
Synthesis of Bounded Integer Parameters for
Parametric Timed Reachability Games?

Aleksandra Jovanović, Didier Lime, Olivier H. Roux

LUNAM Université. École Centrale de Nantes - IRCCyN UMR CNRS 6597
Nantes, France

Abstract. We deal with a parametric version of timed game automata
(PGA), where clocks can be compared to parameters, and parameter
synthesis. As usual, parametrization leads to undecidability of the most
interesting problems, such as reachability game. It is not surprising then
that the symbolic exploration of the state-space often does not termi-
nate. It is known that the undecidability remains even when severely re-
stricting the form of the parametric constraints. Since in classical timed
automata, real-valued clocks are always compared to integers for all prac-
tical purposes, we solve undecidability and termination issues by com-
puting parameters as bounded integers. We give a symbolic algorithm
that computes the set of winning states for a given PGA and the corre-
sponding set of bounded integer parameter valuations as symbolic con-
straints between parameters. We argue the relevance of this approach
and demonstrate its practical usability with a small case-study.

1 Introduction

Timed game automata (TGA) [4,15] have become a widely accepted formalism
for modeling and analyzing control problems on timed systems. They are es-
sentially timed automata (TA) with the set of actions divided into controllable
(used by the controller) and uncontrollable (used by the environment) actions.
Reachability game for TGA is the problem of determining the strategy for the
controller such that, no matter what the environment does, the system ends up
in the desired location. Such games are known to be decidable [15]. Introduction
of this model is followed by the development of the tool support [5] successfully
applied to numerous industrial case studies [9].

This model, however, requires complete knowledge of the systems. Thus, it
is difficult to use it in the early design stages when the whole system is not fully
characterized. Even when all timing constraints are known, if the environment
changes or the system is proven wrong, the whole verification process must be
carried out again. Additionally, considering a wide range of values for constants
allows for a more flexible and robust design.

Parametric reasoning is, therefore, particularly relevant for timed models,
since it allows to the designers to use parameters instead of concrete timing

? This work was partially funded by the ANR national research program ImpRo (ANR-
2010-BLAN-0317).

values. This approach, however, leads to the undecidability of the most important
questions, such as reachability.

Related work.

Parametric timed automata [2], have been introduced as an extension of TA [1],
to overcome the limit of checking the correctness of the systems with respect
to concrete timing constraints. The central problem for verification purposes,
reachability-emptiness, which asks whether there exists a parameter valuation
such that the automaton has an accepting run, is undecidable. This naturally
lead to the search for a subclasses of the model for which some problems would
be decidable. In [11], L/U automata, which use each parameter as either a lower
bound or an upper bound on clocks, is proposed. Reachability-emptiness prob-
lem is decidable for this model, but the state-space exploration still might not
terminate. Decidability of L/U automata is further studied in [6]. The authors
give the explicit representation of the set of parameters, when all parameters are
integers and of the same type (L-automata and U-automata). In [7], the authors
allow parameters both in the model and the property (PTCTL), and they show
that the model-checking problem is decidable, in discrete time over a PTA with
one parametric clock, if the equality is not allowed in the formulae. A different
approach is taken in [3] where the exploration starts from the initial set of pa-
rameter values, for which the system is correct, and enlarges the set ensuring
that the behaviors of PTA are time-abstract equivalent. They give a conjecture
for the termination of the algorithm, being true on the studied examples.

Parametric Timed Game Automata (PGA): In [12], we have introduced an ex-
tension of TGA, called parametric timed game automata (PGA) and its subclass
for which the reachability-emptiness game, which asks whether there exist a pa-
rameter valuation such that a winning strategy exists, is decidable. The subclass
is, however, severely restricted in the use of parameters and the symbolic com-
putation [12] of the set of winning states still might not terminate.

Our contribution. In this paper, we propose an orthogonal restriction scheme
that we have introduced in [13] for PTA: since in classical timed game automata,
real-valued clocks are always compared to integers for all practical purposes, we
solve undecidability and termination issues by computing parameters as bounded
integers. We give a symbolic algorithm that computes the set of winning states
and the winning strategy for the controller for a given PGA and the correspond-
ing set of parameter valuations as bounded integers. Due to the boundedness of
parameters, the termination is ensured, and the resulting set of parameter valu-
ations is given as symbolic constraints between parameters. The symbolic algo-
rithm is based on the computation of the integer hull of the bounded parametric
symbolic states. It first computes forward the whole reachable state-space, then
propagates backwards the winning states. In order to find the winning states,
we extend the well known fixed-point backwards algorithm for solving timed

reachability games [15], for the parametric domain. Surprisingly, we do not have
to apply an integer hull in the backwards computation, in order to obtain the
correct integer solution.

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 provides definitions about PGA, the problems we are considering, and
recalls some negative decidability results. In Section 3 we first present the algo-
rithm for solving timed games, then we motivate a restriction scheme, introduced
in [13] for PTA, and extend the algorithm for the parametric approach and com-
putation of parameters as bounded integers. The practical use of our method is
shown with a small case study in Section 4. We conclude with Section 5.

2 Parametric Timed Games

Preliminaries. R is the set of real numbers (R≥0 is the set of non-negative real
numbers), Q the set of rational numbers, and Z the set of integers. Let V ⊆ R.
A V -valuation on some finite set X is a function from X to V . We denote by
V X the set of V -valuations on X.

Let X be a finite set of variables modeling clocks and let P be a finite set
of parameters. A parametric clock constraint γ is an expression of the form
γ ::= xi−xj v p | xi v p | γ ∧γ, where xi, xj ∈ X, v∈ {≤, <}, and p is a linear
expression of the form k0 + k1p1 + ...+ knpn with k0, ...kn ∈ Z and p1, ...pn ∈ P .

For any parametric clock constraint γ and any parameter valuation v, we note
v(γ) the constraint obtained by replacing each parameter pi by its valuation
v(pi). We denote by G(X,P) the set of parametric constraints over X, and
G′(X,P) a set of parametric constraints over X of the form γ′ ::= xi v p | γ′∧γ′.

For a valuation v on X and t ∈ R≥0, we write v+t for the valuation assigning
v(x) + t to each x ∈ X. For R ⊆ X, v[R] denotes a valuation assigning 0 to each
x ∈ R and v(x) to each x ∈ X\R. Further, we define the null valuation 0X on
X by ∀x ∈ X,0X(x) = 0.

2.1 Parametric Timed Games

Definition 1. A Parametric Timed Automaton (PTA) is a tuple A = (L, l0, X,
Σ, P,E, Inv), where L is a finite set of locations, l0 ∈ L is the initial location,
X is a finite set of clocks, Σ is a finite alphabet of actions, P is a finite set of
parameters, E ⊆ L×Σ×G(X,P)×2X×L is a finite set of edges: if (l, a, γ,R, l′) ∈
E then there is an edge from l to l′ with action a, (parametric) guard γ and
set of clocks to reset R, and Inv : L 7→ G′(X,P) is a function that assigns a
(parametric) invariant to each location.

For any Q-valuation v on P , the structure v(A) obtained from A by replacing
each constraint γ by v(γ) is a timed automaton with invariants [1,10]. The be-
havior of a PTA A is described by the behavior of all timed automata obtained
by considering all possible valuations of parameters.

Definition 2 (Semantics of a PTA). The concrete semantics of a PTA A
under a parameter valuation v, notation v(A), is the labelled transition system
(Q, q0,→) over Σ ∪R≥0 where:

– Q = {(l, w) ∈ L×RX≥0 | w(v(Inv(l))) is true }
– q0 = {(l0,0X) ∈ Q}
– delay transition: (l, w)

t−→ (l, w + t) with t ≥ 0, iff ∀t′ ∈ [0, t], (l, w + t′) ∈ Q
– action transition: (l, w)

a−→ (l′, w′) with a ∈ Σ, iff (l, w), (l′, w′) ∈ Q,
there exists an edge (l, a, γ,R, l′) ∈ E,w′ = w[R] and w(v(γ)) is true.

A finite run of PTA A, under a parameter valuation v, is a sequence of alter-
nating delay and action transition in the semantics of v(A), ρ = q1a1q2...an−1qn,

where ∀i, qi ∈ Q, ai ∈ Σ ∪R≥0, and qi
a−→ qi+1. The last state of ρ is denoted by

last(ρ). We denote by Runs(v(A)) the set of runs starting in the initial state of
v(A), and by Runs(q, v(A)) the set of runs starting in q. A run is maximal if it
is either infinite or cannot be extended. A state q is said to be reachable in A if
there exists a finite run ρ ∈ Runs(v(A)), such that last(ρ) = q.

In [12], we have extended the previous definitions, to obtain a more power-
ful formalism that allows us to express parametric control problems on timed
systems.

Definition 3. A Parametric (Timed) Game Automaton (PGA) G is a paramet-
ric timed automaton with its set of actions Σ partitioned into controllable (Σc)
and uncontrollable (Σu) actions.

As for PTA, for any PGA G and any rational valuation on parameters v, the
structure v(G), obtained by replacing each constraint γ by v(γ), is a timed game
automaton.

In a TGA, two players, a controller and an environment, choose at every
instant one of the available actions from their own sets, according to a strategy,
and the game progresses. Since the game is symmetric, we give only the definition
for the controller playing with actions from Σc. At each step, a strategy tells
controller to either delay in a location (delay), or to take a particular controllable
action.

Definition 4 (Strategy). A strategy F over v(G) is a partial function from
Runs(v(G)) to Σc ∪ {delay} such that for every finite run ρ, if F(ρ) ∈ Σc then

last(ρ)
F(ρ)−−−→ q for some state q = (l, w), and if F(ρ) = delay, then there exists

some d > 0 such that for all 0 ≤ d′ ≤ d, there exists some state q such that

last(ρ)
d′−−→ q.

We consider only memory-less strategies, where F(ρ) only depends on the
current last(ρ). Note that the uncontrollable actions cannot be used to reach
the desired location, the controller has to be able to reach it by itself.

Outcome defines the restricted behavior of v(G), when the controller plays
some strategy F .

Definition 5 (Outcome). Let G be a PGA, v be a parameter valuation, and
F be a strategy over v(G). The outcome Outcome(q,F) of F from state q is the
subset of runs in Runs(q, v(G)) defined inductively as:

– the run with no action q ∈ Outcome(q,F)

– if ρ ∈ Outcome(q,F) then ρ′ = ρ
δ−−→ q′ ∈ Outcome(q,F) if ρ′ ∈ Runs(q, v(G))

and one of the following three condition holds:
1. δ ∈ Σu,
2. δ ∈ Σc and δ = F(ρ),

3. δ ∈ R≥0 and ∀0 ≤ δ′ < δ, ∃q′′ ∈ S s.t. last(ρ)
δ′−−→ q′′ ∧ F(ρ

δ′−−→ q′′) =
delay.

– for an infinite run ρ, ρ ∈ Outcome(q,F), if all the finite prefixes of ρ are in
Outcome(q,F).

As we are interested in reachability games, we consider only the runs in the
outcome that are “long enough” to have a chance to reach the goal location: a
run ρ ∈ Outcome(q,F) is maximal if it is either infinite or there is no delay d and

no state q′ such that ρ′ = ρ
d−−→ q′ ∈ Outcome(q,F) and F(ρ′) ∈ Σc (the only

possible actions from last(ρ) are uncontrollable actions). MaxOut(q,F) notes
the set of maximal runs for a state q and a strategy F .

Definition 6 (Winning strategy). Let G = (L, l0, X,Σ
c ∪Σu, P, E, Inv) be a

PGA and lgoal ∈ L. A strategy F is winning for the location lgoal if for all runs
ρ ∈MaxOut(q0,F), where q0 = (l0,0X), there is some state (lgoal, w) in ρ.

Similarly, a state q is winning (for the controller) if it belongs to a run in the
outcome of a winning strategy.

We study the problem of reachability-emptiness game for PGA, which is the
problem of determining whether the set of parameter valuations, such that there
exists a strategy for the controller to enforce the system into the desired location,
is empty. We are also interested in the corresponding reachability-synthesis game
for PGA, which is to compute all parameter valuations such that there exists a
winning strategy for the controller.

Reachability-emptiness problem for PTA is undecidable, [1]. As PGA extend
PTA, the reachability-emptiness game for PGA is also undecidable [12].

3 Integer Parameter Synthesis

Parametrization leads to undecidability of the most important problems. There
exist subclasses of PTA [11,6] (resp. PGA [12]) for which the reachability-
emptiness (resp. reachability-emptiness game) is decidable, however, they are
severely restricted and their practical usability is unclear.

We advocated in [13] for a different restriction scheme for PTA, to search
for parameter values as bounded integers. This makes all the problems decid-
able, since we can enumerate all the possible valuations. Lifting either one of
the two assumptions (boundedness or integer) leads to undecidability [13]. The

explicit enumeration is not practical, and thus we proposed an efficient sym-
bolic method to find the solution. This has the advantage of giving the set of
parameter valuations as symbolic constraints between parameters.

3.1 Computing the Winning States in Parametric Timed Games

We first recall an algorithm from [12] to compute the parameter valuations per-
mitting the existence of a winning strategy for the controller. Due to the asso-
ciated decidability results, its termination is obviously not guaranteed. For the
sake of readability, we present it in a simplified version, closer to an extension
of the classical algorithm of [15], in which we first compute forward the whole
reachable state-space, then propagate backwards the winning states, instead of
interleaving the forward and backward computations as done in [12] as an ex-
tension of [8]. There would be no problem in restoring that interleaving in the
setting proposed here.

The computation consists of two fixed-points on the state-space of the PGA.
To handle these sets of states, we define the notion of parametric symbolic state:

Definition 7 (Parametric symbolic state). A symbolic state of a paramet-
ric timed (game) automaton G, with set of clocks X and set of parameters P , is
a pair (l, Z) where l is a location of A and Z is a set of valuations v on X ∪ P .

For the state-space exploration in the parametric domain, we extend the
classical operations on valuation sets:

– projection: for any set of states Z, and any set R ⊆ P ∪ X, Z|R is the
projection of Z on R;

– future: Z↗ = {v′ | ∃v ∈ Z s.t. v′(x) = v(x) + d, d ≥ 0 if x ∈ X; v′(x) =
v(x) if x ∈ P}

– reset of clocks in set R ⊆ X: Z[R] = {v[R] | v ∈ Z}

We also need the following operators on symbolic states.

– initial symbolic state of the PTA A = (L, l0, Σ,X, P,E, Inv): Init(A) =
(l0, {v ∈ RX∪P | v|X ∈ 0X ∩ v|P (Inv(l0))|X})

– successor by edge e = (l, a, γ,R, l′): Succ((l, Z), e) = (l′, (Z∩γ)[R]↗∩Inv(l′)).

We can extend the Succ operator to arbitrary sets of states by defining, for
any set of states S and any location l, the subset Sl of S containing the states
with location l. Sl is therefore a symbolic state (l, Z) for some set of valuations
Z. Then we define Succ(S, e) as Succ(Sl, e), with l being the source location of
edge e. The reachable state-space of the PGA can be computed by the following
fixed-point (when it exists) [13]:

Sn+1 = Init(A)↗ ∪
⋃
e∈E

Succ(Sn, e), with S0 = ∅

The final fixed-point set is noted S∗. It follows from [11] that all Z are finite
unions of convex polyhedra.

In order to compute the winning states, we need a few additional operators:

– past: v↙ = {v′ | ∃v ∈ Z s.t. v′(x) = v(x) − d, d ≥ 0 if x ∈ X; v′(x) =
v(x) if x ∈ P}

– inverse reset of clocks in set R ⊆ X: Z[R]−1 = {v′, v′(x) = 0 if v′ ∈
Z[R] | ∃v ∈ Z s.t. v′(x) = v(x) if x 6∈ R}

– predecessor by edge e = (l, a, γ,R, l′): Pred((l′, Z), e) = (l, Z[R]−1 ∩ γ).
– controllable (resp. uncontrollable) action predecessors: cPred((l′, Z)) (resp.

uPred((l′, Z))) is the union of all the predecessors of (l′, Z) by some edge
with target location l′ and labelled by a controllable (resp. an uncontrollable)
action.

As before, we extend all these predecessor operators to arbitrary sets of
states. We can now define a safe-timed predecessors operator Predt(S1, S2) =

{(l, v) | ∃d ≥ 0 s.t. (l, v)
d−→ (l, v′), (l, v′) ∈ S1 and Post[0,d](l, v) ⊆ S∗\S2},

where Post[0,d](l, v) = {(l, v′) ∈ S∗ | ∃t ∈ [0, d] s.t. (l, v)
t−→ (l, v′)}.

This corresponds intuitively to the states that can reach S1 by delay, without
going through any state in S2 along the path.

If we denote by Sgoal = {lgoal} × RX≥0, then the backwards algorithm for
solving reachability games is the fixed-point computation of:

Wn+1 = S∗ ∩ (Predt(Wn ∪ cPred(Wn), uPred(S∗\Wn)) ∪ Sgoal), with W0 = ∅

When it exists, the final fixed-point set is noted W ∗. We recall the following
result from [12]:

Theorem 1 ([12]). When W ∗ exists, for any PGA G and any location lgoal,
there exists a winning strategy for the controller in v(G), for a parameter valu-
ation v iff v ∈ (W ∗ ∩ Init(G))|P .

The obvious problem with the above approach is that the fixed-point com-
putation of W ∗ might not terminate. And indeed, already, the fixed-point com-
putation of S∗, the reachable state-space, might not terminate either.

In [13], to solve this problem without restricting the expressiveness of the
model too much, we have restricted the problem of parameter synthesis to the
search for bounded integer parameters. We wanted to avoid an explicit enu-
meration of all the possible values of parameters and have therefore proposed
a modification of the symbolic computation of S∗ that preserves the integer
parameter valuations.

The approach is based on the notion of integer hull. The integer hull IntHull(Z)
of a convex polyhedron Z in Rn is the smallest convex subset of Z containing
all the elements of Z with integer coordinates. If Conv(Z) is the smallest convex
set containing Z, and IntVects(Z) the subset of all elements of Z with integer
coordinates, then the integer hull of Z is IntHull(Z) = Conv(IntVects(Z)). IntHull
is extended to symbolic states as: IntHull((l, Z)) = (l, IntHull(Z)).

In [13], we have proved that to solve integer parameter synthesis problem
it is sufficient to consider the integer hulls of the symbolic states. Therefore,
in the standard algorithm for the reachability-synthesis for PTA, we replace all
occurrences of the operator Succ with ISucc((l, Z), e) = IntHull(Succ((l, Z), e)).

By using the ISucc instead of Succ in the computation of the whole state-space
S∗ we ensure termination and obtain a subset IS∗ of S∗ such that IntVects(IS∗) =
IntVects(S∗), provided we know a bound on the possible values for the parame-
ters and the following assumption holds:

Assumption 1 Any non-empty symbolic state computed through the Succ op-
erator contains at least one integer point.

From now on we place ourselves in this setting, and like in [13] we can assume
w.l.o.g. that all clocks are bounded by some constant.

3.2 Bounded Integer Parameter Synthesis

In [13], in order to prove the correctness of the algorithm that uses the inte-
ger hull, we have relied on the convexity of the symbolic states in the forward
computation. However, even if S1 and S2 are convex, Predt(S1, S2) is not in
general. By taking the integer hull of a non-convex set, we could include some
integer points that do not belong to the original set. Since we want to pre-
serve the integer points, we define a new operator, an integer shape, IntShape.
As stated before, any set S produced by the backward computation can be ex-
pressed as finite unions of convex polyhedra

⋃
i Zi. For such a finite union; we

define IntShape(S) =
⋃
i IntHull(Zi). We can now extend the needed backwards

operators using the notion of integer shape.
We first extend a predecessor by edge operator (Pred) for the computation

of integer parameter valuations, similarly to the extension of Succ operator. For
a symbolic state (l, Z) and an edge e, an integer predecessor by an edge e is
defined as: IPred((l, Z), e) = IntShape(Pred((l, Z), e)).

The following lemma states that the computation of the integer shape of
a predecessor of a symbolic state (l, Z), results in the same set as if we would
compute the integer shape of a symbolic state (l, Z) at first, and then the integer
shape of its predecessor by edge.

Lemma 1. For any symbolic state (l, Z) and any edge e:
IPred(IntShape((l, Z), e)) = IntShape(Pred((l, Z), e))

Proof. We will prove both inclusions:
1. IPred(IntShape((l, Z)), e) ⊆ IntShape(Pred((l, Z), e)).

Since IntShape((l, Z)) ⊆ (l, Z) and IntShape and Pred are non-decreasing, the
first inclusion holds.

2. IPred(IntShape((l, Z)), e) ⊇ IntShape(Pred((l, Z), e)).
Let v ∈ IntVects(Pred((l, Z), e)). Then ∃v′ ∈ Z s.t. v ∈ IntVects(Pred((l, {v′}), e)).
By definition of Pred we have that v|P = v′|P , and therefore v′ ∈ v|P (Z). v|P is an

integer vector (since v is) and v|P (Z) is a zone of a classical TA and thus with
integer vertices. Therefore v|P (Z) = IntShape(v|P (Z)). Since IntShape is non-
decreasing and v|P (Z) ⊆ Z we have IntShape(v|P (Z)) ⊆ IntShape(Z), and so v′ ∈
IntShape(Z) and v ∈ IntVects(Pred((l, IntShape(Z)), e)). Again, since IntShape is
non-decreasing, we obtain IPred(IntShape((l, Z)), e) ⊇ IntShape(Pred((l, Z), e)).

We define, in a similar way, an integer controllable (resp. uncontrollable) ac-
tion predecessors IcPred((l, Z)) = IntShape(cPred((l, Z))) (resp. IuPred((l, Z)) =
IntShape(uPred((l, Z))).

Lemma 2. For any symbolic state (l, Z):
IcPred(IntShape((l, Z))) = IntShape(cPred((l, Z)))

Proof. Immediate with Lemma 1 from the facts that: cPred((l, Z)) =⋃
c∈Σc Pred(IntShape((l, Z), c))) and IntShape(S1, S2) =

IntShape(S1) ∪ IntShape(S2) when S1 and S2 are finite unions of convex sets.

The same result obviously holds for uPred and we can finally extend this to
the safe-timed predecessor operator by IPredt(Z1, Z2) = IntShape(Predt(Z1, Z2)).

Lemma 3. For any two sets of states S1 and S2:
IPredt(IntShape(S1), IntShape(S2)) = IntShape(Predt(S1, S2))

Proof. Recall that S1 and S2 are finite unions of convex polyhedra: S1 =
⋃
i Z1i

and S2 =
⋃
j Z2j . By using a result from [8], we then have Predt(

⋃
i Z1i,

⋃
j Z2j) =⋃

i

⋂
j Predt(Z1i, Z2j). Then for any i, j, with another result from [8], we have:

Predt(Z1i, Z2j) = (Z↙1i \Z
↙
2j)∪ ((Z1i ∩Z↙2j)\Z2j)

↙, because Z2j is convex. What
we need to show then is that:
-IntShape(Z1 ∩ Z2) = IntShape(IntShape(Z1) ∩ IntShape(Z2))
-IntShape(Z1 ∪ Z2) = IntShape(IntShape(Z1) ∪ IntShape(Z2))

-IntShape(Z↙1) = IntShape(IntShape(Z1)↙)
-IntShape(Z1\Z2) = IntShape(IntShape(Z1)\IntShape(Z2))

These four results are quite straightforward. Let us just prove the first, the
rest being similar.

First remark that Z1 and Z2 being convex, integer shapes are actually integer
hulls. Second IntHull(S) ⊆ S, for any S and since IntHull is non-decreasing,
IntHull(Z1 ∩ Z2) ⊇ IntHull(IntHull(Z1) ∩ IntHull(Z2)).

Now let v ∈ IntVects(IntHull(Z1)) then, by definition, v ∈ IntVects(Z1) and if
it also belongs to IntVects(IntHull(Z1)) then it is in IntVects(Z1) ∩ IntVects(Z2)
or equivalently in IntVects(Z1 ∩ Z2) and by taking the convex hull, we have the
result.

Now consider the following fixed-point computation:

IWn+1 = IS∗∩(IPredt(IWn∪IcPred(IWn), IuPred(IS∗\IWn))∪Sgoal), IW0 = ∅

Lemma 4. For a PGA G, location lgoal, and a state (l, v) such that v is an
integer valuation, it holds that for ∀i, there exist a winning strategy in at most
i controllable steps from (l, v|X) in v|P (G) iff (l, v) ∈ IWi.

Proof. We proceed by induction. The property obviously holds for IW0. Now,
suppose it holds for some n ≥ 0. We first prove the left to right implication.
Let (l, v) be a state in IWn+1 such that v is an integer point. then (l, v) ∈
IS∗∩ (IPredt(IntShape(IWn∪ cPred(IWn)), IntShape(uPr(IS∗ \ IWn)))∪Sgoal).

If (l, v) ∈ Sgoal we are done, else, by Lemma 3, we know that (l, v) ∈ IS∗ ∩
IntShape(Predt(IWn)∪cPred(IWn), uPred(IS∗\IWn)) and then in Predt(IWn)∪
cPred(IWn), uPred(IS∗ \IWn) and we get the result using the correctness of the
Predt operator and the induction hypothesis.

Now, we prove the right to left implication. If there is a strategy to win
in at most n + 1 steps, there is one to reach some state (l′, v′) in one step
and win in at most n steps. Then by the induction hypothesis, (l′, v′) ∈ IWn

and by the correctness of the Predt operator, (l, v) belongs to Predt(IWn) ∪
cPred(IWn), uPred(IS∗ \ IWn). Since v is an integer valuation, (l, v) belongs to
IntShape(Predt(IWn) ∪ cPred(IWn), uPred(IS∗ \ IWn)) and we can conclude by
Lemma 3.

We now prove that the fixed-point computation IWn terminates and that its
result IW ∗ is correct and complete.

Theorem 2 (Termination). For any PGA G and any desired location lgoal,
the algorithm terminates.

Proof. We proved, in [13], that the forward computation of IS∗ terminates.
When going backwards, each time we apply IPredt we know that we have added
to the winning set of states at least one integer point (otherwise we can termi-
nate). Since there is only a finite number of integer points to add (due to the
boundedness of clocks and parameters), the computation terminates.

Theorem 3 (Correctness and completeness). Let v be an integer parameter
valuation. For any PGA G and any location lgoal, upon termination, there exists
a winning strategy for the controller in v(G) iff v ∈ (IW ∗ ∩ Init(G))|P .

Proof. We start by proving the right to left implication. Suppose v ∈ (IW ∗ ∩
Init(G))|P . Then there exists a state (l0, v0) in IW ∗ ∩ Init(G) such that v0|P = v
and v0|X has all coordinates equal to 0. So v0 is an integer valuation on X∪P and
since it belongs IW ∗, it belongs to IWn for some n. So we can apply Lemma 4
to conclude.

Now, we prove the left to right implication. If there exists a winning strategy
for the controller to win in v(G) then it means that it can win within a finite
number of controllable steps. Then, by Lemma 4, it means that the state (l0, v0)
such that v0|P = v and v0|X has all coordinates equal to 0 belongs to IWn for
some n, and therefore to IW ∗, which concludes the proof.

3.3 Avoiding Integer Hulls in the Backward Computation

We have shown how we can symbolically compute the bounded integer parameter
valuations that permit the controller to win. We will now prove that, surprisingly,
we actually do not have to apply an integer hull in the backwards computation,
in order to obtain the correct integer solution and ensure termination.

Consider the fixed-point computation corresponding to this setting:

IW ′n+1 = IS∗ ∩ (Predt(IW
′
n ∪ cPred(IW ′n), uPred(IS∗\IW ′n))∪ Sgoal), IW ′0 = ∅

Let us first show that if this procedure terminates, it is sound and complete.

Theorem 4 (Correctness and completeness). For any PGA G, a desired
location lgoal, and an integer parameter valuation v, upon the termination, there
exists a winning strategy for the controller in v(G) iff v ∈ (IW ′∗ ∩ Init(G))|P .

Proof. First remark that, for all n, we have IWn ⊆ IW ′n ⊆Wn, because integer
hulls and shapes only remove points. Now, IntVects is a non-decreasing operator
so IntVects(IWn) ⊆ IntVects(IW ′n) ⊆ IntVects(Wn). By Lemma 3 and correctness
of the Wn computation, we know that IntVects(IWn) = IntVects(Wn). So all
three sets are equal.

Now, as seen in the proof of Theorem 3, any initial state in v(G) for an
integer parameter valuation v certainly has an integer valuation of both clocks
and parameters, which permits us to conclude.

Proving the termination is much trickier: we shall construct a new object, that
we call parametric region graph, that refines the standard region graph for timed
automata of [1] with parametric constraints. We therefore further divide the
region graph with all the guards from the model and all the constraints defining
integer hulls (of the symbolic states) obtained in the forward computation.

A constraint of an integer hull may create a non-integer vertex when inter-
secting the region graph. For each such vertex, we add constraints that go though
the vertex and are parallel to the diagonal constraints of the region graph (added
constraints are of the form xi − xj + k = 0 for all clocks xi, xj and k ∈ Z).

Note that if a constraint of an integer hull intersects a diagonal constraint cre-
ating a non-integer vertex, there is already a diagonal constraint going through
that vertex. We now give a formal definition of the parametric region graph.

Definition 8 (Parametric regions). Let m be the maximal value of paramet-
ric expressions occurring in the constraints of the PGA (recall that parameters
are bounded so it is possible to compute that value). The parametric region graph
is constructed in the following way:

– the variable-space RX∪P is partitioned along the constraints x ∼ k and x−
y ∼ k for all clocks x, y ∈ X, v∈ {<,=, >} and 0 ≤ k ≤ m (this gives the
standard region graph);

– for any guard of the automaton and any constraint appearing in the (finite
number of) convex polyhedra defining IS∗, γ v 0, we further partition the
variable-space, with the constraints γ v′ 0 for every v′∈ {<,=, >};

– for any (non-integer) vertex of the “pre-regions” defined by the above parti-
tion, we further refine the variable-space by constraints of the form x−y+k v
0, with v∈ {<,=, >} for all clocks x 6= y and k ∈ Z, going through that ver-
tex.

Informally, these constraints partition the variable-space RX∪P into a finite
number of a parametric regions, which are either a vertex, a line fragment be-
tween two vertices, or a sub-space between line fragments and vertices that does
not contain either a line fragment nor a vertex.

Fig. 1 shows a two-dimensional example of the variable-space partitioned
into parametric regions. An integer hull obtained in a forward computation is

x1

x2

Fig. 1. Parametric region partition

drawn in red. Its side (that does not overlap with the region graph) is extended
(in green) as long as it cuts the state-space. Additionally, each non-integer ver-
tex obtained in the intersection of the constraints defining the integer hull and
the region graph, has a diagonal constraint that goes through it (in blue). An
example of a parametric region is given in gray.

In order to prove the termination when going backwards, we have to show
that all the operators preserve the parametric regions.

Lemma 5. If (ai)i and (bj)j are finite families of parametric regions then the
following sets are a finite union of parametric regions:

1.
⋃
i ai ∪

⋃
j bj;

2.
⋃
i ai ∩

⋃
j bj;

3. the complement of
⋃
i ai;

4. (
⋃
i ai)

↙;
5. Pred((l,

⋃
i ai), e), for any location l and edge e;

6. Predt(
⋃
i ai,

⋃
j bj).

Proof. The first three are straightforward using the fact that parametric regions
are taken from a finite set. The fourth uses the fact that these regions are defined
using the diagonal constraints x− y− k v 0 going through any vertex. The fifth
is immediate. For Predt we need to use once again the two results from [8]:

Predt(
⋃
i ai,

⋃
j bj) =

⋃
i

⋂
j Predt(ai, bj) and Predt(ai, bj) = (a↙i \b

↙
j) ∪ ((ai ∩

b↙j)\bj)↙ (if bj is convex, which is true by definition of the parametric region),

which can equivalently be written as: Predt(ai, bj) = (a↙i ∩b
↙
j)∪(ai∩b↙j ∩bj)↙.

We can then conclude by using the first four results.

We can now get back to the termination of the IW ′n fixed-point computation:

Theorem 5 (Termination). For any PGA G and any desired location lgoal
the fixed-point computation of IW ′∗ terminates.

Proof. Again we know, from [13], that the forward computation of IS∗, using
ISucc and for bounded parameters, terminates. By definition of parametric re-
gions, IS∗ can be written as a finite union of symbolic states whose associated

`0

`1

y ≥ 2; c0; x := 0

a ≤ x ≤ b + 1; u0; x := 0

`5

`2 Goal

`3

`4

x > a;u1

x < 1
u2

x := 0

x ≤ a; c1

x ≥ 2; c2

x < b
u3

c3

x ≤ a
c4

Fig. 2. A Parametric Timed
Game Automaton

`0
Z0

`0
Z1

. . . `0
Zn

`1
x ≥ 0

`5
x > a

`2
x ≥ 0

Goal
x ≥ 2

`3
x ≥ 0

`4
x ≥ 0

u0 u0 u0

u0

c0
c0 c0 c0

u1

u2

c1

c2

u3

c3

c4

Fig. 3. Symbolic state graph of PGA
of Figure 2

valuations can be represented as finite unions of parametric region. When going
backwards using Predt, by Lemma 5 we know that parametric regions are pre-
served. Therefore at each step at least one region is added to the set of winning
states (otherwise the fixed-point is reached and we can terminate). Since there
is a finite number of parametric regions, the computation must terminate.

3.4 Complexity

As remarked in [13], all of the possible valuations of parameters, that are in-
teger and bounded, can be enumerated in exponential time. Therefore, a prob-
lem that is EXPTIME for TGA, the corresponding bounded integer version for
PGA is also EXPTIME. The reachability game is EXPTIME-complete for TGA
[14], and it is a special case of the reachability-emptiness game for PGA. We
can thus conclude that the reachability-emptiness (synthesis) game for PGA is
EXPTIME-complete for bounded integer parameters.

4 Example

We consider an extension of the example proposed in [8]. The model has two
clocks x and y, controllable (ci) and uncontrollable (ui) actions and two pa-
rameters a and b. The reachability game consists in finding a strategy for the
controller that will eventually end up in the location Goal. We will now explain
how the algorithm works.

A PGA is given in Figure 2 and its symbolic state graph (graph with nodes
(l, Z)) in Figure 3. The initial symbolic state is: (`0, Z0) with Z0 = {x = y, x ≥

0, y ≥ 0}. After n loops u0, we have : (`0, Zn) with Zn = {x ≥ 0, a ≤ b+ 1, 0 ≤
na ≤ y − x ≤ n(b+ 1)}.

We now ensure the termination in the bounded case. For example, assume all
parameters and clocks are less than or equal to 3 (i.e. in each symbolic state we
implicitly have x ≤ 3, y ≤ 3, a ≤ 3, b ≤ 3) then:

-After one loop: Z1 = {a ≤ 3, a ≤ b+ 1, a ≤ y − x ≤ b+ 1}
-After three loops: Z3 = {a ≤ 1, a ≤ b+ 1, 3a ≤ y − x ≤ 3(b+ 1)}
-After n > 3 loops: Zn = Zn+1 = {a = 0, a ≤ b+ 1, y − x ≤ 3}
After the transition c0, the reset of the clock x removes the diagonal con-

straint involving y − x in Z0. . .Zn and the new constraints y ≥ 2 and y − x ≥ 2
are added . All theses zones obtained from Z0. . .Zn are included in (x ≥ 0)∧(y ≥
2) ∧ (y − x ≥ 2). For the sake of conciseness, in the sequel, we omit y ≥ 2 and
y − x ≥ 2 in the symbolic states associated with locations `1 and its successors.

After the computation of the symbolic states, shown in Figure 3, the backward
algorithm starts from the symbolic winning subset (Goal, x ≥ 2). By a control-
lable action (c2) predecessor, we obtain (`2, x ≥ 2). Computing the (timed) past
removes the constraint x ≥ 2, and computing the safe-timed predecessor adds
x ≥ b in order not to end-up in `3 by u3. The resulting state is (`2, x ≥ b).
One of the controllable transitions taking us to `2 is c4. A controllable action
predecessor (c4) adds a constraint x ≤ a. A constraint on the parameters derived
in this state is a ≥ b. This contraint is back-propagated to the preceding states.
The safe-timed predecessors give us the state (`4, x ≥ 0 ∧ a ≥ b).

We obtain successively the following sets of winning states: (`3, x ≥ 0∧a ≥ b),
(`2, (x ≥ b)∨ (x ≥ 0∧a ≥ b)) and (`1, (x ≤ a)∧

(
(x < 1∧a ≥ b)∨x ≥ 1

)
∧
(
(x ≥

b) ∨ (x ≥ 0 ∧ a ≥ b)
)
. The last one simplifies to (`1, (x ≤ a ∧ a ≥ b)). The

constraints are now back-propagated to the states associated with `0. The con-
straint a > 0 is added in order not to end-up in the symbolic state (`0, Zn) by u0
then the winning states obtained from (`0, Zn) is (`0, (a ≤ b+ 1) ∧ (a = 0)), from
(`0, Z3) is (`0, (a ≤ b+ 1) ∧ (a ≤ 1)) . . . and from (`0, Z0) is (`0, (a ≤ b+ 1)). We

finally obtain (`0, (a ≥ b)∧
(

(a > b+ 1)∨
(
(a ≤ b+ 1)∧ (a > 0)

))
). Thus, there

exists a winning strategy if and only if (a ≥ b) ∧
(
(a > b+ 1) ∨ (a > 0)

)
.

It is now easy to extract the memory-less winning strategy from the set of
winning states as follows: a controllable action predecessor gives us the state
from which a corresponding controllable action should be taken, while safe-
timed predecessor further gives us the state where we should delay. Thus, a
whole winning strategy consists in: delaying in all states (`0, {y < 2}), doing
c0 in all states (`0, {y ≥ 2}), doing c1 in all states (`1, {x ≤ a}), delaying in
all states (`2, {x < 2}), doing c2 in all states (`2, {x ≥ 2}), doing c3 in all
states (`3, {x ≥ 0}), delaying in all states (`4, {x < b}), doing c4 in all states
(`4, {x ≥ b ∧ x ≤ a}).

5 Conclusion

In this paper we have proposed an extension of a method introduced in [13], for
the computation of winning states and synthesis of bounded integer parameters

for parametric timed game automata. The method is symbolic and it is based on
the computation of the integer hull of the bounded parametric symbolic states.
In order to find the winning states, we have extended the standard fixed-point
backwards algorithm for solving timed reachability games, for the parametric
domain. Surprisingly, we do not have to apply an integer hull in the backwards
computation, in order to obtain the correct integer solution. In future, we plan
to extend this work to other timed models, such as PTA with stopwatches, as
well as to look for less restrictive codomains for parameter valuations.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In
ACM Symposium on Theory of Computing, pages 592–601, 1993.

3. E. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse method for
parametric timed automata. In RP workshop on Reachability Problems, volume
223, pages 29–46, Liverpool, U.K., 2008.

4. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proc. IFAC SSSC. Elsevier, 1998.

5. G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime.
Uppaal-tiga: Time for playing games! In CAV, pages 121–125, 2007.

6. L. Bozzelli and S. L. Torre. Decision problems for lower/upper bound parametric
timed automata. Formal Methods in System Design, 35(2):121–151, 2009.

7. V. Bruyère and J.-F. Raskin. Real-time model-checking: Parameters everywhere.
Logical Methods in Computer Science, 3(1):1–30, 2007.

8. F. Cassez, A. David, E. Fleury, K. Larsen, and D. Lime. Efficient on-the-fly algo-
rithms for the analysis of timed games. In CONCUR’05, volume 3653 of LNCS,
2005.

9. F. Cassez, J. J. Jessen, K. G. Larsen, J.-F. Raskin, and P.-A. Reynier. Automatic
synthesis of robust and optimal controllers - an industrial case study. In HSCC,
pages 90–104, 2009.

10. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Inform. and Computation, 111(2):193–244, 1994.

11. T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager. Linear parametric model
checking of timed automata. Journal of Logic and Algebraic Programming, 52-
53:183–220, 2002.

12. A. Jovanović, S. Faucou, D. Lime, and O. H. Roux. Real-time control with para-
metric timed reachability games. In Proc. of WODES’12, pages 323–330. IFAC,
Oct. 2012.

13. A. Jovanović, D. Lime, and O. H. Roux. Integer parameter synthesis for timed
automata. In Proc. of TACAS’13, volume 7795 of LNCS, pages 391–405. Springer,
Mar. 2013.

14. M. Jurdzinski and A. Trivedi. Reachability-time games on timed automata. In
Proc. of ICALP 2007, volume 4596 of LNCS, pages 838–849. Springer, July 2007.

15. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In STACS ’95, 1995.

