EXPRESSIVENESS AND ANALYSIS OF
SCHEDULING EXTENDED TIME PETRI NETS

Didier Lime* Olivier H. Roux*

*IRCCyN, UMR CNRS 6597,
1 rue de la Noé - BP92101
44321 Nantes Cedex 3 - France
{Didier.Lime |
Olivier-h.Roux}@irccyn.ec-nantes.fr

Abstract: The most widely used approach for verifying the schedulability of
a real-time system consists of using analytical methods. However, for complex
systems with interdependent tasks and variable execution times, they are not well
adapted. For those systems, an alternative approach is the formal modelisation
of the system and the use of model-checking, which also allows the verification
of more varied scheduling properties. In this paper, we show how an extension
of time Petri nets proposed in (Roux and Déplanche, 2002), scheduling extended
time Petri nets (SETPN), is especially well adapted for the modelisation of real-
time systems and particularly embedded systems and we provide a method for
computing the state space of SETPN. We first propose an exact computation
using a general polyhedron representation of time constraints, then we propose an
overapproximatiion of the polyhedra to allow the use of much more efficient data
structures, DBMs. We finally describe a particular type of observers, that gives us
a numeric result (instead of boolean) for the computation of tasks response times.

Keywords: Scheduling, formal methods, time Petri nets, realtime systems

1. INTRODUCTION

A real-time system is typically composed of sev-
eral tasks that interact. An important problem
consists of ensuring that the tasks can be executed
in such a way that they respect the constraints
they are subject to (deadlines, periods, ...), and
that the overall system performs correctly with
respect to its specification, i.e. that it satisfies a
given property (for example, the duration between
two successive samples of a signal is always in
the interval of time [a,b]). Solving this problem
usually requires scheduling the tasks in an appro-
priate way.

Two approaches are considered in order to solve
the scheduling problem. The off-line approach:

given a system S and a property P, a pre-runtime
schedule (scheduler) is constructed in such a way
that the system S satisfies P. The on-line ap-
proach: a scheduling policy based on priorities,
mostly derived from the temporal parameters (e.g.
Rate Monotonic, Earliest Deadline, Least Laxity)
is selected and implemented within the scheduler
; it is then necessary to make a schedulability
analysis to verify that with this given scheduling
policy, every task meets its deadline.

Consequently, scheduling theory is studied a
lot, mainly in the form of an analytical study.
It mostly consists of determining schedulabil-
ity tests: according to the complexity of the
tasks model, these schedulability tests are ex-

acts (necessary and sufficient conditions) or over-
approximations (sufficient conditions).

For analysis of sets of independent tasks, exact
methods have been developped that take into ac-
count both offsets and jitter (Tindell, 1994a; Pa-
lencia and Harbour, 1998; Hladik and Déplanche,
2003).

Precedence relations lead to much more com-
plex problems. The main approach tries to fall
back into an independent task model by com-
puting an additional jitter simulating the time
that the tasks submitted to precedence relations
have to wait for ((Tindell, 1994b)). Some works
refine this approach by reducing the jitter by a
best-case response-time computing ((Henderson
et al., 2001) for instance). However, the indepen-
dent model with jitter is an overapproximation
of the original one, which leads to pessimistic re-
sponse times. Other approaches analyze the prece-
dence graph to reduce the number of scenariis
to look at ((Harbour et al., 1991; Palencia and
Harbour, 1999)), but they are still based on the
identification of a worst-case scenario which does
not always exist. Finally, communication between
tasks by messages in a distributed system has also
been investigated in (Tindell and Clark, 1994),
which adds the computation of the messages re-
sponse times into the classical method.

These works generally consider a fixed execution
time but while in independent tasks configura-
tions, the worst case is obtained by consider-
ing the longest execution time, this is not true
anymore when considering precedence relations,
which leads to pessimism in the computation
of response times. Moreover, they are not yet
well adapted to complex synchronization schemes,
such as those allowed by real-time executives ser-
vices.

Related work

Consequently some work proposes to model com-
plex behaviors of the task using a formal model.
Concerning the off-line approach, works are mainly
based on the controller synthesis paradigm (Altisen
et al., 2000). A scheduler is considered as a con-
troller of the processes to be scheduled, which
restricts their behavior by triggering their con-
trollable actions. The models used include Petri
nets with Deadlines (Altisen et al., 1999), Petri
nets with a maximal firing functioning mode
((Grolleau and Choquet-Geniet, 2002)).

Concerning the on-line approach, the modeling
of pre-emptive process scheduling has been the
subject of recent works. The first approach con-
sists of modelling priorities of tasks with inhibitor
arcs added to the Petri net ((Robert and Juanole,

2000)). An inhibitor arc is then placed from each
transition of the pattern representing a task to-
wards each transition of the patterns representing
the other lower priority tasks. A similar approach
consists of using Petri nets with priorities (Janicki
and Koutny, 1999). Okawa and Yoneda ((Okawa
and Yoneda, 1996)) propose an approach with
time Petri nets consisting of defining groups of
transitions together with rates (speeds) of exe-
cution. Transition groups correspond to transi-
tions that model concurrent activities and that
can be simultaneously ready to be fired. In this
case, their rate are then divided by the sum of
transition execution rates. Roux and Déplanche
(Roux and Déplanche, 2002) propose an extension
for time Petri nets (SETPN) that allows to take
into account the way the real-time tasks of an
application distributed over different processors
are scheduled. Finally, Fersman, Pettersson and
Yi (Fersman et al., 2002) propose extended timed
automata with asynchronous processes. The main
idea is to associate each location of a timed au-
tomaton with an executable program called a task
and to construct the preemptive scheduler (fixed
priority or EDF) with timed automata with sub-
traction. However, they consider the worst case
execution times as a fixed time and it is easy
to show that reducing the computation time of a
task may surprisingly induce a decrease of timing
performances for the application.

Except the work of (Fersman et al., 2002), all
these models include the concept of stopwatch.
The reachability analysis problem for stopwatch
automata (as well as for time Petri nets with
inhibitor arcs. ..) is undecidable. There is no guar-
antee for the termination of the analysis. More-
over, for these models, the state space computa-
tion is often inefficient and difficult to implement.

We propose to use the SETPN model (Roux and
Déplanche, 2002) that have the advantage of be-
ing able to express both concurrency and real-
time constraints in a natural way and to express
the indeterminism of the task execution time by
the firing intervals of transitions. We propose a
method for computing the state space and an
overapproximation of that method that allows
a compact abstract representation of transitions
firing domains with DBM (Difference Bound Ma-

trix).

Qutline of the paper

The paper is organized as follows : section 2 gives
the formal definitions of the SETPN model and of
its semantics. Section 3 illustrates the expressivity
with regard to the classical services provided by
real-time executives. Section 4 describes an exact
state space computation and also a more efficient

Piy=1lw=1 Pyy=1lw=2
11 [2,3] T [1,4]
Pry=1lw=1 Pyyy=1lw=2
T> [1,2] Ty [3,5]

Fig. 1. SETPN of two tasks on one processeor

computation method (at the price of an overap-
proximation) that uses compact abstract repre-
sentations of the state-space based on DBM to
analyze SETPN. Finally, in section 5, we describe
special type of observer that allows us to compute
response time with our method and we apply this
method on a set of examples for which we have
exact response times computation methods.

2. SCHEDULING EXTENDED TIME PETRI
NETS

This extension of time Petri nets introduced in
(Roux and Déplanche, 2002) consists of map-
ping into the Petri net model the way the differ-
ent schedulers of the system activate or suspend
the tasks. For a fixed priority scheduling policy,
SETPN introduce two new attributes (y and w)
associated to each place that respectively repre-
sent allocation (processor) and priority (of the
modeled task). From a marking M, a function Act
(formally defined in (Roux and Déplanche, 2002))
gives the projection of the behaviour of the dif-
ferent scheduler in the following sense: Let us
suppose that the place P models a behavior (or
a state) of the task 7. M (p) > 0 means that the
task T is activable and Act(M (p)) > 0 means that
the task T is active.

All places of a SETPN do not require such param-
eters. Actually when a place does not represent
a true activity for a processor (for example a
register or memory state), neither a processor (7y)
nor a priority (w) have to be attached to it. In
this specific case (7 = ¢), the semantics remains
unchanged with respect to a standard TPN !.
One can notice that it is equivalent to attach to
this place a processor for its exclusive use and any
priority. An example of a SETPN is presented in
figure 1. The initial marking of the net is {P;, P3}.
However, since those two places are affected to the
same processor, and that the priority of Pj is the
highest, the initial active marking is {Ps}. So the
first transition fired will be T5.

Definition 1. (Scheduling Extended Time Petri net).

A scheduling extended time Petri net is a n-tuple
T=(P,T,%.), ()% a, B, My, Act), where

1 When v = ¢, the parameter is ommited in the figures of
this paper.

e P={p1,po2,...,pm} is a non-empty finite set
of places,
o T = {t1,ta,...,tp} is a non-empty finite set

of transitions ,

e *() € (W) is the backward incidence func-
tion,

e ()* € (N?)T is the forward incidence func-
tion,

e My € NP is the initial marking of the net,

e o€ (QM)7T and B € (QF U {oo})? are func-
tions giving for each transition respectively
its earliest and latest firing times (a <),

o Act € (NP)F is the active marking function.
Act(M) is the projection on the marking
M of the scheduling strategy. In (Roux and
Déplanche, 2002) Act(M) is defined for a
fixed priority scheduling policy, starting from
three parameters :

- Proc{¢,procy,procs,...,proc} is a fi-
nite set of processors (including ¢ that
is introduced to specify that a place is
not assigned to an effective processor of
the hardware architecture),

- w € NP is the priority assignment func-
tion ,

- v € Proc® is the allocation function.

We define the semantics of scheduling extended
time Petri nets as Timed Transition Systems
(TTS) (Larsen et al., 1995). In this model, two
kinds of transitions may occur : continuous tran-
sitions when time passes and discrete transitions
when a transition of the net fires.

A marking M of the net is an element of N*' such
that Vp € P, M (p) is the number of tokens in the
place p.

An active marking Act(M) of the net is an el-
ement of N such that Vp € P, Act(M(p)) =
M (p)orAct(M(p)) =0 .

A transition ¢ is said to be enabled by the marking
M if M > %, (i.e. if the number of tokens in M
in each input place of ¢ is greater or equal to the
valuation on the arc between this place and the
transition). We denote it by t € enabled(M).

A transition ¢ is said to be active if it is enabled
by the active marking Act(M). We denote it by
t € enabled(Act(M)).

A transition tj, is said to be newly enabled by the
firing of the transition t; from the marking M,
and we denote it by 1 enabled(ty, M,t;), if the
transition is enabled by the new marking M —
t; + t; but was not by M — *;, where M is the
marking of the net before the firing of ¢;. Formally,

T enabled(tk, M, ti) = (.tk S M — .ti + ti.)
A(te =) V (%t > M — ;)

By extension, we will denote by 1 enabled(M,t;)
the set of transitions newly enabled by firing the
transition ¢; from the marking M.

A valuation is a mapping v € (R*)? such that
Vt € T,v(t) is the time elapsed since t was last
enabled. Note that v(t) is meaningful only if ¢ is
an enabled transition. 0 is the null valuation such
that Vk,0; = 0.

Definition 2. (Semantics of a SETPN). The se-
mantics of a scheduling extended time Petri net
T is defined as a TTS S = (Q, go, —) such that

e () = NP x (]RJ")T

® gJo = (M07 0)

e € @ x (TUR) x @ is the transition re-
lation including a continuous transition rela-
tion and a discrete transition relation.

- The continuous transition relation is de-

fined Vd € RT by :

(M,v) -% (M, ') iff Vt; € T,
l/(ti) if ACt(M) < *;
AM > *(t;)

v(t;) + d otherwise,
M >*t; = v'(t;) < B(t:)

V’(ti) =

- The discrete transition relation is defined
Vt; € T by :

(M,v) L5 (M, V) iff
Act(M) > *t;,
M’ :M—.ti-f-ti.,
at;) <wv(t;) < B(t:),
Vtk,V(tk), = {

v(ty) otherwise

3. EXPRESSIVENESS

Time Petri nets in general have already been used
for a long time to model real-time systems and
protocols. SETPN add expressiveness with regard
to the scheduling policies provided by real-time
executives like OSEK/VDX (OSEK/VDX spec-
ification, 2001). In this section, we show some
examples of modelisation of services of these exec-
utives. Modelisation possibilities are of course not
restricted to what is presented here.

3.1 Basic task model

The basic model we propose for tasks is shown
on Fig. 2a. Basic patterns of that type may be
concatenated to express sequentiality (Fig. 2b).

Activation of tasks may be modeled very easily.
Fig. 3a shows a periodic activation and Fig. 3b a
delayed periodic activation. Cyclic activations are
shown on Fig. 3c.

0 if 1 enabled(ty, M,t;),

T4

T>

Pl,“/:ly&]:l

T [132]
ganwl Pay=lw=1
Ty [1,2] T [3,5]
(a) (b)
Fig. 2. Basic task model
Py
T, [1,1]
Pl:’y = la
T: [3,3] T [1,2]
Pla’Y = la (C)

w=3

T [1,2]

(a) (b)

[1,2]
Fig. 4. Synchronization with memorized events

PZ?’Y:LUJ:I

1

v =Lw=

P4,"Y:1,UJ:2

Py

Fig. 5. Two cyclic tasks synchronized via a
semaphore

3.2 Concurrent tasks

3.2.1. Basic synchronization Real-time exec-
utives provide several services for synchroniza-
tion. In particular, semaphores and events are
widely used. Fig. 5 shows a model for Dijkstra’s
semaphores and Fig. 4 proposes a model for
memorized events as found in OSEK/VDX, for
instance. Higher level or other synchronization
mechanisms are as easily modelisable.

3.2.2. Shared resources access Access to critical
resources may involves a mutual exclusion mech-
anism. This is usually done using a semaphore
(Fig. 6). However, it is well-known that this pol-
icy may result in deadlocks, so real-time execu-

PlafY:L °
w=1

w=2

1 [2,3] T3 [1,4]
sc,yy =1, ' ° sc,yy =1,

w=1 w=2

T [1,2] T4 [3,5]

Fig. 6. Semaphore for mutual exclusion

Fig. 7. Priority Ceiling Protocol
Poo plo

zo [dot,do2] z1 [di1,d12] ZTn [dn1, dn2]
po1, P11, Pni1,

v = CAN, 7:CAN, ~ = CAN,
w = idy w = ida w =1idy,
tnl

access,

v = CAN,

access,

v = CAN,

w = max;(id;)
to2 tn2

Fig. 8. CAN bus access

tives provide some higher level protocol to han-
dle shared resources access. The most used, in
OSEK/VDX ((OSEK/VDX specification, 2001))
for instance, is Priority Ceiling Protocol. It can be
modelised by SETPN with the pattern in Fig. 7.

3.8 Messaging

We provide here, as an example, a model for the
messaging component of a distributed real-time
system in which tasks communicate with a CAN
bus. This is a high-level modelisation of the CAN
protocol, since we only consider that the bus is
a shared resource, for which the access is made
according to the priorities corresponding to the
station number of each node. A much more precise
modelisation has been done in (Juanole, 1999),
which completly modelize the MAC sublayer of
the CAN protocol.

4. ANALYSIS

In order to analyze a time Petri net, the com-
putation of its reachable state space is required.

PBafY:la

w = max; (id;)

However, the reachable state space of a time Petri
net is obviously infinite, so a method has been
proposed to partition it in a finite set of infinite
state classes (Berthomieu and Diaz, 1991). This
method is briefly explained in the next subsec-
tion. The following paragraphs then describe its
extension in order to compute the state space of
SETPN.

4.1 State class graph of a time Petri net

Given a bounded time Petri net, Berthomieu
and Diaz have proposed a method for computing
the state space as a finite set of state classes
(Berthomieu and Diaz, 1991). Basically a state
class contains all the states of the net between
the firing of two consecutive transitions.

Definition 3. (State class). A state class C, of
a time Petri net, is a pair (M, D) where M is a
marking of the net and D a set of inequalities
called the firing domain.

The inequalities in D are of two types (Berthomieu
and Diaz, 1991)

a; < xz; < B (Vi such that t; is enabled),
—Yij < xj — z < Yjk, V7, k such that
j #kand (tj,t) € enabled(M)?

x; is the firing time of the enabled transition ¢;
relatively to the time when the class was entered
in.

Because of their particular form, the firing do-
mains may be encoded using DBMs (Dill, 1989),
which allow the use of efficient algorithms for the
computation of the classes.

Given a class C = (M, D) and a firable transition
ty, computing the successor class C' = (M',D')
obtained by firing ¢; is done by:

(1) Computing the new marking as for classical
Petri nets: M' = M —ty +1t;°

(2) Making variable substitutions in the domain:
Vi# f,x; < ¢} + xy

(3) Eliminating z; from the domain using for in-
stance the Fourier-Motzkin method ((Dantzig,
1963))

(4) Computing a canonical form of the new do-
main using for instance the Floyd-Warshall
algorithm ((Berthomieu, 2001))

With the method for obtaining the successors of a
class, computation of the state space of the TPN
consists merely of the classical building of the
reachability graph of state classes. That is to say,
that starting from the initial state class, all the
successors obtained by firing firable transitions
are computed iteratively until all the produced
successors have already been generated.

4.2 Ezact analysis using polyhedra

The semantics of definition 2 obviously implies
that the domain of state classes cannot be com-
puted for SETPNs as for classical TPNs. How-
ever, minor changes are proposed in (Roux and
Déplanche, 2002) to allow its construction.

Precisely, the variable substitution in the firing
domain is now only done for active transitions.
Moreover, when determining firable transitions,
the active firing domain must be considered i.e.
the firing domain restricted to variables corre-
sponding to active transitions.

While we still define a state class of a SETPN as
a marking and a domain, the general form of the
domain is not preserved. The new general form
is that of a polyhedron with constraints involving
up to n variables, with n being the number of
transitions enabled by the marking of the class:

a; < 0; < B;,Vt; € enabled(M),
a;, 0 + -+ ai, 05, < Viy i
Y(tiy, .-, ti,) € enabled(M)™
and with (a;,,...,a;,) € Z™

The following paragraphs give the details of the
computation of the new domain on a semi-general
example. We start from a DBM-like class to show
how additional constraints appear.

Let C = (M, D) be a state class of a SETPN, such
that

A\
8

1 Sﬂly

T2 SBQ:

r3 < B3,

T4 364)

p=J) <z — 22 <712, (1)
—y31 < @1 — 23 < M3,

—Y41 <1 — 24 < V14,

—¥32 < @2 — w3 < Y23,

—Y42 < T2 — T4 < Vo4,

[—743 < @3 — 24 < Y34

aq

2
w
INININ]

We also suppose that ¢1, t2 and ¢3 (corresponding
to variables z1, =2, z3) are active, and that t is
not. Additionally, we suppose that t; is firable and
we compute the domain of the class obtained by
firing t1. The first step is the variable substitution
x; < x} +x1 for all active transitions but ¢;. The
domain becomes

a; <z < By,
ar < @1 + x5 < P,
as <z1 + 25 < P,

Qg S 1‘11 S ﬂ47
—vo1 < @ — 71 — Ty < Y2, 2)
—v31 < @1 —x1 — xh < Y3,
—va1 < 21 — T4 < M4,
—v32 < @y + 2y — 21 — 2 < a3,
—Ya2 < 1 + T — 24 < o4,
[=743 < @1+ 25 — 24 < 34

The next step is the elimination of the variable x; .
We use the Fourier-Motzkin method. For that, we
rewrite the inequations as follows :

() <y, z1 < B,

a — ah < @1, z1 < Py — b,
ag —ay < @1, z1 < f3 — aj,
—Ya1 + 24, < 21 1 < Y14 + 24,

—Yaz +xs — x5 <1, 1 < you + Ty — Th,
—yaz + 24 — x5 <2y, 21 < a4+ T4 — T,
as <y < B,
—y32 < @y — x5 < a3,
—21 < —xy < 712,

[=731 < =25 <13

3)

The Fourier-Motzkin method then consists in
writing that the system has solutions if and only
if the lowers bounds of z; are less or equal to the
upper bounds. The obtained system is then equiv-
alent to the initial one. After a few simplifications
we obtain

Y12 < x5 < Yor,
!
—n3 < @3 < 31,

ay < xy < By,
—v32 < &y — x5 < Y23,
—Yaz — P1 < @y — x4 < you — 4)

Y43 — 1 < xh —xg <Yz — oy

s — 14 < @ + x4 < Bo + Va1,

as —v1a < xh 4+ 24 < B3 + a1,

a2 — y3a < @y + x4 — 25 < P2 + a3,
a3 — 24 < 23+ 24 — 25 < B34 a2

The final step consists in computing a canonical
form of this domain and will not be detailed here.
What we can see here is that eight inequations,
given on the four last lines, are generated, which
cannot be expressed with a DBM. Furthermore,
we can easily see that those new inequations may
give even more complex inequations (i.e. involving
more variables) when firing another transition for
the obtained domain.

4.8 Qwverapproximation

Manipulating polhydra in the general case in-
volves a very important computing cost. In order

t7 [10,10]

te [474]
Fig. 9. A Scheduling Extended Time Petri Net

to be able to keep our algorithms efficient for
SETPN, we approximate the polyhedron repre-
senting the firing domain to the smallest DBM
containing it. By doing this, we clearly add states
in our classes that should not be reachable and
thus we do an overapproximation. This is illus-
trated by the net in Figure 9. After the firing
sequence t4, t1, t5, the transition tg is not firable
because either to or t3 (depending on the firing
time of ¢4) must be fired first. The class obtained
is:
{p2,p3,p6},

0 S T2 S 47

0 S T3 S 4>

4 S T6 S 4>

—4 <z —w3 <4,

—4 <z —1w6 <0,

—4<z3—126 <0,
. 1 S Ty + 3 S 7

\

We can easily see that tg is indeed not firable, for
this implies x5 = 23 = x4 = 4 and thus z5 + 23 =
8. But if we remove the x5 + x3 < 7 constraint in
order to keep a DBM form, tg becomes firable. So
we have here an overapproximation.

However, for the verification of safety properties
the overapproximation is not a too big concern.
Since we want to ensure that something ”bad”
never happens, we only need to check a set of
states which contains the actual state space of the
SETPN. Of course, there is still a risk of being
pessimistic.

In addition, for the subclass of SETPN with fixed
firing times on transitions, the following theorem
holds:

Theorem 1. Let T = (P, T,*(.),(.)*,a, B, My, Act)

be a SETPN. If a = f, then inequations in all
state classes are reduced to equalities.

Proof. This will be shown by induction: since

a = [, the initial state class domain can be
written

bi, = a(tio)a

0:, = alti,)

So the claim of the theorem holds for the initial
state class. Let C' = (M, D) be a state class such

that

eio = Uy,

D =

Oin = Oy,
Let us suppose that ¢;, is a firable transition from
C and C" = (M, D') the class obtained by firing
t;, from C. D' is computed by the four following
steps:

(1) for all active transitions, say t;,, ..., t;,, with
m < n, for instance, the variable substitution
6 =6 +6;, is made,

(2) Disabled transitions (including ¢;,) are elim-
inated from the system of equalities. The
resulting system is obviously still composed
of equalities,

(3) Inequalities relative to the newly enabled
transitions are added. Since, @ = [, these
inequalities are actually equalities,

(4) The canonical form is not needed since the
system of equalities can only be written in
one way.

|

As a consequence, we never have overapproxi-
mations with that subclass of SETPN. Actually,
DBMs are not even required to code that compu-
tations.

5. SCHEDULABILITY VERIFICATION

Using the classical observer notion, we can verify
varied timed accessibility properties. In order to
verify the schedulability, we need a special kind of
observers that we formally describe in the follow-
ing section. While classical observers (Toussaint
et al., 1997) give a boolean response for a given
property, thanks to these observers we are also
able to compute the response time of the tasks
that we have modelised and then to compare with
other approaches.

5.1 Response time observers

Definition 4. (observer). Let a scheduling ex-
tended time Petri net

T = (P,T,%.),()°% a,B, My, Act), and two tran-
sitions {in,out} € T.

Toum one = (Poy T,% (), ()® ., B, Myg) is the TPN
T observed by the observer

Oin,out(T) = (pobsymamobs) where

L4 POZPU{pobs}a

L4 MO(pobs) = Myops »

o *yout = *out + pops and Vt € T — {out}, %t =
.t ,

e in®, =in*+pus andVt € T —{in}, t*, =t*

)

o VM € NP Act,(M (pops) = M (pops) and Vp €
P, Act,(M(p)) = Act(M (p)).

We note Q the set of state Q@ = (M,v,v,) of
the observed TPN 7o, ... The semantics of an
observed time Petrinet 7o,, ... is the semantics of
the TPN 7 with the following modification : The
continuous transition relation is defined Vd € RT
by :

(M,v,v;) LN (M, V', v)) iff

I/(ti) if ACt(M) < *;
l/l(ti) = AM Z 'tl
VtieT v(t;) + d otherwise ,
M >t; = v'(t;) < B(t:)
M(pops) > 1=V, =v, +d
M(pops) =0=>v, =v, =0

As the transition in models the request of a task ¢,
and the transition out its termination, we can used
this observer to determine the response time of ¢,
and to check that the task respects its deadline.

For a schedulable task such that M (pys) < 1, the
response time of a task task is :

t.(task) = man(Vz)

One can notice that since inequations in the
domain cannot be strict, a task for which a null
execution time remains may be preempted while it
has not done the discrete transition corresponding
to its termination.

5.2 Ezxperimental results

For testing, we have compared the results of
the computation of response times given by a
modelisation with HyTech (Henzinger et al., 1997)
for an exact result on relatively small but complex
models, analytical methods for bigger but simpler
models (independent tasks) and our method using
the DBM overapproximation.

Experimentation on several hundreds of examples
of varied models of real-time systems with non-
fixed execution times gives the same results for the
three (or two when HyTech or analytical method
is not adapted) methods. This allows us to think
that there is a relatively big subclass of SETPN
for which the DBM algorithm is exact, or at least
that the approximation is quite small on classical
real-time applications.

6. CONCLUSION

In this paper, we have shown how to express
most of the features of real-time systems with
SETPN, from basic activation schemes for tasks

to complex ressource access protocols. We also
provide a theoretical framework for analysis of
SETPN. In particular, we have given an exact
method for computing the state space of a SETPN
as well as a faster method at the cost of an
overapproximation. While this approximation is
not quantified, experimental results allow us to
think it is not very important. We have also given
a formal description of a special type of observers
that allow us to compute response times of tasks
modeled by SETPN.

Further work includes the identification of the
class of SETPN for which there is no overap-
proximation, extension of the modelisation for the
round-robin and dynamic scheduling policies and
the generation of the state-space as timed automa-
ton.

REFERENCES

Altisen, K., G. Go8ler, A. Pnueli, J. Sifakis, S. Tri-
pakis and S. Yovine (1999). A framework for
scheduler synthesis. In: 20th IEEE Real-Time
Systems Symposium (RTSS’99). IEEE Com-
puter Society Press. Phoenix, Arizona, USA.
pp. 154-163.

Altisen, K., G. Gofiler and J. Sifakis (2000). A
methodology for the construction of sched-
uled systems. In: 6th International Sympo-
sium on Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT’00). Vol.
1926 of Lecture Notes in Computer Science.
Springer-Verlag. Pune, India. pp. 106-120.

Berthomieu, B. (2001). La méthode des classes
d’états pour ’analyse des réseaux temporels.
In: 3%e congrés Modlisation des Systémes
Réactifs (MSR’2001). Hermes. Toulouse,
France. pp. 275-290.

Berthomieu, B. and M. Diaz (1991). Modeling
and verification of time dependent systems
using time petri nets. IEEE transactions on
software engineering 17(3), 259-273.

Dantzig, G. B. (1963). Linear programming and
extensions. IEICE Transactions on Informa-
tion and Systems.

Dill, D. L. (1989). Timing assumptions and veri-
fication of finite-state concurrent systems. In:
Workshop Automatic Verification Methods
for Finite-State Systems. Vol. 407. pp. 197—
212.

Fersman, E., P. Petterson and W. Yi (2002).
Timed automata with asynchronous pro-
cesses : Schedulability and decidability. In:
8th International Conference on Tools and
Algorithms for the Construction and Analysis
of Systems (TACAS’02). Vol. 2280 of Lecture
Notes in Computer Science. Springer-Verlag.
Grenoble, France. pp. 67-82.

Grolleau, Emmanuel and Annie Choquet-Geniet
(2002). Off-line computation of real-time
schedules using petri nets. Discrete Event Dy-
namic Systems 12(3), 311-333.

Harbour, M.G., M.H. Klein and J.P. Lehoczky
(1991). Fixed priority scheduling of peri-
odic tasks with varying execution priority.
In: 12th IEEE Real-Time Systems Symposium
(RTSS’91). IEEE Computer Society Press.
San Antonio, USA. pp. 116-128.

Henderson, W., D. Kendall and A. Robson (2001).
Improving the accuracy of scheduling analy-
sis applied to distributed systems. Real-Time
Systems 20(1), 5-25.

Henzinger, T.A., P.-H. Ho and H. Wong-Toi
(1997). Hytech: A model checker for hybrid
systems. Journal of Software Tools for Tech-
nology Transfer 1(1-2), 110-122.

Hladik, P.-E. and A.-M. Déplanche (2003). Anal-
yse d’ordonnan cabilité de taches temps-réel
avec offset et gigue. In: 11th international
Conference on Real-Time Systems (RTS’03).
Paris, France. p. to appear.

Janicki, R. and M. Koutny (1999). On causality
semantics of nets with priorities. Fundamenta
Informaticae 38(3), 223-255.

Juanole, G. (1999). Modélisation et évaluation
du protocole mac du réseau can. In: Rapport
LAAS No99303. Ecole d’Eté Applications,
Réseauzr et Systémes (ETR’99). Poitiers,
France. pp. 187-200.

Larsen, K. G., P. Pettersson and W. Yi
(1995). Model-checking for real-time systems.
In: Fundamentals of Computation Theory.
pp. 62-88.

Okawa, Y. and T. Yoneda (1996). Schedulabil-
ity verification of real-time systems with ex-
tended time petri nets. International Journal
of Mini and Microcomputers 18(3), 148-156.

OSEK/VDX specification (2001).
http://www.osek-vdx.org.

Palencia, J.C. and M.G. Harbour (1998). Schedu-
lability analysis for tasks with static and dy-
namic offsets. In: 19th IEFE Real-Time Sys-
tems Symposium (RTSS’98). IEEE Computer
Society Press. Madrid, Spain. pp. 26-37.

Palencia, J.C. and M.G. Harbour (1999). Ex-
ploiting precedence relations in the schedul-
ing analysis of distributed real-time systems.
In: 20th IEEFE Real-Time Systems Symposium
(RTSS’99). IEEE Computer Society Press.
Phoenix, Arizona, USA. pp. 328-339.

Robert, P.H. and G. Juanole (2000). Modélisation
et vérification
de politiques d’ordonnancement de taches
temps-réel. In: 8th Collogue Francophone sur
UIngénierie des Protocoles (CFIP’00). Her-
mes. Toulouse, France. pp. 167-182.

Roux, O. H. and A.-M. Déplanche (2002). A t-
time petri net extension for real time-task

scheduling modeling. Furopean Journal of
Automation (JESA).

Tindell, K. (1994a). Adding time-offsets to
schedulability analysis. Technical Report
Y(CS-94-221. University of York, Computer
Science Departement.

Tindell, K. (1994b). Fixed priority scheduling of
hard real-time systems. PhD thesis. Depart-
ment of Computer Science. University of New
York.

Tindell, K. and J. Clark (1994). Holistic schedula-
bility analysis for distributed hard real-time
systems. Microprocessing and Microprogram-
ming 40(1-2), 117-134.

Toussaint, J., F. Simonot-Lion and Jean-Pierre
Thomesse (1997). Time constraint verifica-
tions methods based time petri nets. In:
6th Workshop on Future Trends in Dis-
tributed Computing Systems (FTDCS’97).
Tunis, Tunisia. pp. 262-267.

