs in T¢ are called clique separable graphs. Gavril [23] defined them and
gave the first polynomial recognition algorithm (the best one currently known was given
by Tarjan [56]). These graphs have an elimination scheme too, defined in [39] using the
notion of pretty vertex, which is a vertex whose neighbourhood in the graph induces a
(Py,2Ks9)-free graph. It can be shown that:

Fact 15 (Maffray & Porto & Preissmann) Every clique separable graph G with n
vertices has a pretty elimination scheme, i.e. an order [vi,ve,...,vy] of its vertices such
that v; is pretty in G[vi, vit1,...,v,]. Moreover, if G is not a clique, then it contains two
non-adjacent pretty vertices.

Triangulated and clique separable graphs can be recognized in polynomial time using
Whitesides’ O(mn) algorithm [61] for finding clique cutsets in arbitrary graphs (but less
efficiently than the best known algorithm). As Gavril [23] showed that the tree built by
successively breaking the graph G using clique cutsets (called a clique cutset tree) has O(n?)
vertices, the indecomposable subgraphs of G' can be found in O(mn3). Then it remains to
test whether the indecomposable subgraphs are in K (for triangulated graphs), respectively
in T (for clique separable graphs). Thus the efficiency of recognition algorithm depends
on the efficiency of building the clique cutset tree, and on the efficiency to test whether a
graph belongs or not to one of the two classes. As shown by Tarjan [56], the former can be
realized in O(mn) (while the latter needs less than that), thus recognizing clique separable
graphs takes only O(mn) time.

An important difference appears between multi-partite cutsets and star- or clique cut-
sets: testing whether a graph has a multi-partite cutset is NP-complete [36]. And the same
holds for stable cutsets (see [36]), which are the subject of the next section.

5 Applications: stable cutsets

Stable cutsets are much less encountered in proofs of perfection, or in the design of algo-
rithms than clique cutsets. The predicate s: “G has a stable cutset” seems to be much
more uncomfortable to use than “G has a clique cutset”, and the only such applications
that have come to our attention are either extremely easy or too intimately related to some
specific properties of the graph.

In the first category enters the observation that the class of triangle-free graphs is
exactly TRIV®: indeed, every triangle-free graph with at least three vertices has a non-
universal vertex, and its neighbourhood is a stable cutset of the graph (by induction we
obtain the desired conclusion); conversely, if we assume by contradiction that a graph
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containing a triangle belongs to TRIV?, then because of condition ii) in the definition of
TRIV?® we deduce that the triangle has a stable cutset, a contradiction. Moreover, triangle-
free graphs are exactly the class of graphs possessing a stable elimination order, i.e. an
order [v1,v9,...,v,] of vertices such that the neighbourhood of v; in G[v;, vit1,...,vy] is
a stable set.

To illustrate the second category, we present some results that have been obtained by
Corneil, Fonlupt [12] on stable bonding. As we indicated in Section 1, only clique bonding
preserves perfection, for the other graphs F', examples exist of perfect graphs whose F-
bonding does not yield a perfect graph. In the case where the vertices of F' form a stable
set, Fact 1 insures that only odd holes can be generated, not odd anti-holes. The example
we gave in Section 1 to prove that F-bonding does not preserve perfection suggests that
perfection could however be preserved for graphs with particular properties related to path
parity.

Therefore, in [12], a direct chain (for some stable cutset S) in G = (V, E) is defined to
be a chordless path whose internal vertices are in V' — S. Then a graph G is said to satisfy
the strong chain condition (SCC) on the stable cutset S if:

1. G is connected and for every pair of vertices v,w € S there exists at least one
chordless direct chain.

2. for every pair of vertices v, w € S all chordless chains with endpoints v, w have the
same parity (denoted sign(v,w;G), equal to 1 if the chain is odd and to 0 otherwise).

Then consider two graphs G1, Gy with stable sets Sy, respectively So such that |S;| =
|Sa|. Perform a one-to-one identification of the vertices in S; with the vertices in Sy and
call S the unique stable set (of size identical to |S;| and |S2|) obtained in this way. Then
we have:

Fact 16 (Corneil & Fonlupt) If G; (i = 1,2) are perfect graphs that satisfy SCC
on S and for every pair of vertices v,w € S we have sign(v,w; Gy) = sign(v,w; Ga), then
the graph G obtained by S-bonding of G1 and G is also perfect.

It is natural to relax condition 2 by considering only chordless direct chains instead of
chordless chains. The example in Fig. 2 (given in [12]) shows that this cannot be done
(the set S = {s1, 39, s3} satisfies the hypothesis of Fact 16 with condition 2 relaxed, but
the resulting graph is not perfect since asibedessfsea is an odd hole).

Notice that testing condition 2 for an arbitrary graph G is a co-NP-complete problem.
The complementary problem, i.e. given G, S test whether S contains two vertices joined by
chordless chains of different parities, has as a particular case (when |S| = 2) the so-called
Path parity problem:

Path parity problem. Given G = (V, E) and two vertices z,y, determine if there
exist chordless paths (or chains) of different parities connecting them.

This problem is NP-complete [3] for arbitrary graphs, but for perfect graphs (this is the
case we are interested in) its complexity is not known (partial answers may be found in [1],
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Figure 2: An exemple

[35], [54]). However, it is known that this problem is polynomial if testing the perfectness
of a graph G is polynomial (see [12]).

As long as this question is not answered, it is tempting to find sufficient conditions for
condition 2 to be true, as follows. Let G, Go have stable cutsets Si, So respectively, and
assume that each G; — S; contains a connected component K; which is a clique, such that
|\K1| = |K2|. Moreover, suppose that every vertex s € S; has exactly one neighbour in K;
(1 = 1,2) and that an isomorphism f exists between G1[K; U Si] and Go[Ky U Ss]. Then
(see [12]) the graph resulting by stable bonding of G; — K; and Gy — K> using S1, S2 and
the isomorphism f is perfect. The only condition here which might be difficult to verify
is the isomorphism condition on G1[K; U S] and G2[K2 U S|, but the graphs are simple
enough to allow us a polynomial verification (in fact, it is sufficient to compare the lists of
degrees of the two graphs).

6 Two (already solved) conjectures

In the preceding sections, we evoked some attempts to prove the strong perfect graph
conjecture using composition/decomposition operations. This is one of the reasons which
make the skew partition conjecture interesting, which motivate the definition of the classes
G, which pushes researchers to discover new properties that minimal imperfect graph
cannot have. All these properties, old or new, could possibly be put together in a strong
unique predicate P such that G” would contain all Berge graphs, for some suitable chosen
set of perfect basic graphs G. (A graph is called Berge if it has no odd hole and no odd
anti-hole).

Unfortunately, the properties of minimal imperfect graphs we know nowadays are not
sufficient to deduce such a result, or else the class of basic perfect graphs we need to
use has not yet been identified. The two conjectures below have both been invalidated,
and the counter-examples are small enough to make us believe that the properties that
are brought together are not sufficiently strong. We preferred to formulate them without
clearly specifying G and P, but the reader will have no difficulty to identify the predicate
and the basic graphs. The first one was proposed by Reed [46] (an even pair is a pair
of vertices such that every chordless path joining them has even number of edges; the
linegraph of a graph H = (X,U) has a vertex for every edge in U and two vertices are
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adjacent if and only if the corresponding edges share a vertex).

Conjecture 2 Let G be a Berge graph such that
1. neither G nor G has a star-cutset;
2. neither G nor G has an even pair.

Then G or G is the linegraph of a bipartite graph.

Hougardy [33] gave a counter-example on 20 vertices, and noticed that even if G is
Cy-free the conjecture remains false.

The second conjecture (proposed by Hoang, see [33]) has a stronger hypothesis and a
weaker conclusion, but is still false, as proved in [53].

Conjecture 3 Let G be a Berge graph such that
1. neither G nor G has a star-cutset;
2. neither G nor G has a stable cutset;
3. neither G nor G has an even pair.

Then G or G is diamond-free.

It can be shown (see [53]) that the counter-example to Conjecture 3 may be grown to
give counter-examples to each weaker conjecture obtained by replacing the diamond with
the complete join of a clique and a stable set. Moreover, it remains a counter-example even
if we add the following hypothesis (deduced from the Odd Pair Conjecture [41], which is
neither proved nor invalidated):

4. neither G nor G has an odd pair,

where an odd pair is a pair of vertices such that every chordless path joining them has
odd number of edges. And, in fact, the counter-example above has another discouraging
property: even if the hypothesis

5. neither G nor G has a skew partition

is added to the conjecture, the same graph is still a counter-example. Modifying the
conjecture such that the same graph is no longer a counter-example seems therefore to ask
for other properties of minimal imperfect graphs. One of them could be that conjectured in
[7], which involves disconnected cutsets (such cutsets can be found in the counter-example
above):

Conjecture 4 No minimal imperfect graph, which is not a hole, has a disconnected
cutset.

The versions of this conjecture where the cutset is Py-free, or even P3-free are open
too. The latter case is equivalent to saying that the cutset is a union of vertex-disjoint
cliques, and may be simplified by taking the case of only two cliques, which is also still
open. Except for this last case, in all these problems the cutset may be asked to be the
neighbourhood of some vertex, still yielding an unsolved statement.
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7 The connectivity of minimal imperfect graphs

Throughout the paper we were interested in the graphs F' such that no minimal imperfect
graph (except for odd holes and odd anti-holes) has a cutset which induces F', and so far
we have approached this question with respect to the structure of F', paying no attention
to the cardinality of F. This different aspect of the question was first treated by Olaru
[45]:

Fact 17 (Olaru) The minimum degree of a minimal imperfect graph is at least 2w —2.

This result remained the only numerical estimation of (certain) cutsets in minimal
imperfect graphs, until Hougardy [34] proved the following statement which involves all
the cutsets of the graph:

Fact 18 (Hougardy) The connectivity number of a minimal imperfect graph is at
least w.

The best lower bound known today is due to Seb6 [55], who had the intuition that the
gap between the high clique rank of the minimal imperfect graph G and the low clique
ranks of its perfect subgraphs G, G5 (defined as in Section 2, with respect to some cutset
S) should be the consequence of a big intersection of G; and Go. Then a simple calculation
yields the first part of the result below. This result is valid not only for a minimal imperfect
graph but, more generally, for a partitionable graph, i.e. a graph G = (V, E) such that:

(i) integers @ > 2,w > 2 exist with the property |V| = aw + 1;

(ii) for each v € V, G — v can be partitioned both into w-cliques and into a-stable sets.
In this case, w, a are the classical parameters clique number and stability number for the
partitionable graph G.

Fact 19 (Sebd) If G is partitionable, then the connectivity number of G is at least
2w — 2. Furthermore, if S CV is a cutset of cardinality 2w — 2, then:

1. w(S) <w-1;

2. G — S has exactly two connected components (induced by V1, Vs);

3. ViU S, Vo US induce uniquely colourable graphs.

This theorem is tight for arbitrary w > 2 and a > 2. To see this, call an (o, w)-web a
graph on aw+1 vertices so that w(G) = w, a(G) = « and the vertices of V' may be arranged
in a cyclical order such that every set of w consecutive vertices is an w-clique. Now, consider
a normalized (o, w)-web, that is, an (o, w)-web in which every edge is contained in some
w-clique. It is easy to see that two sets of w — 1 consecutive vertices each form a cutset iff
the two sets are disjoint and not next to each other in the cyclic order. Every such cutset
has 2w — 2 vertices, and the neighbourhood of every vertex has this form.
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Obviously, both in odd holes and in odd anti-holes the vertices have the degree 2w — 2;
consequently, as far as we know every minimal imperfect graph has this property. Thus, if
the strong perfect graph conjecture is true, then the following statement also holds:

Conjecture 5 (Sebd) In a minimal imperfect graph, the neighbourhood of every ver-
tex is a cutset of cardinality 2w — 2.

Conversely, to deduce the strong perfect graph conjecture from this conjecture, it can
be noticed that properties specific to minimal imperfect graphs and not always true for
partitionable graphs should be used, since in a normalized (o, w)-web (which is partition-
able, but not minimal imperfect for w > 2 and « > 2) the neighbourhood of every vertex
has, as noticed before, cardinality 2w — 2 and still this graph is not an odd hole or odd
anti-hole. Sebo [55] proposes to make use of the property (see [10]) that minimal imperfect
graphs have no small transversal, i.e. no set of at most a+ w — 1 which hits every w-clique
and every a-stable in the graph. To this, it can be added that, by Lovéasz’s perfect graph
theorem, a graph is minimal imperfect iff its complement is, therefore the preceding con-
jecture may be applied to both G and G (and this is sufficient to eliminate the (o, w)-webs
with a > 2,w > 2).

Conjecture 6 (Sebd) Let G be partitionable so that G (respectively G) has a cutset
of cardinality 2w—2 (respectively 2a—2). Then G is either an odd hole, or an odd anti-hole,
or else it contains a small transversal.

Now, if Conjecture 5 and Conjecture 6 hold, then the strong perfect graph conjecture
holds.

8 Some (more) problems

We close this survey of results on cutsets in perfect and minimal imperfect graphs by a list
of open problems that do not include the conjectures discussed in the preceding sections.
For some of them, references to partial results are given.

Problem 1 (Corneil & Fonlupt [12]) Design a polynomial algorithm to test for the
existence of a stable cutset in a perfect graph, or prove that the problem is NP-complete
(and similarly for multi-partite cutsets).

Problem 2 (Chvdtal [7]) Prove that graphs in BIP* are strict quasi-parity graphs,
i.e. each subgraph which is not a clique contains an even pair. (partial results in [40])
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Problem 3 (Hertz [28]) A graph is called slim if it is obtained from a Meyniel graph
by removing all the edges of a given induced subgraph. Is every slim graph in the class
BIP*? (partial result in [32]).

Problem 4 (de Figueiredo & Hoang [18]) Call quasi-triangulated graph a graph
G such that, for every induced subgraph H of G, either H or H has a simplicial vertex.
Characterize quasi-triangulated graphs by minimal forbidden induced subgraphs.

Problem 5 (Ravindra [7]) Show that, in a minimal imperfect graph, the neighbour-
hood of a vertex of degree 2w — 2 contains no stable set of cardinality 3.

Problem 6 (Seb6 [55]) The determined degree of a vertex v is defined as the number
of edges incident to v which are contained in w-cliques. Let G be a partitionable graph
such that G (respectively G) has a vertex of determined degree 2w —2 (respectively 2a —2).
Prove that G is an odd hole, or an odd antihole, or else it has a small transversal (i.e. a
set of at most o + w — 1 vertices which meets each maximum clique and each maximum
stable set).
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