
A Translation Based Method for the Timed Analysis of
Scheduling Extended Time Petri Nets

Didier Lime and Olivier (H.) Roux
IRCCyN (Institut de Recherche en Communication et Cybernétique de Nantes)

1, rue de la Noë B.P. 92101
44321 NANTES cedex 3 (France)

{Didier.Lime | Olivier-h.Roux}@irccyn.ec-nantes.fr

Abstract

In this paper, we present a method for the timed analy-
sis of real-time systems, taking into account the scheduling
constraints. The model considered is an extension of time
Petri nets, Scheduling Extended Time Petri Nets (SETPN)
for which the valuations of transitions may be stopped
and resumed, thus allowing the modelling of preemption.
This model has a great expressivity and allows a very nat-
ural modelling. The method we propose consists of pre-
computing, with a fast algorithm, the state space of the
SETPN as a stopwatch automaton (SWA). This stopwatch
automaton is proven timed bisimilar to the SETPN, so we
can perform the timed analysis of the SETPN through it with
the tool on linear hybrid automata,HYTECH. The main in-
terests of this pre-computation are that it is fast because it
is Difference Bounds Matrix (DBM)-based, and that it has
online stopwatch reduction mechanisms. Consequently, the
resulting stopwatch automaton has, in the general case, a
fairly lower number of stopwatches than what could be ob-
tained by a direct modelling of the system as SWA. Since the
number of stopwatches is critical for the complexity of the
verification, the method increases the efficiency of the timed
analysis of the system, and in some cases may just make it
possible at all.

1. Introduction

Hard real-time systems are becoming more and more
complex and are often critical. Therefore thorough verifi-
cation of such systems has to be performed, including be-
haviour and timing correctness. These systems are usually
designed as several tasks interacting and sharing one or
more processors. Hence, in a systemS, tasks have to be
scheduled on the processors in such a way that they respect
some propertiesPi imposed by the controlled process. This

is usually achieved using either an offline or an online ap-
proach. In the offline approach, a pre-runtime schedule is
built up so asS satisfiesPi. In the online approach, schedul-
ing of the tasks is done at runtime according to a schedul-
ing policy based on priorities (e.g. Rate Monotonic, Earliest
Deadline). Then we have to verify thatS satisfies the prop-
ertiesPi, the first one of which is schedulability, that is that
each task meets its deadline. This is the approach taken in
this paper.

Analytical online scheduling analysis

The online scheduling analysis has been much studied
and many analytical results have been proposed concerning
mostly the schedulability of task sets since Liu and Lay-
land in 1973 [16]. Low cost exact analysis of sets of in-
dependent tasks with fixed execution times are available in
[23, 19, 11] for instance. Extensions have been proposed
to take into account interactions between tasks and variable
execution time,e.g.[20, 9]. They give upper bounds of re-
sponse times and thus only sufficient conditions. This leads
to an inherent pessimism, which potentially grows with the
complexity of the system considered. This motivates the use
of formal verification methods using such models as timed
automata (TA) [1] and timed Petri nets (TPN) [17].

Formal models for online scheduling

Some papers consider the worst case execution times of
a task as a fixed time and then they can use models such
as timed automata with subtraction [8]. However it is easy
to show that, in the context of inter-dependent tasks, reduc-
ing the computation time of a task may surprisingly induce
a decrease of timing performances for the application. In the
general case, to be able to model the execution times of the
tasks as well as preemptions, a timed model which is able to
express intervals of time, with the concept of stopwatch (a
clock that can be stopped and resumed) is required. In this

class of model, one can find stopwatch extensions of classi-
cal dense time model: timed automata (TA) and time Petri
nets (TPN). Stopwatch automata (SWA) [5] extend timed
automata with stopwatches. They allow the modelling of
real-time tasks as well as the behavior of a scheduler. The
model of a real-time system is then obtained as the synchro-
nized product of these SWA. Cassez and Larsen [5] prove
that stopwatch automata with unobservable delays are as ex-
pressive as linear hybrid automata (LHA) in the sense that
any timed language acceptable by a LHA is also accept-
able by a SWA. The reachability problem is undecidable
for LHA and also undecidable for SWA.

Several papers are also interested in extending time Petri
nets. Okawa and Yoneda ([18]) propose an approach with
time Petri nets consisting of defining groups of transitions
together with rates (speeds) of execution. Transition groups
correspond to transitions that model concurrent activities
and that can be simultaneously ready to be fired. In this case,
their rate are then divided by the sum of transition execution
rates. Finally, Roux and Déplanche [21] propose an exten-
sion for time Petri nets (SETPN) that allows to take into
account the way the real-time tasks of an application dis-
tributed over different processors are scheduled. The same
approach is developed in [4, 3], with preemptive time Petri
nets. These last two models are subclasses1 of inhibitor hy-
perarcs time Petri nets (IHTPN) [22], which, since they have
a more general purpose, are not as well-suited for modelling
real-time systems. For these four models, as for time Petri
nets, boundedness and reachability are undecidable. Bound-
edness and other results are then obtained by computing the
state space if it is computable.

State-space computation

For dense-time models, the state space is generally in-
finite, because of the real-valued clocks, so, we need to
group some states together, in order to obtain a finite num-
ber of these groups, which is hopefully computable. These
groups of states are, for instance,regions and zonesfor
timed automata orstate classesfor time Petri nets. If the
model does not have any stopwatch, then the states con-
tained in those groups may be described by linear inequa-
tions of a particular type which may be encoded into a Dif-
ference Bound Matrix (DBM). DBM allow fast manipula-
tion and generation (i.e.polynomial complexity). When the
model has stopwatches, inequations describing the group of
states are more complex and do not fit into a DBM any-
more. A general polyhedron representation is needed which
involves a much more complex manipulation and genera-
tion cost (i.e. exponential complexity). As a consequence,

1 Whether all these models actually define the same class of nets or not
is an open problem.

an idea to speed up the state space computation, is to ex-
pand the general polyhedra into DBM ([5, 14, 4]). This is
clearly an over-approximation.

In [4], the authors also propose an interesting method for
quantitative timed analysis. As just discussed, they over-
approximate the computation of the state class graph by
using Difference Bounds Matrix. Then, given an untimed
transition sequence from the over-approximated state class
graph, they can obtain the feasable timings between the fir-
ing of the transitions of the sequence as the solution of a
linear programming problem. In particular, if there is no so-
lution, the transition sequence has been introduced by the
over-approximation and can be cleaned up, otherwise the
solution set allows to check timed properties on the firing
times of transitions.

Number of clocks

The number of clocks/stopwatches is a critical concern
with the verification of formal models. Generating and han-
dling polyhedra in the general case are operations that have
a complexity that is exponential in the number of variables
of the polyhedron. In the case of hybrid systems such as
SWA, these variables are the stopwatches. With the increase
of the number of stopwatches, the analysis becomes quickly
intractable with the tool on linear hybrid automata HYTECH

([10]). Algorithms exist for timed automata, such as [7], to
reduce the number of clocks. As far as we know, there are
no such algorithms for hybrid automata. Anyway, these al-
gorithms can only be applied to single automata, not prod-
ucts, and convenient modelling of real-time systems using
SWA can only be achieved through products.

Our contribution

In this paper, we consider the SETPN model, for its great
expressively and its fitness to the scheduling problem [14].
For this model, we tackle the problem of the state space
explosion by a two-stage analysis. First we pre-compute
the state space of the SETPN as a stopwatch automaton.
This first step is performed by a fast DBM-based algo-
rithm. While this algorithm is over-approximating, the pro-
duced stopwatch automaton is proved to be timed bisimi-
lar to the initial SETPNi.e. the additional locations gener-
ated by the approximation are actually not reachable. As a
consequence, the cost of the translation is fairly low. The
second step consists of an exact analysis of that SWA with
the HYTECH model-checker. For this second step to be effi-
cient, the number of stopwatches must be as low as possible.
To this effect, the translation algorithm offers stopwatchre-
duction mechanisms and thus yields a stopwatch automaton
that has, in the general case, a fairly lower number of stop-

watches than what is required for a direct modelling as a
product of stopwatch automata.

The rest of the paper is organized as follows: section 2
presents the SETPN model and a short description of the
state space computation for SETPN, section 3 describes the
translation into a stopwatch automaton and proves the cor-
rectness of the translation with a bisimulation. Finally, we
give a case study in section 4.

2. Scheduling extended time Petri nets

This extension of time Petri nets introduced in [21] con-
sists of mapping into the Petri net model the way the dif-
ferent schedulers of the system activate or suspend the
tasks. Scheduling extended time Petri nets (SETPN) are
well adapted to the modelling of concurrent systems. For
instance, it is very easy to model semaphoresindependently
of the number of tasks which may be blocking on them
with SETPN, while it is not possible with timed automata
(without extra variables). Furthermore, the behavior of the
scheduler is included in the semantics of the SETPN model.
This has the advantage that the designer does not have to
worry about modelling the scheduler. In addition, it gener-
ally slightly decreases the complexity of the model, in terms
of size and number of clocks/stopwatches.

From a markingM , a functionAct (formally defined
in [21]) gives the projection of the behavior of the differ-
ent schedulers in the following sense: Let us suppose that
the placeP models a behavior (or a state) of the taskT .
M(p) > 0 means that the taskT is ready andAct(M(p)) >

0 means that the taskT is active.
For the particular case of fixed priority scheduling poli-

cies, we introduce two new attributes (γ andω) associated
to each place of the SETPN that respectively represent al-
location (processor) and priority (of the modeled task). All
places of a SETPN do not require such parameters. Actually
when a place does not represent a true activity for a proces-
sor (for example a register or memory state), neither a pro-
cessor (γ) nor a priority (ω) have to be attached to it. In this
specific case (γ = φ), the semantics remains unchanged
with respect to a standard TPN2. One can notice that it is
equivalent to attach to this place a processor for its exclu-
sive use and any priority. An example of a SETPN is pre-
sented in figure 1. The initial marking of the net is{P1, P3}.
However, since those two places are affected to the same
processor, and that the priority ofP3 is the highest, the ini-
tial active marking is{P3}. So the first transition fired will
beT3.

Definition 1 (Scheduling Extended Time Petri net)A
scheduling extended time Petri net is an 8-tuple
T = (P, T, •(.), (.)

•
, α, β, M0, Act), where

2 Whenγ = φ, the parameter is omitted in the figures of this paper.

P2,γ = 1,ω = 1

P1,γ = 1,ω = 1

P4,γ = 1,ω = 2

P3,γ = 1,ω = 2

T2 [1, 2]

T1 [2, 3]

T4 [3, 5]

T3 [4, 5]

• •

Figure 1. SETPN of two tasks on one proces-
sor

• P = {p1, p2, . . . , pm} is a non-empty finite set of
places,

• T = {t1, t2, . . . , tn} is a non-empty finite set oftran-
sitions,

• •(.) ∈ (NP)T is thebackward incidence function,

• (.)
•
∈ (NP)T is theforward incidence function,

• M0 ∈ NP is theinitial markingof the net,

• α ∈ (Q+)T andβ ∈ (Q+ ∪ {∞})T are functions giv-
ing for each transition respectively itsearliestand lat-
estfiring times (α ≤ β),

• Act ∈ (NP)P is the active marking function.Act(M)
is the projection on the markingM of the scheduling
strategy. In [21]Act(M) is defined for a fixed priority
scheduling policy, starting from three parameters :

– Proc{φ, proc1, proc2, . . . , procl} is a finite set
of processors (includingφ that is introduced to
specify that a place is not assigned to an effec-
tive processor of the hardware architecture),

– ω ∈ NP is the priority assignment function ,

– γ ∈ ProcP is the allocation function.

We define the semantics of scheduling extended time
Petri nets asTimed Transition Systems(TTS) [12]. In this
model, two kinds of transitions may occur:continuoustran-
sitions when time passes anddiscretetransitions when a
transition of the net fires.

A markingM of the net is an element ofNP such that
∀p ∈ P, M(p) is the number of tokens in the placep.

An active marking Act(M) of the net is an el-
ement of NP such that ∀p ∈ P, Act(M(p)) =
M(p)orAct(M(p)) = 0 .

A transition t is said to beenabledby the markingM
if M ≥ •t, (i.e. if the number of tokens inM in each in-
put place oft is greater or equal to the valuation on the
arc between this place and the transition). We denote it by
t ∈ enabled(M).

A transition t is said to be active if it is en-
abled by the active markingAct(M). We denote it by
t ∈ enabled(Act(M)).

A transitiontk is said to benewlyenabled by the firing
of the transitionti from the markingM , and we denote it
by ↑ enabled(tk, M, ti), if the transition is enabled by the
new markingM − •ti + ti

• but was not byM − •ti, where
M is the marking of the net before the firing ofti. Formally,

↑ enabled(tk, M, ti) = (•tk ≤M − •ti + ti
•)

∧((tk = ti) ∨ (•tk > M − •ti))

By extension, we will denote by↑ enabled(M, ti) the
set of transitions newly enabled by firing the transitionti
from the markingM .

A valuation is a mappingν ∈ (R+)T such that∀t ∈
T, ν(t) is the time elapsed sincet was last enabled. Note
thatν(t) is meaningful only ift is an enabled transition.0
is thenull valuationsuch that∀k, 0k = 0.

Definition 2 (Semantics of a SETPN)The semantics of a
scheduling extended time Petri netT is defined as a TTS
ST = (Q, q0,→) such that

• Q = NP × (R+)T

• q0 = (M0, 0)

• →∈ Q × (T ∪ R) × Q is the transition relation in-
cluding a continuous transition relation and a discrete
transition relation.

– The continuous transition relation is defined
∀d ∈ R+ by:

(M, ν)
d
−→ (M, ν′) iff

∀ti ∈ T,















ν′(ti) =







ν(ti) if Act(M) < •ti
∧M ≥ •(ti)

ν(ti) + d otherwise,
M ≥ •ti ⇒ ν′(ti) ≤ β(ti)

– The discrete transition relation is defined∀ti ∈
T by:

(M, ν)
ti−→ (M ′, ν′) iff























Act(M) ≥ •ti,

M ′ = M − •ti + ti
•,

α(ti) ≤ ν(ti) ≤ β(ti),

∀tk, ν(tk)′ =

{

0 if ↑ enabled(tk, M, ti),
ν(tk) otherwise

2.1. State class graph of a SETPN

In [14], we have given a semi-algorithm for computing
the state space of a SETPN. This methods is an extension
of the state class graph method of Berthomieu and Diaz on
time Petri nets [2].

State classes are still defined as a pair with amarking
and afiring domain. However, with the presence of stop-
watches (here the valuation of the clocks), the firing domain
of state classes cannot be encoded into a Difference Bound
Matrix (DBM) anymore ; a general polyhedron form is re-
quired.

As a consequence, we need a new definition for the
firability of a transition from a class:

Definition 3 (Firability) Let C = (M, D) be a state class
of a SETPN. A transitionti is said to befirable from C iff
there exists a solution(θ∗0 , . . . , θ∗n−1) of D, such that∀j ∈
J0, n− 1K− {i}, s.t.tj is active, θ∗i ≤ θ∗j .

Now, given a classC = (M, D) and a firable transition
tf , the classC′ = (M ′, D′) obtained fromC by the firing
of tf is given by

• M ′ = M − •tf + tf
•

• D′ is computed along the following steps, and noted
next(D, tf)

1. variable substitutions for all enabled transitions
that areactivetj : θj = θf + θ′j ,

2. intersection with the set of positive or null reals
R+: ∀i, θ′i ≥ 0,

3. elimination (using for instance the Fourier-
Motzkin method [6]) of all variables relative to
transitions disabled by the firing oftf ,

4. addition of inequations relative to newly enabled
transitions

∀tk ∈↑ enabled(M, tf), α(tk) ≤ θ′k ≤ β(tk).

The state class graph of a SETPN is then defined as the
quotient of the infinite graph generated by computing iter-
atively all the successors bynext of the initial class by the
equivalence relation of definition 4, in whichJDK denotes
the set of solutions of the inequation setD.

Definition 4 (Equality of state classes)Two classesC1 =
(M1, D1) andC2 = (M2, D2) are equalif M1 = M2 and
JD1K = JD2K.

2.2. DBM over-approximation

As shown in [14], we can speed up the computation of
the state class graph of a SETPN by approximating the
domain of each generated class to a DBM containing it.
The obvious consequence is that we add states to the com-
puted state space that are not reachable. In particular, in
some cases, this could prevent the computation to terminate,
by making the number of computed markings unbounded.
Conversely, this can also make the computation terminate
by cutting off some of the constraints preventing the con-
vergence (for instance, some nets have successive domains

such that when firingn times the same sequence of transi-
tions, some inequations in the obtained domain are of the
form nθ ≤ 2n + 1).

3. State class stopwatch automaton

In this section, we present a method for computing the
state space of a SETPN as a stopwatch automaton. We
prove the soundness of the computation by proving that
this SWA is timed bisimilar to the initial SETPN. Then we
show how to obtain, much faster with a DBM-based over-
approximating method, a SWA which is also timed bisimi-
lar to the SETPN. But first, we define stopwatch automata.

3.1. Stopwatch automata

We basically define stopwatch automata (SWA) as timed
automata with stopwatches:

Definition 5 (Stopwatch Automaton) A Stopwatch Au-
tomatonis a 7-tuple(L, l0, X, A, E, Inv, Dif) where

• L is a finite set oflocations,

• l0 is theinitial location,

• X is a finite set of positive real-valued stopwatches,

• A is a finite set ofactions,

• E ⊂ L× C(X)×A× 2X × L is a finite set of edges.
If e = (l, δ, α, R, ρ, l′) ∈ E. e is the edge between the
locationsl and l′, with theguardδ, theactionα, the
set of stopwatches toresetR and theclock assignment
functionρ.

• Inv ∈ C(X)L maps aninvariantto each location

• Dif ∈ ({0, 1}X)L maps anactivity to each loca-
tion, Ẋ being the set of derivatives of the stopwatches
w.r.t. time, that is to say their changing rates.Ẋ =
(Dif(l)x)x∈X .

For short, given a locationl, a stopwatchx and b ∈
{0, 1}, we will denoteDif(l)(x) = b by ẋ = b when the lo-
cation considered is not ambiguous.

Definition 6 (Semantics of a SWA)The semantics of a
SWAH is defined as a TTSSH = (Q, Q0,→) where
Q = L × (R+)X , Q0 = (l0, 0) is the initial state and→ is
defined, fora ∈ A andt ∈ R+, by:

• discrete transitions: (l, ν)
a
→ (l′, ν′) iff

∃(l, δ, a, R, ρ, l′) ∈ E such that






δ(ν) = true,

ν′ = ν[R← 0][ρ],
Inv(l′)(ν′) = true

• continuous transitions: (l, ν)
t
→ (l, ν′) iff

{

ν′ = ν + Ẋ ∗ t,

∀t′ ∈ [0, t], Inv(l)(ν + Ẋ ∗ t′) = true

3.2. State class stopwatch automaton

Following the idea of [15] on classical time Petri nets,
we extend the notion of state classes with information about
the stopwatches that are required to describe the class. Then
we compute the reachability graph of these extended state
classes with an adequate convergence criterion. Finally we
syntactically compute the stopwatch automaton from the
extended state class graph.

So let us define extended state classes:

Definition 7 (Extended state class)An extended state
class is a 4-tuple(M, D, χ, trans), whereM is a mark-
ing, D is a firing domain,χ is a set of stopwatches
and trans ∈ (2T)χ maps stopwatches to sets of transi-
tions.

The stopwatches inχ measure the cumulated time dur-
ing which the transitions associated bytrans have been ac-
tive since they have been enabled.

Given an extended state classC = (M, D, χ, trans)
and a firable transition tf , the successorC′ =
(M ′, D′, χ′, trans′) of C obtained by firingtf is given by:

1. M ′ andD′ are computed as in section 2,

2. for each stopwatchx in χ, the disabled transitions are
removed fromtrans(x),

3. the stopwatches whose image bytrans is empty are
removed fromχ,

4. if there are newly enabled transitions by the firing of
tf , two cases can occur:

• there exists a stopwatchx whose value is0. Then,
we simply add the newly enabled transitions to
trans(x),

• such a stopwatch does not exist. Then we need to
create a new stopwatchxi associated to the newly
enabled transitions. The index,i, is chosen as the
smallest available index among the stopwatch of
χ. We addxi to χ and trans(xi) is the set of
newly enabled transitions

5. if all the transitions associated to a stopwatch are inac-
tive (resp. active) that stopwatch is stopped (resp. re-
sumed),

6. if the image bytrans of a running (resp. stopped)
stopwatchx contains both active and inactive transi-
tions, then a new stopwatchx′ is created as for newly
enabled transitions, to which are associated bytrans

the inactive (resp. active) transitions. That stopwatch is
stopped (resp. started) and its value is set to that ofx:
x′ = x.

By applying theses rules, the extended state class graph
is computed by generating all the successors of the initial

state class iteratively (breadth-first for instance). The con-
vergence criterion isstopwatch-similarity:

Definition 8 (stopwatch-similarity) Two ex-
tended state classesC = (M, D, χ, trans) and
C′ = (M ′, D′, χ′, trans′) are stopwatch-similar, and
we denote it byC ≈ C′, iff they have the same mark-
ings, the same number of stopwatches and their stop-
watches are mapped to the same transitions:

C ≈ C′ ⇔







M = M ′,

|χ| = |χ|,
∀x ∈ χ, ∃x′ ∈ χ′, trans(x) = trans′(x′).

We can easily see that if two classes are stopwatch-
similar, the stopwatches that are associated to the same tran-
sitions have the same activity (running or suspended), so the
definition is coherent.

So, when two classes are stopwatch-similar, if we also
have an inclusion according to definition 9, then we stop
the exploration of the current branch. If we do not, we make
loop anyway but continue the computation of the successors
of the states that are not in the intersection of the two do-
mains.

Definition 9 (Inclusion of state classes)An extended state
class C′ = (M ′, D′, χ′, trans′) is included in an ex-
tended state classC = (M, D, χ, trans) iff C and C′

are stopwatch-similar andJD′K ⊂ JDK. This is denoted by
C′ ⊂ C.

We write the extended state class graph as the follow-
ing timed transition system:∆′(T) = (Cext, C0,→

ext) de-
fined by:

• Cext = NP × RT × 2X × (2T)X , X being the set of
all stopwatches,

• C0 = (M0, D0, χ0, trans0), whereM0 is the ini-
tial marking, D0 = {α(ti) ≤ θi ≤ β(ti)| ti ∈
enabled(M0)}, χ0 = {x0, x1} and trans0 =
((x0, enabled(Act(M0))), (x1, enabled(M0) −
enabled(Act(M0)))),

• →ext∈ Cext × T × Cext is the transition relation de-
fined by the above rules.

And now, using this timed transition system we give the
definition of the state class stopwatch automaton.

Definition 10 (State Class Stopwatch Automaton)The
state class stopwatch automaton∆(T) = (L, l0, X, A, E,

Inv, Dif) is defined from the extended state class graph
by:

• L the set of locations is the set of the extended state
classesCext,

• l0 is the initial state class(M0, D0, χ0, trans0),

• X =
⋃

(M,D,χ,trans)∈Cext χ the set of all stopwatches

Clock

Task 1-M1,
γ = 1,
ω = 2

Task 1-M2,
γ = 1,
ω = 2

Task 2-M1,
γ = 1,
ω = 1

Task 2-M2,
γ = 1,
ω = 1

Offset

Semaphore

M1-1 [1, 4]

M2-1 semP
[2, 4]

M1-2 semV[2, 3]

M2-2 [3, 5]

Top [20, 20]
Delay [1, 1]

•

• •

Figure 2. SETPN of two tasks on one proces-
sor with a semaphore

• A = T is the set of transitions

• E is the set of edges defined as follows,

∀Ci = (Mi, Di, χi, transi),
Cj = (Mj, Dj , χj , transj) ∈ Cext,

∃Ci

t

→ext Cj ⇔ ∃(li, δ, a, R, ρ, lj)

s.t.































δ = (trans−1
i (t) ≥ α(t)),

a = t,

R = trans−1
j (↑ enabled(Mi, t)),

∀x ∈ χi, x
′ ∈ χj ,

s.t.transj(x
′) ⊂ transi(x)(

andx′ 6∈ R, ρ(x) = x′

• ∀C ∈ Cext, Inv(C) =
∧

x∈χ,t∈trans(x)(x ≤ β(t)).

• ∀C ∈ Cext, ∀x ∈ χ, Dif(C)(x) = 1 if
∀t ∈ trans(x), t is active, Dif(C)(x) =
0, otherwise.

As an example, Figure 2 shows a SETPN modelling two
periodic tasks running on the same processor and synchro-
nized by a semaphore. Figure 3 shows the corresponding
state class SWA.

3.3. Termination of the algorithm

As for time Petri nets, reachability is undecidable for
SETPN (and for SWA). For bounded TPN and timed au-
tomata, it is decidable. However, according to some of
our most recent work, reachability is also undecidable for
bounded SETPN. As a consequence, the computation of the
state class stopwatch automaton is not guaranteed to finish,
which is inherent to that class of models.

C0

ẋ0 = ẋ1 = ẋ2 = 1

x0 ≤ 1

C1

ẋ0 = ẋ1 = 1
ẋ2 = 0

x0 ≤ 20
∧x1 ≤ 4
∧x2 ≤ 3

C2

ẋ0 = ẋ1 = ẋ2 = 1

x0 ≤ 20 ∧ x2 ≤ 3

C3

ẋ0 = ẋ1 = ẋ2 = 1

x0 ≤ 20 ∧ x1 ≤ 4

C4

ẋ0 = ẋ1 = ẋ2 = 1

x0 ≤ 20 ∧ x1 ≤ 5

C5

ẋ0 = ẋ1 = ẋ2 = 1

x0 ≤ 20

x0 ≥ 1
Delay
x′

1
= 0

x′

2
= 0

x1 ≥ 1
M1-1

x2 ≥ 2
M1-2 semV
x′

1
= 0

x1 ≥ 2
M2-1 semP

x1 ≥ 3
M2-2

x0 ≥ 20
Top
x′

0
= 0

Figure 3. A state class stopwatch automaton.
Initial location is C0.

3.4. Soundness of the translation

In order to prove the soundness of this expression of the
state space of a SETPN, we will show in theorem 1 that the
SETPN and its state class SWA are timed bisimilar.

Theorem 1 (Bisimulation) Let QT be the set of states of
the SETPNT and QA the set of states of the state class
stopwatch automatonA = (L, l0, X, A, E, Inv, Dif). Let
R ⊂ QT × QA be a binary relation such that∀s =
(MT , νT) ∈ QT , ∀a = (l, νA) ∈ QA, sRa ⇔MT = MA

if MA is the marking of the extended state classl and
∀t ∈ enabled(MT), ∃xt ∈ X, νT (t) = νA(xt) and ẋ = 1
if t is active andẋ = 0 otherwise.
R is a bisimulation.

Proof. Let us suppose thats = (MT , νT) ∈ QT , a =
(l, νA) ∈ QA andsRa. Then∀t ∈ enabled(MT), ∃xt ∈
X, νT (t) = νA(xt).

1. Let us suppose that the SETPN can let the timeτ ∈ R+

elapse:s
τ
→ s′. That means that∀t ∈ enabled(MT),

νT (t) + τ ≤ β(t). So,νA(xt) + τ ≤ β(t) and so by
definition ofInv(l), Inv(l)(νA + τ ′) is true∀τ ′ ≤ τ .
And therefore, the SWAA can let the timeτ elapse:
a

τ
→ a′. Since the SETPN stays in the same marking,

and the SWA in the same location, the activity of tran-
sitions and the conditions oṅx do not change. As a
consequence,νT + τ = νA + τ and finallys′Ra′.

2. Let us suppose that the SETPN can fire the transi-

tion t ∈ T : s
t
→ s′. By definition of the state

class stopwatch automaton, there exists an edgee =
(l, δ, t, R, ρ, l′). That means thatα(t) ≤ νT (t). So,
α(t) ≤ νA(xt) and by definition of the guardδ, δ(νA)
is verified and therefore, the SWAA can take the edge

e: a
t
→ a′. By definition ofl′, the markingM ′

A of the
extended classl′ is the same as the new markingM ′

T of
the SETPN. Lett′ be a transition inenabled(M ′

T). If
t′ is newly enabled, a new stopwatch is created or it is
associated to a stopwatch whose value is0 and whose
state (running or stopped) is the same as that oft′. In
the first case, the state of the stopwatch is also set ac-
cordingly to the activity oft′. If t′ is not newly enabled,
and if all transitions associated to its stopwatch have
the same activity, then the state of the stopwatch is set
accordingly to the activity oft′, else, and if all tran-
sitions associated to that stopwatch have not the same
activity, a new stopwatch is created to which is asso-
ciatedt′ with the appropriate state. In short,s′Ra′ by
construction.

3. Let us suppose that the SWA can let the timeτ ∈ R+

elapse:a
τ
→ a′. That means thatInv(l)(νA + τ)

is true. So, by definition ofInv(l), ∀x ∈ X, ∀t ∈
trans(x), νA(x) + τ ≤ β(t), which is equivalent to
∀x ∈ X, ∀t ∈ trans(x), νT (t) + τ ≤ β(t). Since
⋃

x∈X trans(x) = enabled(MT), we have finally,
∀t ∈ enabled(MT), νT (t) + τ ≤ β(t), which means
thatT can let the timeτ elapse:s

τ
→ s′. As for the first

point,νT + τ = νA + τ and so,s′Ra′.

4. Let us suppose that the SWA can take the edgee =

(l, δ, t, R, ρ, l′): a
t
→ a′. That means thatt is enabled

by MA = MT and thatδ(νA) is true. So, by defini-
tion of δ, νA(xt) ≥ α(t) and soνT (t) ≥ α(t), which

means thatt is firable forT : s
t
→ s′. Like in the sec-

ond point,s′Ra′ by construction.

�

3.5. Number of stopwatches

As mentioned before, the number of stopwatch is a crit-
ical concern for the computation of the state space of for-
mal models. So, in this method we take great care so as to
keep the number of stopwatches as low as possible. mod-
elling with SETPN requires roughly the same number of
stopwatches3 as a direct modelling as a product of SWA
(minus the possible stopwatches of the scheduler). For in-
stance, the basic modelling of a periodic task requires at
least two stopwatches for both models: one for the periodic
activation, one for the progress of the task itself. However,
in the product of SWA, all stopwatches are always used to
define the state in the system whereas with SETPN, only
the valuation of enabled transitions need to be considered.
That means, for example, that when a periodic task is wait-
ing for its periodical activation, only the stopwatch of the
activator is required.

As a consequence, we create stopwatches on demand,i.e.
when transitions are newly enabled. And when we create
a new stopwatch, we reuse stopwatches that are no longer
used, by always choosing the first stopwatch name available
for new stopwatches. Furthermore, we use only one stop-
watch for transitions for which valuations are equal for sure,
i.e., transitions that are enabled simultaneously, as long as
they are running (or stopped) together. This is a situation
that occurs fairly often.

Applying this policy for the creation of stopwatches al-
lows us to obtain a state class stopwatch automaton with a
fairly low number of stopwatches in practical cases.

3.6. DBM over-approximation

The over-approximation of domains by DBM can be
used to compute extended state classes. This may lead to
additional locations in the state class stopwatch automaton.
However, as the guards and invariants are computed stati-
cally from the parameters of the SETPN itself, these addi-
tional locations are not reachable. As a consequence, the re-
lationR of theorem 1 is also a bisimulation between the
over-approximated state class stopwatch automaton and the
SETPN:

Theorem 2 (Bisimulation) Let QT be the set of states of
the SETPNT and QA the set of states of the DBM over-
approximated state class stopwatch automatonA =
(L, l0, X, A, E, Inv). LetR ⊂ QT × QA be a binary re-
lation such that∀s = (MT , νT) ∈ QT , ∀a = (l, νA) ∈
QA, sRa ⇔ MT = MA if MA is the marking of the
extended state classl and ∀t ∈ enabled(MT), ∃xt ∈
X, νT (t) = νA(xt) and ẋ = 1 if t is active andẋ = 0
otherwise.

3 Stopwatches in a SETPN are actually the valuations of transitions

R is a bisimulation.

The proof is the same as for the exact computation.
Indeed, as a convincer, let us suppose that in locationl

there is an outgoing edgee = (l, δ, t, R, ρ, l′) becauset
is firable in the approximated state classl while it is not in
the corresponding exact state class. If we suppose that be-
fore reaching the locationl, the behavior of the automaton
was correct, then right at the entry in the classl the au-
tomaton is in a statea = (M, νA) which is in relation with
some states = (M, νT) of the SETPN byR. On the one
hand, sincet is actually not firable, that means that some
other transitiont′ must be fired before it:α(t) − νT (t) >

β(t′) − νT (t′). So, by definition ofR, there existsxt such
thatα(t)−νA(xt) > β(t′)−νT (t′). Since, by definition of
a SETPN,β(t′) ≥ νT (t′), this givesα(t)−νA(xt) > 0. On
the other hand, by definition of the guards of the state class
SWA, δ is true is equivalent toα(t) − νA(xt) ≤ 0. With
the preceding statement we can conclude that the guardδ is
false, sol′ is not reachable.

As a conclusion we can compute the state class
stopwatch automaton with the fast DBM based over-
approximating algorithm. It may produce a few extra
locations but the latter are not reachable and will be dis-
carded during the HYTECH analysis. This makes the cost
of the translation low compared to that of the verifica-
tion. But we can benefit from the expressivity and ease of
use of the SETPN model and the state class SWA is, in gen-
eral, easier to verify than a direct model using a product of
SWA, because it has less stopwatches.

4. Case study

Following the ISO 11783 “Agriculture and Forestry”
standard, which is based on SJAE J1939 (CAN Format
Version 2.0B), some agricultural vehicle makers begin to
use the CAN bus v2.0B and the Agricultural Bus System
(LBS). Among them is FENDT, whose Electronic Control
Unit (ECU) for the Vario 400 tractor is based on the INFI-
NEON C167 processor.

In this section, we present experimental results based on
a partial academic model for the control of the oscillation
compensator (hydraulic shock absorber) and for the con-
trol of the differential blocking on a tractor with a sowing
trailer.

Our simplified system consists of three processors run-
ning a real-time operating system (RTOS) and linked to-
gether with a CAN bus. A more complete description and
the corresponding modelling can be found in [13]. In this
case study, all tasks are periodic but it would be very easy
to add aperiodic or sporadic tasks.

We have implemented a prototype for the trans-
lation of a SETPN into a SWA in the tool ROMEO

(http://www.irccyn.ec-nantes.fr/irccyn/d

Description Direct SWA Modelling Our method (SETPN
ROMEO
−→ SWA

HYTECH
−→ state-space)

Ex. Proc. Tasks SWA’s Sw. HYTECH Time Loc. Trans. Sw. ROMEO Time HYTECH Time
1 2 4 8 7 77.8 20 29 3 ≤0.1 0.2
2 3 6 11 9 590.3 40 58 4 ≤0.1 0.5
3 3 7 12 10 NA 52 84 4 ≤0.1 0.7
4 3+CAN 7 13 11 NA 297 575 7 0.3 5.3
5 4+CAN 9 15 13 NA 761 1677 8 0.9 29.8
6 5+CAN 11 17 15 NA 1141 2626 9 6 60.1
7 5+CAN 12 18 16 NA 2155 5576 9 8.3 56.5
8 6+CAN 14 . . NA 4587 12777 10 59.7 438.8
9 6+CAN 15 . . NA 4868 13155 11 96.5 1364.3
10 6+CAN 16 . . NA 5672 15102 11 439.1 1372.5
11 7+CAN 18 . . NA 8817 25874 12 1146,7 NA

Table 1. Experimental results

/en/equipes/TempsReel/logs/software-2-
romeo), which gives the resulting SWA in the HYTECH in-
put format. The state space of this SWA is then computed
with HYTECH (forward computation).

We compared the efficiency of our method with a generic
direct modelling with HYTECH on this case study. We also
tested several simpler and more complex related systems
obtained by removing or adding tasks and/or processors. Ta-
ble 1 gives the obtained results.

Columns 2 and 3 give the number of processors and tasks
of the system. Columns 4, 5 and 6 describe the direct mod-
elling in HYTECH results by the number of SWA of the
product, the number of stopwatches and the time taken by
HYTECH to compute the state space. For this generic mod-
elling, we basically used the product of one SWA per task
and one SWA for each scheduler. We also used an ”opti-
mization” that consists of sharing some of the periodic ac-
tivation clocks whenever possible. Columns 7, 8, 9 give the
results for our method. We give the number of locations,
transitions and stopwatches of the SWA generated by our
method as well the time taken for its generation. Finally,
the last column gives the time used by HYTECH to com-
pute the state space of the SWA generated by our method.
Times are given is seconds and NA means that the HYTECH

computation could not yield a result on the machine used.

These computations have been made on a POWERPC G4
1.25GHz with 500Mo of RAM.

We see that the computation on a direct modelling as a
product of SWA is quickly intractable (Example 3). How-
ever, with our method, we are able to deal with systems of
much greater size. With the last example, the computation
is still possible with ROMEO but the state space of the re-
sulting SWA is not computable anymore. In this case, for
safety properties, we can exploit directly the DBM-based
extended state class graph generated by ROMEO by using

classical methods like observers for instance, but keeping
in mind that this is an over-approximation.

For this case-study, we computed the whole state-space
of the model but we can also check specific timed prop-
erties, including schedulability. We can compute the worst
case response time of a task, for instance, by adding an ob-
server which resets a clock on the firing of the first and last
transitions of the SETPN model of that task.

5. Conclusion

In this paper, we have given a method for computing
the state space of a scheduling extended time Petri net as
a stopwatch automaton. This is beneficial in several areas:
modelling real-time concurrent systems with SETPN is very
natural, the state class stopwatch automaton can be ver-
ified using a well-known tool on hybrid linear automata:
HYTECH. This method leads to a single stopwatch automa-
ton with fewer stopwatches than in the product of stopwatch
automata obtained through a generic direct modelling with
SWA. So, the verification of properties using HYTECH is
more likely to be tractable. This approach is coherent and
efficient because the translation can be done by using a fast
DBM based over-approximating algorithm, while still hav-
ing a result SWA that is timed-bisimilar to the SETPN. So
the cost of the translation is fairly lower than the verification
of properties on a direct modelling as a product of SWA.
Practical experimentations show that our method greatly in-
creases the size and complexity of the systems for which the
state space can be computed with HYTECH.

Further work includes the extension of the SETPN model
for the round-robin and dynamic scheduling policies such as
Earliest Deadline First, and adaptation of the method to the
inhibitor hyperarcs time Petri nets [22] model.

References

[1] R. Alur and D. L. Dill. A theory of timed automata.Theo-
retical Computer Science, 126(2):183–235, 1994.

[2] B. Berthomieu and M. Diaz. Modeling and verification of
time dependent systems using time Petri nets.IEEE transac-
tions on software engineering, 17(3):259–273, 1991.

[3] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario. Model-
ing flexible real time systems with preemptive time Petri
nets. In15th Euromicro Conference on Real-Time Systems
(ECRTS’2003), pages 279–286, 2003.

[4] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario. Time state
space analysis of real-time preemptive systems.IEEE trans-
actions on software engineering, 30(2):97–111, February
2004.

[5] F. Cassez and K. Larsen. The impressive power of stop-
watches. In C. Palamidesi, editor,11th International Con-
ference on Concurrency Theory, (CONCUR’2000), number
1877 in Lecture Notes in Computer Science, pages 138–152,
University Park, P.A., USA, July 2000. Springer-Verlag.

[6] G. B. Dantzig. Linear programming and extensions.IEICE
Transactions on Information and Systems, 1963.

[7] C. Daws and S. Yovine. Reducing the number of clock vari-
ables of timed automata. In1996 IEEE Real-Time Systems
Symposium (RTSS’96), pages 73–81, Washington, DC, USA,
december 1996. IEEE Computer Society Press.

[8] E. Fersman, P. Petterson, and W. Yi. Timed automata with
asynchronous processes : Schedulability and decidability. In
8th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’02), vol-
ume 2280 ofLecture Notes in Computer Science, pages 67–
82, Grenoble, France, 2002. Springer-Verlag.

[9] M. Harbour, M. Klein, and J. Lehoczky. Fixed priority
scheduling of periodic tasks with varying execution prior-
ity. In 12th IEEE Real-Time Systems Symposium (RTSS’91),
pages 116–128, San Antonio, USA, december 1991. IEEE
Computer Society Press.

[10] T. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model
checker for hybrid systems.Journal of Software Tools for
Technology Transfer, 1(1-2):110–122, 1997.

[11] P.-E. Hladik and A.-M. Déplanche. Analyse
d’ordonnançabilité de tâches temps-réel avec offset et
gigue. In11th international Conference on Real-Time Sys-
tems (RTS’03), pages 307–332, Paris, France, april 2003.

[12] K. G. Larsen, P. Pettersson, and W. Yi. Model-checking for
real-time systems. InFundamentals of Computation Theory,
pages 62–88, 1995.

[13] D. Lime and O. Roux. State class stopwatch automaton of
a scheduling extended time Petri net for the verification of
real-time systems. Technical report, Institut de Recherche
en Communications et Cybernétique de Nantes (IRCCyN),
2004.

[14] D. Lime and O. H. Roux. Expressiveness and analysis of
scheduling extended time Petri nets. In5th IFAC Interna-
tional Conference on Fieldbus Systems and their Applica-
tions, (FET’03). Elsevier Science, July 2003.

[15] D. Lime and O. H. Roux. State class timed automaton of a
time Petri net. In10th International Workshop on Petri Nets
and Performance Models, (PNPM’03). IEEE Computer So-
ciety, Sept. 2003.

[16] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment.Journal of ACM,
20(1):44–61, january 1973.

[17] P. M. Merlin. A study of the recoverability of computing sys-
tems. PhD thesis, Department of Information and Computer
Science, University of California, Irvine, CA, 1974.

[18] Y. Okawa and T. Yoneda. Schedulability verification of real-
time systems with extended time Petri nets.International
Journal of Mini and Microcomputers, 18(3):148–156, 1996.

[19] J. Palencia and M. Harbour. Schedulability analysis for tasks
with static and dynamic offsets. In19th IEEE Real-Time
Systems Symposium (RTSS’98), pages 26–37, Madrid, Spain,
december 1998. IEEE Computer Society Press.

[20] J. Palencia and M. Harbour. Exploiting precedence relations
in the scheduling analysis of distributed real-time systems. In
20th IEEE Real-Time Systems Symposium (RTSS’99), pages
328–339, Phoenix, Arizona, USA, december 1999. IEEE
Computer Society Press.

[21] O. H. Roux and A.-M. Déplanche. A t-time Petri net exten-
sion for real time-task scheduling modeling.European Jour-
nal of Automation (JESA), 36(7), 2002.

[22] O. H. Roux and D. Lime. Time Petri nets with inhibitor hy-
perarcs. Formal semantics and state space computation. In
The 25th International Conference on Application and The-
ory of Petri nets, (ICATPN’04), Bologna, Italy, june 2004.
Lecture Notes in Computer Science.

[23] K. Tindell. Fixed priority scheduling of hard real-time sys-
tems. PhD thesis, Department of Computer Science, Univer-
sity of New York, 1994.

