
Symbolic state space of Stopwatch Petri nets
with discrete-time semantics (theory paper)

Morgan Magnin, Didier Lime, and Olivier (H.) Roux

IRCCyN, CNRS UMR 6597, Nantes, France
{Morgan.Magnin | Didier Lime | Olivier-h.Roux}@irccyn.ec-nantes.fr

Abstract. In this paper, we address the class of bounded Petri nets
with stopwatches (SwPNs), which is an extension of T-time Petri nets
(TPNs) where time is associated with transitions. Contrary to TPNs,
SwPNs encompass the notion of actions that can be reset, stopped and
started. Models can be defined either with discrete-time or dense-time
semantics. Unlike dense-time, discrete-time leads to combinatorial explo-
sion (state space is computed by an exhaustive enumeration of states).
We can however take advantage from discrete-time, especially when it
comes to SwPNs: state and marking reachability problems, undecidable
even for bounded nets, become decidable once discrete-time is consid-
ered. Thus, to mitigate the issue of combinatorial explosion, we now aim
to extend the well-known symbolic handling of time (using convex poly-
hedra) to the discrete-time setting. This is basically done by computing
the state space of discrete-time nets as the discretization of the state
space of the corresponding dense-time model. First, we prove that this
technique is correct for TPNs but not for SwPNs in general: in fact, for
the latter, it may add behaviors that do not really belong to the evo-
lution of the discrete-time net. To overcome this problem, we propose
a splitting of the general polyhedron that encompasses the temporal in-
formation of the net into an union of simpler polyhedra which are safe
with respect to the symbolic successor computation. We then give an
algorithm that computes symbolically the state space of discrete-time
SwPNs and finally exhibit a way to perform TCTL model-checking on
this model.

Key words: Verification using nets, Time Petri nets, symbolic state space,
stopwatches, dense-time, discrete-time

Introduction

The ever-growing development of embedded informatics requires efficient meth-
ods for the verification a priori of real-time systems. That is why researches
on formalisms that allow engineers to write and check the interactions between
CPUs and the communication networks appear as a hot topic. Time Petri Nets
[1] are one of such formalisms. They model the temporal specifications of differ-
ent actions under the form of time intervals. They can be enriched to represent
tasks that may be suspended then resumed.

When modeling a system, either dense-time or discrete-time semantics may
be considered. In the first one, time is considered as a dense quantity (i.e. the
state of the system can change at any moment) and, in the second one, as a dis-
crete variable (time progress is ensured by clock ticks and the global system may
evolve only at these peculiar time steps). The physical systems (the processes)
follow a dense-time evolution. The observation of the process is however usually
performed through an IT command system which pilots it only at some pecu-
liar instants (digitalization or periodic observations). In addition, the command
system is composed of tasks that are executed on one (or many) processor(s) for
which physical time is discrete. Dense-time is thus an over-approximation of the
real system. The major advantage of dense-time lies in the symbolic abstractions
it offers: they are easy to put into application and they avoid the combinato-
rial explosion of states. In this paper, we aim to propose a symbolic method to
compute the state space of discrete-time Time Petri Nets (with stopwatches) by
adapting the techniques usually dedicated to dense-time.

Time Petri nets with stopwatches

The two main time extensions of Petri nets are Time Petri nets [1] and Timed
Petri nets [2]. In this paper, we focus on Time Petri nets (TPNs) in which
transitions can be fired within a time interval.

In order to take into account the global complexity of systems, models now
encompass the notion of actions that can be suspended and resumed. This implies
extending traditional clock variables by ”stopwatches”. Several extensions of
TPNs that address the modeling of stopwatches have been proposed: Scheduling-
TPNs [3] , Preemptive-TPNs [4] (these two models add resources and priorities
attributes to the TPN formalism) and Inhibitor Hyperarc TPNs (ITPNs) [5].
ITPNs introduce special inhibitor arcs that control the progress of transitions.
These three models belong to the class of TPNs extended with stopwatches
(SwPNs) [6]. They have been studied in dense-time semantics.

In [6], state reachability for SwPNs has been proven undecidable, even when
the net is bounded. As long as dense-time semantics is considered, the state space
is generally infinite. Instead of enumerating each reachable state, verification al-
gorithms compute finite abstractions of the state space, e.g. state class graph,
that preserve the properties to be verified. But, as a consequence of the undecid-
ability of the reachability problem, the finiteness of the state class graph cannot
be guaranteed. In order to ensure termination on a subclass of bounded SwPNs,
Berthomieu et al. propose an overapproximation method based on a quantiza-
tion of the polyhedra representing temporal information [6]. Nevertheless the
methods are quite costly in terms of computation time.

Discrete-time semantics

In the case of SwPNs, the undecidability of major model-checking problems
results from dense-time. The use of discrete-time instead (transitions are then

no longer fired at any time but at integer dates) change these results, as we
proved in [7]. In this paper, we established the following results:

– The state reachability problem - undecidable with dense-time semantics - is
decidable when discrete-time is considered;

– The state space of discrete-time bounded SwPNs can be computed directly
by using existing tools for classical Petri nets.

In the case of TPNs (without stopwatches), main works related to discrete-
time are due to Popova. Her method consists in analyzing the behavior only
at its so-called ”integer-states” (i.e. states where the current local time for all
enabled transitions are integers), which is sufficient to know the whole behavior
of the net [8].

In both cases, discrete-time based approaches suffer from a combinatorial
explosion of the state space size. As efficient as the implementation (see [9]
for data-structures dedicated to Petri nets and inspired by the Binary Decision
Diagrams (BDDs)) could be, it reaches its limits as soon as there are transitions
with a large time interval (e.g. [1, 10000]) in the model.

That is why we propose here to work out a method that would allow to
compute symbolically the state space of discrete-time TPNs with stopwatches.
The most natural idea consists in extending the method applied in dense-time to
discrete-time, that means: compute the whole state space by the means of state
classes that bring together all the equivalent discrete-time behaviors (the notion
of equivalence will be precisely defined in section 4). Our approach consists
in computing the dense-time state-space as long as it is significant and then
discretize it to get the discrete-time behavior.

State space computation of dense-time TPNs

For bounded dense-time TPNs, the state reachability problem is decidable. Al-
though the state space of the model is infinite (as the clocks associated to tran-
sitions take their values in R), it can be represented by a finite partition under
the form of a state class graph [10] or a region graph [11]. The state class graph
computes the whole set of reachable markings of a bounded TPN ; the resulting
graph preserves the untimed language of the net (i.e. properties of linear tem-
poral logics). However, it does not preserve branching temporal properties ; for
this class of properties, we have to consider refinements of the state class graph,
e.g. atomic state classes [12]. The zone graph can be used to check quantitative
properties based on a subset of TPN-TCTL [13]. At the moment, only the first
method has however been extended to TPNs with stopwatches [6]. Thus this is
the approach we consider in this paper.

Our contribution

In this paper, we address the general class of bounded Petri nets with stopwatches
(SwPNs) with strict or weak temporal constraints and a single-server dense-
time or discrete-time semantics. Our goal is to prove that, in certain cases, it

is possible to compute the state space and the untimed language of a discrete-
time net by simply discretizing the state space of the associated dense-time
net. We exhibit an example showing however that, in the general case, this
approach can lead to a false analysis. We conclude by giving a method that
allies the efficiency of dense-time symbolic approaches with the specificities of
discrete-time enumerative methods in order to compute a finite partition of the
state space of TPNs with stopwatches. For the sake of simplicity, our results are
explained of the ITPN model.

Outline of the paper

Our aim is to compute efficiently the state space of a bounded discrete-time
SwPN in order to verify quantitative timing properties. The paper is organized
as follows: section 2 introduces TPNs with stopwatches (by the means of ITPNs)
and the related semi-algorithm that computes their state space. In section 3, we
show that, for classical TPNs, the discretization of the dense-time state space is
sufficient to get the discrete-time state space. Section 4 extends the result to some
subclasses of SwPNs but shows it is not valid for the general class of SwPNs. We
exhibit a SwPN such that the discrete-time behaviors do not encompass all the
dense-time behaviors in terms of untimed language and marking reachability.
In section 5, we propose a method, for computing the state space of SwPNs:
this method combines the advantages of symbolic computations with dense-time
specificities.

1 Time Petri Nets with inhibitor arcs

We give an informal presentation of Time Petri Nets with inhibitor arcs in ap-
pendix ??.

1.1 Notations

The sets IN, Q+ and R+ are respectively the sets of natural, non-negative rational
and non-negative real numbers. An interval I of R+ is a N-interval iff its left
endpoint belongs to N and its right endpoint belongs to N ∪ {∞}. We set I↓ =
{x|x ≤ y for some y ∈ I}, the downward closure of I and I↑ = {x|x ≥ y for
some y ∈ I}, the upward closure of I. We denote by I(N) the set of N-intervals
of R+.

1.2 Formal definitions and semantics of Time Petri nets with
inhibitor arcs

Definition 1. A Time Petri net with Inhibitor Arcs (ITPN) is a n-tuple N =
(P, T,•(.), (.)•, ◦(.),M0, I), where

– P = {p1, p2, . . . , pm} is a non-empty finite set of places,

– T = {t1, t2, . . . , tn} is a non-empty finite set of transitions,
– •(.) ∈ (INP)T is the backward incidence function,
– (.)• ∈ (INP)T is the forward incidence function,
– ◦(.) ∈ (INP)T is the inhibition function,
– M0 ∈ INP is the initial marking of the net,
– Is ∈ (I(N))T is the function that associates a firing interval to each transi-

tion.

In [5], the authors extend inhibitor arcs with the notion of hyperarc. Inhibitor
hyperarcs make it easier to model systems with priority relations between transi-
tions, but they do not increase the theoretical expressivity of the model compared
to inhibitor arcs. That is why we can equivalently work on Time Petri Nets with
inhibitor arcs or inhibitor hyperarcs. For the sake of simplicity, we focus on nets
with inhibitor arcs (ITPNs) in this paper.

A marking M of the net is an element of NP such that ∀p ∈ P,M(p) is the
number of tokens in the place p.

A transition t is said to be enabled by the marking M if M ≥• t, (i.e. if the
number of tokens in M in each input place of t is greater or equal to the value on
the arc between this place and the transition). We denote it by t ∈ enabled(M).

A transition t is said to be inhibited by the marking M if the place connected
to one of its inhibitor arc is marked with at least as many tokens than the weight
of the considered inhibitor arc between this place and t: 0 < ◦t ≤M . We denote
it by t ∈ inhibited(M). Practically, inhibitor arcs are used to stop the elapsing
of time for some transitions: an inhibitor arc between a place p and a transition t
means that the stopwatch associated to t is stopped as long as place p is marked
with enough tokens.

A transition t is said to be active in the marking M if it is enabled and not
inhibited by M .

A transition t is said to be firable when it has been enabled and not inhibited
for at least I(t)↓ time units.

A transition tk is said to be newly enabled by the firing of the transition ti
from the marking M , and we denote it by ↑ enabled(tk,M, ti), if the transition
is enabled by the new marking M −• ti + t•i but was not by M −• ti, where M
is the marking of the net before the firing of ti. Formally:

↑ enabled(tk,M, ti) = (•tk ≤M −• ti + t•i)
∧((tk = ti) ∨ (•tk > M −• ti))

By extension, we will denote by ↑ enabled(M, ti) the set of transitions newly
enabled by firing the transition ti from the marking M .

Let T be a generic time domain: it may be IN, Q+ or IR+.

Definition 2. A state of a TPN is a pair q = (M, I) in which M is a marking
and I is a function called the interval function. Function I ∈ (I(N))T associates
a temporal interval with every transition enabled at M .

We define the semantics of an ITPN as a time transition system. In this
model, two kinds of transitions may occur: time transitions when time passes
and discrete transitions when a transition of the net is fired.

Definition 3 (Semantics of an ITPN). Given a time domain T, the seman-
tics of a Time Petri Net with Inhibitor Arcs N is defined as a Timed Transition
System ST

N = (Q, q0,→) such that:

– Q = NP × TT ;
– q0 = (M0, Is)
– →∈ Q × (T ∪ T) × Q is the transition relation including a time transition

relation and a discrete transition relation. The time transition relation is
defined ∀d ∈ T by:

(M, I) d−→ (M, I ′) iff ∀ti ∈ T, I ′(ti) =

 I(ti) if ti ∈ enabled(M)
and ti ∈ inhibited(M)
I ′(ti)↑ = max(0, I(ti)↑ − d), and I ′(ti)↓ = I(ti)↓ − d otherwise,

M ≥• ti ⇒ I ′(ti)↓ ≥ 0

The discrete transition relation is defined ∀ti ∈ T by:

(M, I) ti−→ (M ′, I ′) iff ,
ti ∈ enabled(M) and ti 6∈ inhibited(M),
M ′ = M −• ti + t•i ,
I(ti) = 0,

∀tk ∈ T, I ′(tk) =
{
Is(tk) if ↑ enabled(tk,M, ti)
I(tk) otherwise

In the dense-time approach, time is considered as a continuous variable whose
evolution goes at rate 1. The dense-time semantics of the net N is thus Sdense

N =
SIR+

N .
By contrast, in the discrete-time approach, time is seen as ”jumping” from

one integer to the other, with no care of what may happen in between. The latter
is an under-approximation of the former. The discrete-time semantics of N is
Sdiscrete
N = SIN

N .
Note that Sdiscrete

N can be straightforwardly reduced to a simple transition
system. As long as dicrete-time semantics is considered, any open interval with
integer bounds may be turned into a closed interval. That is why, in the following,
we only consider closed intervals (that may however be open on ∞).

Note also that for transitions which are not enabled, the time transition
relation of the semantics lets the firing intervals evolve. They could as well have
been stopped.

A run ρ of length n ≥ 0 in a TTS is a finite or infinite sequence of alternating
time and discrete transitions of the form

ρ = q0
d0−−→ q′0

a0−−−→ q1
d1−−→ q′1

a1−−−→ · · · qn
dn−−−→ · · ·

We write first(ρ) the first state of a run ρ. A run is initial if first(ρ) = q0. A run ρ
of N is an initial run of ST

N . The timed language accepted by N with dense-time
semantics (respectively with discrete-time semantics) is Ldense(N) = L(Sdense

N)
(resp. Ldiscrete(N) = L(Sdiscrete

N)).

In the following, we denote by Qdense (resp. Qdiscrete) the set of reachable
states of Sdense

N (resp. Sdiscrete
N).

To every TPN (possibly extended with stopwatches) structure N , we can
associate either a dense-time or a discrete-time semantics. We then obtain two
different models. In the following, we say that two TPNs are associated if, what-
ever the choice on their semantics has been, they share the same underlying
structure N .

Definition 4. Given an integer n ∈ IN and a set D ⊆ Rn. We define the
discretization operator of domain D by: Disc(D) = D ∩ Nn

Definition 5. Given an integer n ∈ IN and a set D ∈ Rn. A point θ =
(θ1, θ2, . . . , θn) ∈ D is an integer point of D if all its coordinates are integers,
i.e. ∀i, θi ∈ IN.

In this paper, we restrict ourselves to the class of bounded TPNs and ITPNs.
This does not imply that the underlying net is bounded! The converse assertion
is however true: the boundedness of the underlying PN ensures the boundedness
of a TPN (or ITPN).

1.3 State space computation of dense-time models

In order to analyze a Time Petri Net, the computation of its reachable state
space is required. However, the reachable state space of a TPN is obviously
infinite.

For models expressed with dense-time semantics, one of the approaches to
partition the state space in a finite set of infinite state classes is the state class
graph proposed by Berthomieu and Diaz [10]. It has been extended for TPNs
with stopwatches [14].

A state class contains all the states of the net between the firing of two
successive transitions.

Definition 6. A state class C of a dense-time ITPN is a pair (M,D) where M
is a marking of the net and D a (convex) polyhedron with m constraints (m ∈ IN)
involving up to n variables, with n being the number of transitions enabled by
the marking of the class:

AΘ ≤ B

with A and B being rational matrices of respective dimensions (m,n) and (m, 1)
and θ being a vector of dimension n. D constrains the firing times θ of transi-
tions.

In the case of TPNs, the firing domain is simpler than a general polyhedron
and therefore can be encoded into the efficient Difference Bound Matrix (DBM)
datastructure [15, 16]).

We extend the definition of the discretization operator of a point in IRn to
state classes by the following definition:

Definition 7. Let C = (M,D) be a state class of a TPN (with or without
inhibitor arcs). We define the discretization operator of the state class C by :
Disc(C) = (M,Disc(D))

In the case of ITPNs, the only firable transitions are the active ones. So we
need to define properly the firability of a transition from a class:

Definition 8 (Firability). Let C = (M,D) be a state class of a ITPN. A
transition ti is said to be firable from C iff there exists a solution (θ∗0 , . . . , θ

∗
n−1)

of D, such that ∀j ∈ {0, . . . , n− 1} − {i}, s.t. tj is active , θ∗i ≤ θ∗j .

Now, given a class C = (M,D) and a firable transition tf , the class C ′ =
(M ′, D′) obtained from C by the firing of tf is given by

– M ′ = M −• tf + t•f
– D′ is computed along the following steps, and noted next(D, tf)

1. intersection with the firability constraints : ∀j s.t. tj is active, θf ≤ θj

2. variable substitutions for all enabled transitions that are active tj : θj =
θf + θ′j ,

3. elimination (using for instance the Fourier-Motzkin method) of all vari-
ables relative to transitions disabled by the firing of tf ,

4. addition of inequations relative to newly enabled transitions

∀tk ∈↑ enabled(M, tf), I(tk)↓ ≤ θ′k ≤ I(tk)↑

The variable substitutions correspond to a shift of time origin for active
transitions: the new time origin is the firing time of tf . tf is supposed to be
firable so the polyhedron constrained by the inequalities θf ≤ θj is non empty.

The state class graph is generated by iteratively applying the function that
computes the successors of a state class. The computation starts from the initial
state class given by C0 = (M0, D0) with D0 = {θk ∈ I(tk) | tk ∈ enabled (M0)}.

Definition 9 (Next). Let C = (M,D) be a state class of a ITPN, let Θ be
a point of D and tf be a transition firable from (M, {Θ}). The successor of
(M, {Θ}) by the firing tf is given by

nextdense
tf

({Θ}) =

∀i ∈ [1..n][θ′1 . . . θ
′
n]>

∣∣∣∣∣∣∣∣∣∣
θ′i ∈ Is(ti) if ↑ enabled(ti,M, tf)
θ′i = θi if ti ∈ enabled(M)
and ti ∈ inhibited(M)
and not ↑ enabled(ti,M, tf)
θ′i = θi − θf otherwise


The nextdense

tf
operator straightforwardly extends to finite or infinite unions

of points.

1.4 State space computation of discrete-time models

To our knowledge, the only existing methods for computing the state space of
discrete-time TPNs (with or without stopwatches) are based on an enumeration
of states. The computation does not necessarily finish (for example, if the net
contains a transition with a latest firing time equal to infinity). It suffers from
the combinatorial explosion of the state space size. A way to mitigate this issue
consists in working with data-structured inspired from the well-known Binary
Decision Diagrams (BDDs) [9]. This approach however reveals its limits when
large timing constraints are implicated in the model.

In this paper, we propose a new way to deal with combinatorial explosions.
It consists in extending the symbolic methods usually applied to dense-time to
discrete-time. We thus define the notion of state classes in the specific context
of discrete-time.

The underlying idea is the same as in dense-time: a state class contains all
the states of the net between the firing of two successive transitions.

Definition 10. A state class C of a discrete-time ITPN is a pair (M,D) where
M is a marking of the net and D a set (potentially empty) of points of INn, with
n being the number of transitions enabled by the marking of the class.

The definition of firability remains the same is the discrete case.
Now, given a class C = (M,D) and a firable transition tf , the successor class

C ′ = (M ′, D′) obtained from C by the firing of tf is denoted by C ′ = (M ′, D′) =
(M ′, nextdiscrete

tf
(D)) where nextdiscrete

tf
is defined for all integer point Θ by

nextdiscrete
tf

({Θ}) = Disc(nextdense
tf

({Θ}))

. Note that the operator Disc is necessary here because of the interval of the
newly enabled transitions.

The purpose of this paper is to extend symbolic methods of dense-time to
discrete-time according the following approach:

– Describe the set of points of a temporal domain D not by an enumeration,
but by a convex polyhedron Poly such that D = Disc(Poly)

– Compute Csymb′
= (M ′, Poly′), successor of Csymb = (M,Poly) by the

firing of tf (denoted (M,nextdense
tf

(D))) by the classical symbolic method
and then link the symbolic classes Csymb, Csymb′

, . . . to the state space of
N considered with its discrete-time semantics Sdiscrete

N

2 Relations between dense-time and discrete-time
semantics for Time Petri Nets

2.1 Related work

In [17], Popova proposed an analysis method for TPNs that differs from the clas-
sical state class graph of Berthomieu, Diaz and Menasche [15, 10]. Both methods

are based on the computation of a reachability graph. But when Berthomieu et
al. deal with classes that are used to describe infinitely many states, Popova
restricts herself to one state. She defines a state as the conjunction of a marking
and a time vector of the current local time for each of the enabled transitions and
a special symbol for disabled transitions. Then she builds a reachability graph
that is only based on the so-called ”integer states”. These are the states where
the current local time of all enabled transitions are integers. She proves that the
knowledge of the net behavior in these integer states is sufficient to determine
the entire behavior of the net. This result, firstly proven for TPNs with finite
latest firing times, has been later extended to nets with infinite latest firing times
[18].

Following this work, Popova et al. presented, in [19], a parametric description
of a firing sequence of a TPN that is based on the notion of integer states.

In the specific context of a comparison between dense and discrete-time,
Popova’s results establish the following assertion: a discrete-time analysis is suf-
ficient to study a dense-time TPN. In this section, we propose the opposite result
(for the state class graph, but our proof can easily be extended to zone graph),
that is: the state space of a discrete-time TPN can be directly computed by
discretizing its dense-time state space. In fact, this result does not only apply
to TPNs. In the next section, we extend it to a more general subclass of TPNs
with stopwatches.

2.2 Discretization of the state space of dense-time Time Petri nets

Theorem 1. For all TPN N , let Sdense
N = (Qdense, q0,→dense) (resp. Sdiscrete

N =
(Qdiscrete, q0,→discrete)) be its dense-time (resp. discrete-time) semantics. Then,
Qdiscrete = Disc(Qdense).

This theorem is a major and immediate corollary of the following one:

Theorem 2. Let N be a TPN. Let C be one of the state classes of its dense-
time semantics Sdense

N C = (M,DBM). Let tf be a firable transition from C.
Then, nextdiscrete

tf
(Disc(DBM)) = Disc(nextdense

tf
(DBM))

Let us omit the proof of this theorem, since it actually is a special case of
theorem 4, which will be proved in the next section.

3 Relations between dense-time and discrete-time for
Time Petri nets with Stopwatches

3.1 Differences between dense-time and discrete-time semantics in
terms of marking reachability and untimed language

We prove here that, in the general case of ITPNs, the state space of a discrete-
time ITPN and the discretization of the state space of the associated dense-time
net are not equal.

Theorem 3. There exists a ITPN N , with Sdense
N = (Qdense, q0,→dense) (resp.

Sdiscrete
N = (Qdiscrete, q0,→discrete)) being its dense-time (resp. discrete-time)

semantics such that Qdiscrete (Disc(Qdense).

Proof. Let us now exhibit an ITPN that proves this theorem. Consider the net
N = (P, T,•(.), (.)•, ◦(.),M0, I) in figure 1.

Let us analyze its behavior. The state space of the dense-time semantics
(leading to 31 different state classes) and of the discrete-time semantics can be
computed.

In dense-time semantics, the following run is valid:

{p1, p8}
θ(guess) = 0
θ(r) = 0

0.5−→
{p1, p8}
θ(guess) = 0.5
θ(r) = 0.5

guess−→

{p2, p5, p8}
θ(c) = 0
θ(s) = 0
θ(r) = 0.5

3.5−→

{p2, p5, p8}
θ(c) = 3.5
θ(s) = 3.5
θ(r) = 4

r−→

{p2, p5, p7, p9}
θ(c) = 3.5
θ(s) = 3.5
θ(t) = 0

0.5−→

{p2, p5, p7, p9}
θ(c) = 3.5
θ(s) = 4
θ(t) = 0.5

s−→

{p2, p6, p7, p9}
θ(c) = 3.5
θ(t) = 0.5
θ(flush) = 0

flush−→
{p2, p9}
θ(c) = 3.5
θ(t) = 0.5

0.5−→

{p2, p9}
θ(c) = 4
θ(t) = 1

c−→
{p3, p9}
θ(u) = 0
θ(t) = 1

3−→
{p3, p9}
θ(u) = 3
θ(t) = 4

t−→
{p3, p10}
θ(u) = 3
θ(test) = 0

1−→
{p3, p10}
θ(u) = 4
θ(test) = 1

u−→

{p4, p10}
θ(test) = 1
θ(too early) = 0

test−→

{p4, p11}
θ(too early) = 0
θ(too late) = 0
θ(in time) = 0

in time−→ {pgoal}

We aim to prove that, contrary to the dense-time behavior, the analysis of
the discrete-time net never leads to the firing of in time. To achieve this goal,
we just have to enumerate all the possible runs of the discrete-time net. This is
quite easy:

– When guess is fired at 0, all the resulting runs end by the firing of too early;
– A contrario, when guess is fired at 1, all the resulting runs end by the firing

of too late.

The specificity of the net we propose lies in the inhibitor arc that stops the
stopwatch associated to transition c as long as transition flush (thus s, as flush
fires in 0 time) does not fire. This inhibition causes the temporal shift between the
upper part of the net and the bottom one (they both have a similar structure):
if guess fires at 0, then we can say that the upper part is in advance compared
to the bottom one. On the contrary, when guess fires at 1, the upper part is
delayed. The only way to ensure that the two parts evolve in phase is that guess
fires at 0.5 : the structure of the net then guarantees a parallel and synchronous
evolution of the two branches so that p4 and p11 are marked simultaneously, thus
allowing the firing of in time.

guess
[0,1]

c
[4,4]

u
[4,4]

too_early
[0,0]

too_late
[0,0]

test
[1,1]

t
[4,4]

r
[4,4]

flush
[0,0]

s
[4,4]

in_time
[0,0]

P1 P2 P3
P4

P5
P6

P7

Pgoal

P8 P9 P10
P11

Fig. 1. ITPN showing the problems related to an analysis of the discrete-time PN
models

3.2 A sufficient condition on ITPNs such that the discretization of
the state space of the dense-time net and the state space of the
discrete-time associated net coincide

For θ ∈ IR+, we denote by frac(θ) the fractional part of θ. Let Θ = [θ1 · · · θn]>

be a point of (IR+)n, we denote by dΘe the point [dθ1e · · · dθne]> and bΘc the
point [bθ1c · · · bθnc]>.

Definition 11 (t-thickness). A class C = (M,D) of an ITPN N is said to be
t-thick if for all transition tf that is firable from C, ∀Θ = [θ1 . . . θn]> ∈ D s.t.
for all active transition ti, frac(θi) = frac(θf) and for all inactive transition
tj, frac(θj) = 0,we have: either dΘe ∈ D or bΘc ∈ D.

Theorem 4. Let N be a ITPN. Let C = (M,D) be one of the state classes of
its dense-time semantics Sdense

N . Let tf be a firable transition from C. If (C,D)
is t-thick, then nextdiscrete

tf
(Disc(D)) = Disc(nextdense

tf
(D))

Proof. The inclusion nextdiscrete
tf

(Disc(D)) ⊆ Disc(nextdense
tf

(D)) is straightfor-
ward. We shall now prove the reverse inclusion.

Let C ′ = (M ′, D′) be a state class of the TPN with stopwatches N . Let
C = (M,D) be its parent class by the firing of transition tf .

Let Θ = [θ1 . . . θm]> be a point of D such that some transition tf (f ≤ m) is
firable from Θ (i.e. ∀i ≤ m, st ti is active, θf ≤ θi).

To keep the notations simple, let us assume, without loss of generality, that
transitions t1, . . . , tm are enabled by M (corresponding to variables θ1 . . . θm in
D) and that the firing of tf disables transitions t1 . . . tp−1 and newly enables
transitions tm+1 . . . tn. We also suppose that transitions tp+1, . . . , tk with k ≤ n
are inhibited by M and transitions tk+1, . . . , tm are not.

Then,

nextdense
tf

({Θ}) =

[θ′1 . . . θ
′
n−p+1]> =

∣∣∣∣∣∣
∀i ∈ [1..k], θ′i = θp+i

∀i ∈ [k + 1..m− p], θ′i = θp+i − θf

∀i ∈ [m− p+ 1..n− p+ 1], θ′i ∈ I(ti)}



Let Θ′ be an integer point of D′: Θ′ ∈ Disc(nextdense
tf

({Θ})) for some Θ ∈ D.
Then, ∀i, θ′i ∈ IN, which implies frac(θf) = frac(θi), ∀i s.t. ti is active in C
(i ∈ [k+ 1..m− p]), and frac(θi) = 0 otherwise. As a consequence, since (C,D)
is t-thick, either dΘe or bΘc is in D. Let us assume, as both cases are symmetric,
that dΘe ∈ D.

Since tf is firable from Θ, we have ∀i ∈ [1..m], st ti is active, θf ≤ θi and
then θf + δ ≤ θi + δ for any δ, in particular for δ = 1− frac(θf) = 1− frac(θi).
So tf is firable from dΘe.

We have then:

nextdense
tf

({dΘe}) =

[θ′1 . . . θ
′
n−p+1]> =

∣∣∣∣∣∣
∀i ∈ [1..k], dθ′ie = dθp+ie
∀i ∈ [k + 1..m− p], θ′i = dθp+ie − dθfe
∀i ∈ [m− p+ 1..n− p+ 1], θ′i ∈ I(ti)}


For i ∈ [k + 1..m − p], frac(θf) = frac(θp+i). So we have dθp+ie − dθfe =

θp+i − θf .
For i ∈ [1..k], frac(θi) = 0. So we have dθie = θi.
Finally, nextdense

tf
({dΘe}) = nextdense

tf
({Θ}). As dΘe is an integer point of D,

we haveDisc(nextdense
tf

({dΘe})) = nextdiscrete
tf

({dΘe}). Therefore,Disc(nextdense
tf

({Θ})) ∈
nextdiscrete

tf
(Disc(D)). ut

Theorem 5. Let C = (M,D) be a class of an ITPN such that D is a DBM. C
is t-thick.

Proof. All constraints in a DBM are either of the form θ ≤ d or of the form
θ− θ′ ≤ d, with d being an integer. Let C = (M,D) be a class of an ITPN such
that D is a DBM. Let tf be a transition firable from C. Let Θ = [θ1 . . . θn]> ∈ D
s.t. for all active transition ti, frac(θi) = frac(θf) and for all inactive transition
tj , frac(θj) = 0.

Due to the particular form of constraints in DBM, it is sufficient to consider
the two-dimensional projections of D for our reasoning. So, let us consider any
two-dimensional plane corresponding to variables θi and θj . An example of the
projection of a DBM on such a plane is given in Fig 2.

1. If both θi and θj correspond to inhibited transitions, then due to the above
constraints the projection of Θ must be an integer point.

2. If only θj corresponds to an inhibited transition, then the projection of Θ
must be on one of the verticals (Fig 2(b)).

3. If both variables correspond to active transitions, then the projection of Θ
must be on one of the diagonals (Fig 2(a)).

In the first case, the projection of dΘe is the same as the projection of Θ so
it is inside the projection of the DBM. So let us consider the other two cases.

Suppose that some constrain θi − θj ≤ d intersects the segment formed by
the projections of Θ and dΘe. In case 3, the constraint must be parallel to the
segment. And since the constraints are large, this constraint is not excluding
the projection of dΘe. In case 2, the intersections of all verticals with diagonal

θi

θj

(a) (b)

Fig. 2. Projection on a plane of a DBM: (a) θi and θj both correspond to active
transitions (b) θj corresponds to an inhibited transition.

constraints are obviously integer points, so again the constraint cannot exclude
dΘe.

The case of the constraint θi ≤ d is similar. ut

An immediate corollary of theorems 4 and 5 is the following generalization
of theorem 2:

Corollary 1. Let N be a ITPN. Let C be one of the state classes of its dense-
time semantics Sdense

N C = (M,D) such that D is a DBM. Let tf be a firable
transition from C. Then, nextdiscrete

tf
(Disc(D)) = Disc(nextdense

tf
(D))

In [20], we exhibited a proper TPN with stopwatches such that the firing
domain of all its dense-time state classes are simple DBMs. So the class of
ITPNs for which the discretization of the dense classes is exact is non-empty.

4 Symbolic approach for the computation of the
state space of discrete-time Time Petri nets with
Stopwatches

In order to build a symbolic method for state space computation in discrete-
time, we need to define the notion of symbolic state classes for discrete-time
TPNs (with stopwatches):

Definition 12. Let N = (P, T,•(.), (.)•, ◦(.),M0, I) be a TPN (with or without
inhibitor arcs), n ∈ IN and Csymb = (M,Poly) where M ∈ INP and Poly is
a convex polyhedron of IRn. C = (M,Poly) is a symbolic state class of the
discrete-time semantics Sdiscrete

N of the net if, for all ν ∈ Disc(Poly), (M,ν) is
a state of Sdiscrete

N .

We are going to symbolically compute the state space of discrete-time nets
by using these symbolic state classes. At the end of the computation process, we
get a set of symbolic state classes: the discretization of this set gives the state
space of the discrete-time net.

4.1 The case of discrete-time TPNs

Let N be a TPN. We first compute the state space of N with its dense-time
semantics Sdense

N . The discretization of each class identified during the compu-
tation leads to the state space of Sdiscrete

N . This results from the theorems we
give in section 2.

4.2 The case of discrete-time TPNs with stopwatches

Let N be a ITPN. We aim to compute the state space of its discrete-time se-
mantics Sdiscrete

N . Let us consider (M0, D0) the initial state class of N with its
discrete-time semantics Sdiscrete

N . It is obviously a symbolic state class of Sdiscrete
N

that we denote Csymb
0 . We compute the successors of this class the same way we

would compute its successors for the associated dense-time model. We repeat the
process as long as the on-the-fly computed state space do not need general non-
DBM polyhedra to be described. As soon as a non-DBM polyhedron appears in
the firing domain Poly of a state class Cpoly = (Mpoly, Poly), then we decom-
pose it into a union of DBMs DBM split(Poly) =

⋃
Dsplit

i . In fact, in [20], we
identified a necessary and sufficient condition (this condition is quite long; so, in
the following, we denote it simply by condition 3.2 of [20]) that establishes the
cases when a non-DBM polyhedron appears in the state space computation for
a dense-time model. So we use this condition to know when we have to split the
polyhedron into a union of DBMs.

The splitting procedure DBM split(.) of a polyhedron into a union of DBMs
(with preservation of the property Disc(Poly) =

⋃
Disc(Dsplit

i)) is not unique.
A rather obvious (but really not efficient) algorithm consists in decomposing the
polyhedron Poly into the union of all its integer points Disc(Poly). A more sub-
tle approach consists in decomposing the polyhedron according to the variables
that are part of non-DBM constraints of the polyhedron. In figure 3, we illustrate
the stakes related to DBM split(.): the problem is to split the polyhedron Poly
into a union of DBMs. We propose a solution among others that appears with
dashed lines. Many other solutions may be considered but this study is not the
scope of this paper.

θ1

θ2 Notation

Poly

DBM split(Poly)

Fig. 3. Illustration of the effects of a splitting procedure. Poly represents the temporal
domain associated to a symbolic class of a discrete-time ITPN. DBM split(Poly)
corresponds to a potential decomposition of this polyhedron into a union of DBMs
such that Disc(Poly) = Disc(DBM split(Poly)).

Passed = ∅
Waiting = {(M0, D0)}
While (Waiting 6= ∅) do

(M,D) = pop(Waiting)
Passed = Passed ∪ (M,D)
For tf firable from (M,D) do

M ′ = M − •tf + t•f
If (condition 3.2 of [20] is not satisfied) then

D′ = nextdense(D, tf) [5]
If ((M ′, D′) /∈ passed) then

Waiting = Waiting ∪ {(M ′, D′)}
end If

elseS
(D′i)i∈[1,...,n] = DBM split(nextdense(D, tf) [5])

For i ∈ [1, . . . , n] do

If ((M ′, D′i) /∈ Passed) then
Waiting = Waiting ∪ {(M ′, D′i)}

end If
end For

end If

end For

done

Algorithm 1: Symbolic algorithm for the computation of the state space of
discrete-time TPNs with stopwatches

This method is summarized by the formal algorithm 1.

Theorem 6. For discrete-time ITPNs, the algorithm 1 is correct w.r.t. marking
and state reachability and language. The termination is ensured for discrete-time
bounded ITPNs.

To prove this algorithm, we first have to introduce a corollary of theorem 4.
In [20], we studied the conditions such that general polyhedra (that cannot

be written under the form of simple DBMs) appear in the state class graph of
dense-time TPNs with stopwatches. We then deduce the following corollary :

Corollary 2. Let N be a ITPN. We aim to determine the state space of the
discrete-time semantics Sdiscrete

N of the net by linking it to the on-the-fly com-
putation of the state space of Sdense

N . As long as no class of Sdense
N satisfies the

necessary and sufficient condition (condition 3.2) exhibited in [20], we have the
following properties:

– The discretization of the resulting state space of Sdense
N gives states that all

belong to the state space of Sdiscrete
N .

– Every untimed run of Sdense
N that is identified is included in the set of all

untimed runs of Sdiscrete
N .

Then we deduce the correctness of the algorithm:

Proof. The correctness of algorithm 1 follows from the previous theorems of
our paper, especially from theorem 4 and corollary 2. The convergence of the
algorithm is a consequence of the decidability of the reachability problem for
discrete-time bounded ITPNs.

Such an abstraction has many practical implications: it enables us to use
algorithms and tools based on DBMs developed for TPNs to check properties on
ITPNs with discrete time semantics. We use the tool Roméo [21] that has been
developed for the analysis of TPN (state space computation and ”on the fly”
model-checking of reachability properties and TCTL properties) . For instance, it
is possible to check real-time properties expressed in TCTL on bounded discrete-
time ITPNs by a very simple adaptation of this tool.

On the one hand, in [22], the authors consider TCTL model-checking on
TPNs. In fact, their algorithms apply on all Petri nets extended with time such
that the firing domains of all state classes are DBMs. On the other hand, algo-
rithm 1 states how to compute the state space of discrete-time ITPNs by using
only DBMs. The combination of the two procedures leads to an elegant way
to model-check TCTL formulae on discrete-time ITPNs. The implementation in
Roméo leads to quite nice results. To illustrate the merits of our work, we pro-
vide a benchmark that compares the efficiency, in terms of computation speed,
of the state space computation using the enumerative technique we introduced
in [7] with the symbolic algorithm we propose in this paper.

All examples depict bounded nets. When the intervals associated to transi-
tions are small (example 2), the enumerative method is more efficient than the
symbolic algorithm. This is due to the power of BDDs based techniques avail-
able on the enumerative approach. Nevertheless, when the net contains one (or

Net Symbolic algorithm - Roméo Enumerative algorithm - Markg
Time Memory Time Memory

Ex 1 0.12 s 1 320 KB 1.03 s 96 032 KB

Ex 2 34.42 s 1 320 KB 2.95 s 111 700 KB

Ex 3 45.12 s 20 012 KB NA NA

Ex 4 0.52 s 2 940 KB 1.07 s 95 796 KB

Ex 5 0.15 s 1 320 KB 1 148.18 s 139 800 KB

Table 1. Comparison between symbolic algorithm (with Roméo) and enumerative
techniques (with Markg) to compute the state space of discrete-time nets (Pentium ;
2 GHz; 2GB RAM

more) transitions with a wide range betweebn earliest and latest firing times (all
examples, except the second one, contain a transition whose firing interval is
[0, 1000]), the enumerative method suffers from combinatorial explosion, while
our symbolic algorithm leads to good results.

5 Conclusion

In this paper, we have considered an extension of T-time Petri nets with stop-
watches (SwPNs). In this model, stopwatches are associated with transitions: a
stopwatch can be reset, stopped and started by using inhibitor arcs. This allows
the memorisation of the progress status of an action that is stopped and re-
sumed. Our methods and results have been illustrated on Time Petri Nets with
Inhibitor arcs (ITPNs). They are however general enough to be applied on the
whole class of SwPNs.

We aimed to extend to discrete-time semantics the symbolic methods usually
applied for the computation of the state space of a dense-time TPN (with stop-
watches) and then perform TCTL model-checking. The approach we introduce
consists in linking the state space of a discrete-time net to the discretization of
the state space of the associated dense-time model. This method is correct for a
subclass of SwPNs (including TPNs), but not for the general class of SwPNs. We
thus propose a more general method for computing symbolically the state space
of discrete-time nets. It is based on the decomposition of the general polyhe-
dra that encompass the temporal information of the net into a union of simpler
polyhedra. The subtlety of the symbolic algorithm depends on the function that
splits the polyhedra into a union of DBMs: shall the polyhedron be split in a
minimum number of DBMs? Are some splitting procedure more efficient than
others for a long-term computation? What is the cost of such algorithms? These
questions are the basis of our current investigations.

Further work consist in investigating the efficiency of several algorithms that
split a general polyhedra in unions of DBMs.

References

1. Merlin, P.: A study of the recoverability of computing systems. PhD thesis,
Department of Information and Computer Science, University of California, Irvine,
CA (1974)

2. Ramchandani, C.: Analysis of asynchronous concurrent systems by timed Petri
nets. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA (1974)
Project MAC Report MAC-TR-120.

3. Roux, O., Déplanche, A.M.: A t-time Petri net extension for real time-task schedul-
ing modeling. European Journal of Automation (JESA) 36 (2002) 973–987

4. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Time state space analysis of real-time
preemptive systems. IEEE transactions on software engineering 30 (2004) 97–111

5. Roux, O.H., Lime, D.: Time Petri nets with inhibitor hyperarcs. Formal semantics
and state space computation. In: The 25th International Conference on Applica-
tion and Theory of Petri Nets, (ICATPN’04). Volume 3099 of Lecture Notes in
Computer Science., Bologna, Italy, Springer (2004) 371–390

6. Berthomieu, B., Lime, D., Roux, O.H., Vernadat, F.: Reachability problems and
abstract state spaces for time petri nets with stopwatches. Journal of Discrete
Event Dynamic Systems (DEDS) (2007) To appear.

7. Magnin, M., Molinaro, P., Roux, O.H.: Decidability, expressivity and state-space
computation of stopwatch petri nets with discrete-time semantics. In: 8th Inter-
national Workshop on Discrete Event Systems (WODES’06), Ann Arbor, USA
(2006)

8. Popova, L.: On time petri nets. Journal Inform. Process. Cybern., EIK (formerly:
Elektron. Inform. verarb. Kybern.) 27 (1991) 227–244

9. Molinaro, P., Delfieu, D., Roux, O.H.: Improving the calculus of the marking graph
of Petri net with bdd like structure. In: 2002 IEEE international conference on
systems, man and cybernetics (SMC 02), Hammamet, Tunisia (2002)

10. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE transactions on software engineering 17 (1991) 259–
273

11. Gardey, G., Roux, O.H., Roux, O.F.: State space computation and analysis of time
Petri nets. Theory and Practice of Logic Programming (TPLP). Special Issue on
Specification Analysis and Verification of Reactive Systems (2006) to appear.

12. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of
time petri nets. In: 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2003). Volume 2619 of Lecture
Notes in Computer Science., Warsaw, Poland, Springer Verlag (2003) 442–457

13. Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets.
Technical Report IRCCyN number RI2006-14 (2006)

14. Lime, D., Roux, O.: Expressiveness and analysis of scheduling extended time
Petri nets. In: 5th IFAC International Conference on Fieldbus Systems and their
Applications, (FET 2003), Aveiro, Portugal, Elsevier Science (2003)

15. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri
nets. IFIP Congress Series 9 (1983) 41–46

16. Dill, D.: Timing assumptions and verification of finite-state concurrent systems.
In: Workshop Automatic Verification Methods for Finite-State Systems. Volume
407. (1989) 197–212

17. Popova, L.: On time petri nets. Journal Information Processing and Cybernetics
27 (1991) 227–244

18. Popova-Zeugmann, L.: (Essential states in time petri nets)
19. Popova-Zeugmann, L., Schlatter, D.: Analyzing paths in time petri nets. Funda-

menta Informaticae 37 (1999) 311–327
20. Magnin, M., Lime, D., Roux, O.: An efficient method for computing exact state

space of Petri nets with stopwatches. In: third International Workshop on Software
Model-Checking (SoftMC’05). Electronic Notes in Theoretical Computer Science,
Edinburgh, Scotland, UK, Elsevier (2005)

21. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Roméo: A tool for analyzing
time Petri nets. In: 17th International Conference on Computer Aided Verifica-
tion (CAV’05). Volume 3576 of Lecture Notes in Computer Science., Edinburgh,
Scotland, UK, Springer (2005)

22. Hadjidj, R., Boucheneb, H.: On-the-fly tctl model checking for time petri nets
using state class graphs. In: ACSD, IEEE Computer Society (2006) 111–122

